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Abstract

We consider the Poincaré’s classical problem of approximation for
second order linear differential equations in the class of almost periodic type
functions. We obtain an explicit form for solutions of these equations by
studying a Riccati equation associated with the logarithmic derivative of a
solution. The fixed point Banach argument allows us to find almost periodic
and asymptotically almost periodic solutions of the Riccati equation. A de-
composition property of the perturbations induces a decomposition on the
Riccati equation and its solutions. In particular, by using this decomposition
we obtain asymptotically almost periodic and also p-almost periodic solu-
tions to the Riccati equation.

1 Introduction

The theory of almost periodic functions has been developed in connection with
problems of differential equations, stability theory, dynamical systems and many
others. The applications include not only ordinary differential equations, but
also difference equations, partial differential equations or differential equations
in Banach spaces. Since there are plenty of results in literature, let us just quote
[8, 9, 10, 29, 30], for their applications in engineering [15, 21, 22, 28] and life
sciences [1, 11, 19].
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Poincaré [32] in 1885 established the existence of a solution y of the equation

y(n) +
n−1

∑
i=0

(ai + ri(t))y
(i) = 0 (1)

such that y′(t)/y(t) