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Abstract

We define weakly regular rings by a condition characterizing the rings
C(X) for weak almost P-spaces X. A Tychonoff space X is called a weak
almost P-space if for every two zero-sets E and F of X with int E ⊆ int F,
there is a nowhere dense zero-set H of X such that E ⊆ F∪H. We show that a
reduced f -ring is weakly regular if and only if every prime z-ideal in it which
contains only zero-divisors is a d-ideal. Frames L for which the ring RL of
real-valued continuous functions on L is weakly regular are characterized.
We show that if the coproduct of two Lindelöf frames is of this kind, then so
is each summand. Also, a continuous Lindelöf frame is of this kind if and
only if its Stone-Čech compactification is of this kind.

Introduction

Throughout the paper, the term “ring” means a commutative ring with identity 1.
It is well known that, for any Tychonoff space X, the ring C(X) is regular in the
sense of Von Neumann precisely when X is a P-space (see [16]). This result also
holds in the broader context of frames [7]. Call a ring almost regular if each of its
elements is either a zero-divisor or a unit. Every regular ring is almost regular,
but not conversely. The Tychonoff spaces X for which C(X) is almost regular are
exactly the almost P-spaces that were introduced by Veksler in [25].

Less restricted than almost P-spaces are what Azarpanah and Karavan [1] call
weak almost P-spaces. These are spaces X such that for every two zero-sets E and
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F of X with int E ⊆ int F, there is a nowhere dense zero-set H of X such that
E ⊆ F ∪ H. In [1] the authors characterize these spaces as precisely those X
for which every singular (i.e. consisting entirely of zero-divisors) prime z-ideal
of C(X) is a d-ideal. We will provide another ring-theoretic characterization of
these spaces.

In fact, defining a frame L to be a weak almost P-frame if it satisfies a property
which is a frame-theoretic enunciation of the definition of weak almost
P-spaces, we will obtain a ring-theoretic characterization of these frames which
bears immediate resemblance to the frame-theoretic definition (Proposition 2.5).
That characterization will then be the basis for our definition of weakly regular
rings. It will turn out that an f -ring is weakly regular if and only if it satisfies the
prime z-ideal condition mentioned above which characterizes the rings C(X) for
X a weak almost P-space.

On the frame-theoretic side of things, we show that if βL is a weak almost
P-frame then so is L (Corollary 2.10); and conversely if L is a continuous Lindelöf
frame (Proposition 2.12). Another result with the Lindelöf condition concerns
coproducts. It says if the coproduct L⊕M of Lindelöf frames is a weak almost P-
frame then so is each summand (Proposition 2.14). Applied to spaces, we deduce
from it that if X × Y is a weak almost P-space where X and Y are Lindelöf with
at least one of them locally compact, then X and Y are weak almost P-spaces
(Corollary 2.15). The result about coproducts hinges on the fact (established in the
course of the proof of the proposition) that every cozero element of the coproduct
L ⊕ M of Lindelöf frames is a countable join of “cozero rectangles” a ⊕ b, for a
and b cozero elements in L and M respectively. It thus seemed appropriate that
we end Section 2 with characterizations (Proposition 2.17) of when every cozero
element of a binary coproduct of frames is a countable join of cozero rectangles.

Every P-space is an almost P-space, and every almost P-space is a weak
almost P-space. For rings, regularity implies almost regularity quite easily. Less
obvious is that every almost regular f -ring is weakly regular. This we show in our
last result (Proposition 3.4) which also points out the position of weak regularity
in relation to other variants of regularity.

We end this introduction with the following remark. In [24], Subramanian
demonstrates most admirably that, as he puts it, many results in the rings C(X)
are due essentially to the fact that these rings are ℓ-rings. We trust that our Sec-
tion 3, which is purely ring-theoretic, will bear further testimony – if such were
needed – to this observation of Subramanian.

1 Preliminaries

1.1 Frames

Our references for frames are [18] and [23]. We follow, to a large extent, the
notation of these texts, with minor deviations such as, for instance, denoting the
frame of open sets of a topological space X by OX. By a point of L we mean a
prime element, that is, an element p such that p 6= 1 and x ∧ y ≤ p implies x ≤ p
or y ≤ p. We denote the set of all points of L by Pt(L). The cozero part of L is
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denoted, as usual, by Coz L. By a quotient map we mean a surjective frame homo-
morphism. A frame homomorphism h : L→ M is coz-onto if for every d ∈ Coz M
there exists some c ∈ Coz L such that h(c) = d.

1.2 The coreflections βL, λL and υL

We shall view βL, the Stone-Čech compactification of a completely regular frame
L, as the frame of completely regular ideals of L. We write jL : βL → L for the
coreflection map, and rL for its right adjoint, which is given by rL(a) = {x ∈ L |
x ≺≺ a}. The map jL : βL → L is coz-onto (see [5, Corollary 5]). The regular
Lindelöf coreflection of L, denoted λL, is the frame of σ-ideals of Coz L (see [19]).
The join map λL : λL → L is a dense onto frame homomorphism, and is the
coreflection map to L from Lindelöf frames.

Realcompact frames are coreflective in CRegFrm (see, for instance, [6] and
[20] for details). The realcompact coreflection of L, denoted υL, is constructed in
the following manner. For any t ∈ L, let [[t]] = {x ∈ Coz L | x ≤ t}; so that
if c ∈ Coz L, then [[c]] is the principal ideal of Coz L generated by c. The map
ℓ : λL→ λL given by

ℓ(J) =
[[

∨

J
]]

∧
∧

{P ∈ Pt(λL) | J ≤ P}

is a nucleus. The frame υL is defined to be Fix(ℓ). The join map υL : υL → L is a
dense onto frame homomorphism whose right adjoint is given by a 7→ [[a]]. It is
the coreflection map to L from realcompact frames.

1.3 Rings

A ring is said to be reduced if it has no nonzero nilpotent elements. A commutative
f -ring A with identity element 1 has bounded inversion if every a ≥ 1 is invertible.
The bounded part of A is denoted by A∗. The contraction of an ideal I of A is the
ideal Ic = A∗ ∩ I of A∗. The extension Je of an ideal J of A∗ is the ideal of A
generated by J. For any a ∈ A, we denote by M(a) the set of all maximal ideals
of A containing a; and we set M(a) =

⋂

M(a). An ideal I of a ring A is a z-ideal
if, for any a, b ∈ A,

a ∈ I and M(a) = M(b) =⇒ b ∈ I.

A systematic study of z-ideals in rings was carried out by Mason [21]. We de-
note by Ann(a) the annihilator of an element a ∈ A, and by Ann2(a) the ideal
Ann(Ann(a)). An ideal I of A is called a d-ideal if, for every a ∈ I, Ann2(a) ⊆ I.
As shown in [22], this is equivalent to saying, for every a, b ∈ A,

a ∈ I and Ann(a) = Ann(b) =⇒ b ∈ I.

We write Min(A) for the set of minimal prime ideals of A, and Max(A) for the
set of maximal ideals of A.



216 T. Dube – J. N. Nsayi

We refer to [3] for information regarding the f -ring RL of real-valued con-
tinuous functions on a frame L. For any I ∈ βL, the ideal M

I of RL is defined
by

M
I = {α ∈ RL | rL(coz α) ≤ I}.

The maximal ideals of RL are exactly the ideals M
I for I ∈ Pt(βL) (see [10]). For

a ∈ L, the ideal M
rL(a) is written as Ma, and it satisfies

Ma = {α ∈ RL | coz α ≤ a}.

For any α ∈ RL, Ann(α) = M(coz α)∗ . The annihilator ideals in RL are precisely
the ideals Ma∗ , for a ∈ L (see [11]).

2 Weak almost P-frames

We already recalled in the introduction that Azarpanah and Karavan [1] define a
Tychonoff space X to be a weak almost P-space if whenever E and F are zero-sets
with int E ⊆ int F, then E ⊆ F ∪W for some nowhere dense zero-set W of X. For
any U ∈ OX, int(X rU) = X r cl U = U∗. Consequently, the condition defining
weak almost P-spaces is equivalent to saying whenever U and V are cozero-sets
in X with U∗ ⊆ V∗, then V ∩W ⊆ U for some dense cozero-set W of X. We thus
formulate the following definition.

Definition 2.1. A completely regular frame L is a weak almost P-frame if whenever
a and b are cozero elements of L with a∗ ≤ b∗, then there is a dense cozero element
c such that b ∧ c ≤ a.

It is immediate that a Tychonoff space X is a weak almost P-space if and only
if OX is a weak almost P-frame. Here are some examples.

Example 2.2. Recall that a frame L is called an almost P-frame if c = c∗∗ for every
c ∈ Coz L. Every almost P-frame is a weak almost P-frame because a∗ ≤ b∗ for
a, b ∈ Coz L implies b = b∗∗ ≤ a∗∗ = a, so that we can take the top element of L
as a witnessing dense cozero element.

Example 2.3. A frame L is called cozero complemented if for every c ∈ Coz L there is
a d ∈ Coz L such that c ∧ d = 0 and c∨ d is dense. Let L be cozero complemented
and a∗ ≤ b∗ for some a, b ∈ Coz L. Pick c ∈ Coz L such that a ∧ c = 0 and a ∨ c
is dense. Since c ≤ a∗ ≤ b∗, so that b ∧ (a ∨ c) = (b ∧ a) ∨ (b ∧ c) = b ∧ a ≤ a, it
follows that every cozero complemented frame is a weak almost P-frame.

We now seek a ring-theoretic characterization of these frames. Let us formu-
late the following definition, which, as the calculations that follow will show, is
motivated by the frame-theoretic definition above.

Definition 2.4. A ring A is weakly regular if for any a, b ∈ A with Ann(a) ⊆
Ann(b), there is a non-zero-divisor c ∈ A such that bc ∈ M(a).
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The terminology suggests a weakening of regularity. That is indeed the case
for reduced rings. To see this, recall that a reduced ring is regular if and only if
Min(A) = Max(A). Thus, if Ann(a) ⊆ Ann(b), then

b ∈ Ann2(b) ⊆ Ann2(a) =
⋂

{P ∈ Min(A) | a ∈ P} =
⋂

M(a) = M(a),

so that c = 1 is a non-zero-divisor with bc ∈ M(a).

Proposition 2.5. The following are equivalent for a completely regular frame L.

1. L is a weak almost P-frame.

2. For any a, b ∈ Coz L with a∗ = b∗, there is a dense c ∈ Coz L such that a ∧ c =
b ∧ c.

3. RL is a weakly regular ring.

Proof. (1) ⇒ (2): Suppose a and b are cozero elements with a∗ = b∗. Then there
are dense cozero elements u and v such that b ∧ u ≤ a and a ∧ v ≤ b. Now
c = u ∧ v is a dense cozero element with a ∧ c = b ∧ c because b ∧ u ≤ a implies
b ∧ u ∧ v ≤ a ∧ u ∧ v, and similarly for the other inequality.

(2) ⇒ (3): Let α, β ∈ RL be such that Ann(α) ⊆ Ann(β). Then M(coz α)∗ ⊆

M(coz β)∗ , which implies (coz α)∗ ≤ (coz β)∗, and hence

(coz(α2 + β2))∗ = (coz α ∨ coz β)∗ = (coz α)∗ ∧ (coz β)∗ = (coz α)∗.

It therefore follows from (2) that there is a positive γ ∈ RL such that coz γ is
dense and coz α ∧ coz γ = coz γ ∧ coz(α2 + β2). Consequently,

coz(γβ) = coz(γβ2) ≤ coz(γα2 + γβ2) = coz α ∧ coz γ ≤ coz α.

Let Q be a maximal ideal of RL containing α. Pick I ∈ Pt(βL) such that
Q = M

I . Then rL(coz α) ≤ I, which implies rL(coz(βγ)) ≤ I, so that βγ ∈ M
I .

Consequently, βγ ∈ M(α). Now, γ is a non-zero-divisor because coz γ is dense,
therefore RL is a weakly regular ring.

(3) ⇒ (1): Suppose a, b ∈ Coz L are such that a∗ ≤ b∗. Pick α, β ∈ RL with
a = coz α and b = coz β. Now a∗ ≤ b∗ implies Ann(α) ⊆ Ann(β), and hence, by
(3), there is a non-zero-divisor γ such that βγ ∈ M(α) = Mcoz α. Thus, c = coz γ
is a dense cozero element of L such that b ∧ c ≤ a. Therefore L is a weak almost
P-frame.

Corollary 2.6. The following are equivalent for a completely regular frame L.

1. L is a weak almost P-frame.

2. υL is a weak almost P-frame.

3. λL is a weak almost P-frame.

Since a completely regular frame L is pseudocompact precisely when υL is
isomorphic to βL – which also is the case for Tychonoff spaces – we deduce from
the above that:
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Corollary 2.7. A pseudocompact frame L is a weak almost P-frame iff βL is a weak
almost P-frame. Similarly, a pseudocompact space X is a weak almost P-space iff βX is a
weak almost P-space.

We recall from [4, Lemma 2] that if h : M → L is dense, then the ring homo-
morphism Rh : RM → RL is one-one. Also, recall from [2] that a quotient map
h : M → L is a C-quotient map precisely when Rh : RM → RL is onto. This is
however not the definition used in [2].

Corollary 2.8. Let h : M → L be a dense C-quotient map. Then M is a weak almost
P-frame iff L is weak almost-P.

Interpreting this result for Tychonoff spaces we obtain the following.

Corollary 2.9. A dense C-embedded subspace of a Tychonoff space is a weak almost
P-space iff the containing space is a weak almost P-space.

In the less restricted case we have the following corollary. Let us recall that if
h : M → L is dense, then h(a)∗ = h(b)∗ implies a∗ = b∗ for very a, b ∈ L. This is
so because

h(a∗ ∧ b) = h(a∗) ∧ h(b) ≤ h(a)∗ ∧ h(b) = h(b)∗ ∧ h(b) = 0,

so that a∗ ∧ b = 0 by density, and hence a∗ ≤ b∗, whence equality follows by
symmetry. Recall also that a dense onto frame homomorphism preserves pseu-
docomplements, hence it preserves (and reflects) dense elements.

Corollary 2.10. Let h : M → L be a dense coz-onto frame homomorphism. If M is a
weak almost P-frame, then L is a weak almost P-frame. Hence, if βL is a weak almost
P-frame, then so is L.

Proof. Suppose a∗ = b∗ for some a, b ∈ Coz L. Since h is coz-onto, there exist
u, v ∈ Coz M such that h(u) = a and h(v) = b. Then h(u)∗ = h(v)∗, from which
we can deduce by what we have observed above that u∗ = v∗. Since M is weakly
almost-P, there is a dense w ∈ Coz M such that v ∧ w = u ∧ w. Thus, h(w) is a
dense cozero element of L such that b ∧ h(w) = a ∧ h(w). Therefore L is weakly
almost-P.

In spaces this result yields the following.

Corollary 2.11. A dense z-embedded subspace of a weak almost P-space is a weak almost
P-space. Hence, X is a weak almost P-space if βX is a weak almost P-space.

We have not been able to determine if βL is always a weak almost P-frame
whenever L is. We do however have a case when this happens. Recall that the
“way-below” relation≪ in a frame L is defined by

a≪ b ⇐⇒ b ≤
∨

S for some S ⊆ L implies a ≤
∨

T for some finite T ⊆ S.

The frame L is then called continuous if a =
∨

{x ∈ L | x ≪ a} for every a ∈ L. In
a regular continuous frame,

a≪ b ⇐⇒ a ≺ b and ↑a∗ is compact,
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a consequence of which is that, in a continuous regular frame, ai ≪ bi for i = 1, 2
implies a1 ∧ a2 ≪ b1 ∧ b2. This in general is not the case, and the frames for which
it holds are called stably continuous.

In the proof that follows we shall use the fact that if I ≺≺ J in βL, then
∨

I ∈ J.
For verification see for instance the paragraph preceding Example 4 in [10].

Proposition 2.12. Let L be a continuous Lindelöf frame. Then βL is a weakly almost
P-frame iff L is a weak almost P-frame.

Proof. Only the right-to-left implication needs proof. So assume L is a weak al-
most P-frame, and let U, V ∈ Coz(βL) be such that U∗ ≤ V∗. Pick cozero
elements Un in βL such that Un ≺≺ Un+1 and U =

∨

n
Un. For each n, put

un =
∨

Un and observe that un ≺≺ un+1. Since Un ≤ rL(un) ≤ Un+1, it fol-
lows that U =

∨

n
rL(un). Similarly, there are cozero elements vn in L such that

V =
∨

n
rL(vn). Now let u and v be the cozero elements of L given by u =

∨

un and

v =
∨

vn. Since u = jL(Un) and v = jL(Vn), it follows from U∗ ≤ V∗ that u∗ ≤ v∗.
Since L is a weak almost P-frame, there is a dense d ∈ Coz L such that v ∧ d ≤ u.
Since L is a continuous frame and d ∈ Coz L, so that, by [5, Corollary 4], d is a
Lindelöf element in L, there are elements dn in L such that dn ≪ d for every n
and d =

∨

dn. We may assume that each dn ∈ Coz L because the way-below rela-
tion interpolates in a continuous frame. Now, in view of the fact that jL : βL → L
is coz-onto, there exists, for each n, Dn ∈ Coz(βL) such that jL(Dn) = dn. The
element D =

∨

n
Dn is a cozero element in βL. Since

jL(D) = jL

(

∨

n

Dn

)

=
∨

n

dn = d,

it follows that D is dense because d is dense. We claim that D ∧ V ≤ U. To see
this, observe first that Dn ≤ rL(dn) since jL(Dn) = dn, and hence

D ∧V ≤
∨

n

rL(dn) ∧
∨

m

rL(vm) =
∨

n,m

rL(dn ∧ vm).

Now, for any pair of indices (n, m),

dn ∧ vm ≪ d ∧ v ≤ u =
∨

un,

which, in view of the fact that the sequence (un) increases, implies there is an in-
dex k such that dn ∧ vm ≤ uk ≺≺ uk+1, so that dn ∧ vm ∈ rL(uk+1) ⊆ U. Therefore
rL(dn ∧ vm) ≤ U, and hence D ∧V ≤ U. Thus, βL is a weak almost P-frame.

Corollary 2.13. A locally compact Lindelöf space is a weak almost P-space iff its Stone-
Čech compactification is a weak almost P-space.

In [10] it is shown that if the coproduct of two frames is an almost P-frame,
then each summand is an almost P-frame. We prove a similar result for Lindelöf
weak almost P-frames. Recall that if c ∈ Coz L and d ∈ Coz M, then c ⊕ d ∈

Coz(L⊕M) because c⊕ d = iL(c)∧ iM(d) for the coproduct injections L
iL−→ L⊕

M
iM←− M. It is shown in [8] that, for any x ∈ L and y ∈ M, (x⊕ y)∗∗ = x∗∗⊕ y∗∗.

Thus, if x⊕ y is dense, then both x and y are dense.
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Proposition 2.14. If the coproduct of two Lindelöf frames is a weak almost P-frame, then
each summand is a weak almost P-frame.

Proof. Let L and M be such frames. Suppose a∗ ≤ b∗ for some a, b ∈ Coz L. Then
a⊕ 1 and b⊕ 1 are cozero elements of L⊕M. Since b∗∗ ≤ a∗∗, we have

(b⊕ 1)∗∗ = b∗∗ ⊕ 1 ≤ a∗∗ ⊕ 1 = (a⊕ 1)∗∗,

which implies (a ⊕ 1)∗ ≤ (b ⊕ 1)∗. So, by hypothesis, there is a dense
U ∈ Coz(L⊕M) such that

(b⊕ 1) ∧U ≤ a⊕ 1. (#)

We claim that there are sequences (cn) and (dn) in Coz L and Coz M respectively
such that

U =
∞
∨

n=1

(cn ⊕ dn).

To show this, we write U as a join of basic elements, say U =
∨

α
(aα ⊕ bα). By

complete regularity, for each α there are cozero elements {c
(α)
i } in L and cozero

elements {d
(α)
j } in M such that

aα =
∨

i

c
(α)
i and bα =

∨

j

d
(α)
j .

Consequently,

aα ⊕ bα =
∨

i

c
(α)
i ⊕

∨

j

d
(α)
j =

∨

i,j

(c
(α)
i ⊕ d

(α)
j ),

so that

U =
∨

α,i,j

(c
(α)
i ⊕ d

(α)
j ).

Since U is a cozero element in a Lindelöf frame, it is a Lindelöf element, and hence
we can find countably many cn ∈ Coz L and countably many dn ∈ Coz M such

that U =
∞
∨

n=1
(cn ⊕ dn). Now

(b⊕ 1) ∧
∞
∨

n=1

(cn ⊕ dn) =
∞
∨

n=1

(

(b⊕ 1) ∧ (cn ⊕ dn)
)

=
∞
∨

n=1

(

(b ∧ cn)⊕ dn

)

.

Thus, the inequality in (#) implies
∞
∨

n=1

(

(b ∧ cn)⊕ dn

)

≤ a⊕ 1, whence (b ∧ cn)⊕

dn ≤ a⊕ 1 for every n, and hence b ∧ cn ≤ a for every n, which implies b ∧
∨

n
cn ≤
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a. To finish the proof we show that the cozero element
∨

n
cn of L is dense. Since U

is dense and

U =
∨

n

(cn ⊕ dn) ≤
(

∨

n

cn

)

⊕
(

∨

n

dn

)

,

it follows that
(

∨

n
cn

)

⊕
(

∨

n
dn

)

is dense, whence
∨

n
cn is dense. Therefore L is a

weak almost P-frame. Similarly, M is a weak almost P-frame.

Corollary 2.15. Let X and Y be Lindelöf spaces with one of them locally compact. If
X× Y is a weak almost P-space, then both X and Y are weakly almost P-spaces.

Proof. By [18, Proposition II 13], O(X × Y) ∼= OX ⊕OY. Therefore OX ⊕OY is
a weak almost P-frame, and so OX and OY are weak almost P-frames, which
implies X and Y are weak almost P-spaces.

Remark 2.16. The fact that L⊕M is Lindelöf was used only to enable us to write
the cozero element U as a join of countable many “cozero rectangles” cn⊕ dn. The
result therefore is true for any pair (L, M) of frames for which every cozero ele-
ment of L⊕M is a join of countably many cozero rectangles. We end the section
with a digression from our main train of thought, and give characterizations of
such pairs.

To start, we mention that the term “cozero rectangle” is borrowed from [9],
and the pointed analogues of the characterizations that follow are in that paper,
excluding, of course, the one about the Lindelöf coreflections.

Recall that if, for i = 1, 2, hi : Mi → Li are frame homomorphisms, then the
induced frame homomorphism h1 ⊕ h2 : M1 ⊕M2 → L1 ⊕ L2 is given by

(h1 ⊕ h2)
(

∨

α

(xα ⊕ yα)
)

=
∨

α

(

h1(xα)⊕ h2(yα)
)

.

Proposition 2.17. The following are equivalent for frames L and M.

1. Every cozero element of L⊕M is a countable join of cozero rectangles.

2. For any coz-onto homomorphisms h : K → L and g : N → M, the homomorphism
h⊕ g : K⊕ N → L⊕M is coz-onto.

3. jL ⊕ jM : βL⊕ βM → L⊕M is coz-onto.

4. λL ⊕ λM : λL⊕ λM → L⊕M is coz-onto.

Proof. (1)⇒ (2): Given a cozero element U =
∨

n
(an ⊕ bn) in L⊕M, take, for each

n, cozero elements un in K and cozero elements vn in N such that h(un) = an and
g(vn) = bn. Then

∨

n
(un ⊕ vn) is a cozero element of K⊕ N mapped to U by h⊕ g.

(2)⇒ (3): This is trivial because the Stone-Čech maps are coz-onto.
(3) ⇒ (1): Let U ∈ Coz(L ⊕M). By (3), there is a V ∈ Coz(βL ⊕ βM) such

that (jL ⊕ jM)(V) = U. As we observed in the proof of Proposition 2.14, there
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are cozero elements cn ∈ Coz(βL) and dn ∈ Coz(βM) such that V =
∨

n
(cn ⊕ dn)

because βL⊕ βM is Lindelöf. Thus,

U = (jL ⊕ jM)
(

∨

n

(cn ⊕ dn)
)

=
∨

n

(

jL(cn)⊕ jM(dn)
)

,

which is a countable join of cozero rectangles.
(1) ⇔ (4): The same line of argument as the foregoing one shows this since

λL⊕ λM is Lindelöf.

3 Characterizing weakly regular f -rings

The characterization in statement (2) in Proposition 2.5 suggests an analogous
characterization for weakly regular rings. For f -rings we indeed do have such.
Recall that a radical ideal is one which whenever it contains a power of an element,
then it already contains the element. For any a in a ring, M(a) is a radical ideal.
Observe that if M(x) ⊆ M(y), then M(xy) = M(y). The last implication in the
following proof is modelled on that of [1, Theorem 4.2(ii)].

Proposition 3.1. The following properties of a reduced f -ring A are equivalent.

1. A is weakly regular.

2. For any a, b ∈ A, Ann(a) = Ann(b) implies there is a non-zero-divisor c such
that ac ∈ M(b) and bc ∈ M(a).

3. Every singular prime z-ideal in A is a d-ideal.

Proof. (1) ⇒ (2): Assume (1) and suppose that Ann(a) = Ann(b) for some
a, b ∈ A. Then there are non-zero-divisors u and v such that au ∈ M(b) and
bv ∈ M(a). Hence c = uv is a non-zero-divisor with ac ∈ M(b) and bc ∈ M(a).

(2) ⇒ (3): Let P be a singular prime z-ideal in A. Suppose that, for some
a, b ∈ A, Ann(a) = Ann(b) and a ∈ P. We must show that b ∈ P. By (2), there
is a non-zero-divisor c such that bc ∈ M(a). Thus, M(a) ⊆M(bc), which implies
M(bc) = M(abc). Since abc ∈ P and P is a z-ideal, it follows that bc ∈ P, and
hence b ∈ P because P is prime and c /∈ P.

(3) ⇒ (1): Let Ann(a) ⊆ Ann(b) and suppose, by way of contradiction, that
for any non-zero-divisor c, bc /∈ M(a). Define the set S ⊆ A by

S = {bnc | c is a non-zero-divisor and n = 0, 1, 2 . . .},

and note that S is multiplicatively closed. Also, M(a) ∩ S = ∅ because if
bnc ∈ M(a) for some n and some non-zero-divisor c, then (bc)n ∈ M(a), so that
bc ∈ M(a) since M(a) is a radical ideal. Let P be a prime ideal minimal over M(a)
and disjoint from S. Since M(a) is a z-ideal, it follows from [22, Theorem 1.1] that
P is a z-ideal. Since S contains all non-zero-divisors, P is singular, and hence, by
hypothesis, P is a d-ideal, and therefore Ann2(a) ⊆ P as a ∈ P. Consequently,
the relations b ∈ Ann2(b) ⊆ Ann2(a) ⊆ P imply b ∈ P, which is a contradiction
because b ∈ S. Therefore A is weakly regular.
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Below we use the fact that if A is a reduced f -ring with bounded inversion
and

S = {a ∈ A∗ | a is invertible in A},

then A = A∗[S−1] (see [12, Lemma 3.4]). That is, A is the ring of fractions of its
bounded part relative to the set S. A consequence of this is that ideals of A are
exactly the ideals

Ie = {s−1u | s ∈ S and u ∈ I}

for I any ideal of A∗.

Corollary 3.2. Let A be a reduced f -ring with bounded inversion.

(a) If A is weakly regular and every prime singular z-ideal of A∗ extends to a z-ideal
in A, then A∗ is weakly regular.

(b) If A∗ is weakly regular and every prime singular z-ideal of A contracts to a z-ideal
in A∗, then A is weakly regular.

Proof. (a) Let I be a singular prime z-ideal in A∗. Then of course Ie is a prime ideal
in A, and it consists entirely of zero-divisors. By hypothesis, Ie is a z-ideal, and
hence it is a d-ideal since A is weakly regular. By [12, Lemma 3.8], Iec is a d-ideal
in A∗, and by [12, Proposition 3.0], I = Iec. Therefore A∗ is weakly regular.

(b) The proof goes along the lines of that of (a).

Remark 3.3. In [17, Corollary 2.6.1], Ighedo shows that every z-ideal of any ring
RL contracts to a z-ideal of R∗L. Thus, the (b) part of the foregoing corollary
gives another reaffirmation of the fact that if βL is a weak almost P-frame then so
is L sinceR(βL) is isomorphic to R∗L.

We conclude by examining the position of weak regularity for f -rings vis-
à-vis other weaker variants of regularity. First let us recall some terminology.
Endo [14] calls a ring quasi-regular if its classical ring of quotients is regular.
In [15, Theorem 2.2], Evans characterizes quasi-regular rings internally. He shows
that A is quasi-regular if and only if for every a ∈ A there exists b ∈ A such that
Ann2(a) = Ann(b) if and only if for every a ∈ A there exists a non-zero-divisor
d ∈ A such that a2 = ad. At the beginning of the paper we agreed to say a ring is
almost regular if every non-zero-divisor in it is invertible.

The proposition that we shall prove shortly is motivated by what happens
in function rings RL. Recall that in frames we have the following irreversible
implications. We use the abbreviations AP, WAP and CC for “almost P”, “weak
almost P”, and “cozero complemented”.

P =⇒ AP =⇒ WAP and P =⇒ CC =⇒ WAP.

Furthermore,
CC + AP =⇒ P.

Frames L with any of these properties have ring-theoretic characterizations.
We list them below, giving reference where each characterization first appeared.
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1. L is a P-frame iff RL is a regular ring [7].

2. L is an almost P-frame iff RL is an almost regular ring [10].

3. L is cozero complemented iffRL is a quasi-regular ring [13].

We now show that the ring analogues of the implications above hold for
reduced f -rings.

Proposition 3.4. For reduced f -rings the following implications hold.

1. Regularity =⇒ almost regularity =⇒ weak regularity.

2. Regularity =⇒ quasi-regularity =⇒ weak regularity.

3. Quasi-regularity + almost regularity =⇒ regularity.

Proof. (1) To show the first implication, suppose A is a regular ring, and let a ∈ A
be a non-zero-divisor. Pick b ∈ A such that a = a2b. Then a(1 − ab) = 0, and
hence ab = 1 since a is not a divisor of zero. Therefore a is invertible, and hence
A is almost regular.

For the second implication, assume A is almost regular, and suppose Ann(a) ⊆
Ann(b) for some a, b ∈ A. Let M be a maximal ideal of A containing a. Since
M consists entirely of zero-divisors, Ann2(u) is a proper ideal of A for every
u ∈ M. Indeed, if 1 were in Ann2(u) we would have Ann(u) = 0, whence u
would be a non-zero-divisor. Let u, v ∈ M, and suppose w ∈ Ann(u2 + v2). Then
(wu)2 + (wv)2 = 0, and hence (wu)2 = 0, which implies wu = 0 since A is re-
duced. Thus, Ann(u2 + v2) ⊆ Ann(u), which implies Ann2(u) ⊆ Ann2(u2 + v2).
Therefore the set

K =
⋃

{Ann2(x) | x ∈ M}

is a directed union of proper d-ideals of A, and is therefore a proper d-ideal with
M ⊆ K, and therefore M = K. Thus, M is a d-ideal. Since Ann(a) ⊆ Ann(b), we
have Ann(a) = Ann(a2 + b2), which implies a2 + b2 ∈ M because a ∈ M and M
is a d-ideal. This implies b2 ∈ M, and hence b ∈ M. Because M is an arbitrary
maximal ideal containing a, it follows that b ∈ M(a). So choosing c = 1, we have
that c is a non-zero-divisor with bc ∈ M(a). Therefore A is weakly regular.

(2) Only the second implication need be shown. Assume that A is quasi-
regular, and suppose Ann(a) ⊆ Ann(b) for some a, b ∈ A. By [15, Theorem
2.2], there is a non-zero-divisor c such that a2 = ac. Then a(a − c) = 0, so that
b(a− c) = 0 since a− c ∈ Ann(a) ⊆ Ann(b). So, bc = ba, and hence bc is in every
ideal that contains a. Therefore bc ∈ M(a), showing that A is weakly regular.

(3) Let a ∈ A. Again by Evans’ result, a2 = ac for some non-zero-divisor c,
which is then invertible since A is almost regular. Thus a = a2c−1, and therefore
A is regular.
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[19] J. Madden and J. Vermeer, Lindelöf locales and realcompactness, Math. Proc.
Cambridge Philos. Soc. 99 (1986), 473–480.

[20] N. Marcus, Realcompactification of frames, Comment. Math. Univ. Carolin. 36
(1995), 349–358.

[21] G. Mason, z-Ideals and prime ideals, J. Algebra 26 (1973), 280–297.

[22] G. Mason, Prime ideals and quotient rings of reduced rings, Math. Japonica 34(6)
(1989), 941–956.

[23] J. Picado and A. Pultr, Frames and Locales: topology without points, Frontiers in
Mathematics, Springer/Basel (2012).

[24] H. Subramanian, ℓ-prime ideals in f -rings, Bull. Soc. Math. France 95 (1967),
193–203.

[25] A. I. Veksler, P′-points, P′-sets, P′-sets. A new class of order-continuous measures
and functionals, Soviet Math. Dokl. (English Translation) 14 (1973), 1445–1450.

Department of Mathematical Sciences,
University of South Africa,
P. O. Box 392, 0003 Unisa,
SOUTH AFRICA.
email:dubeta@unisa.ac.za, jissy@aims.ac.za


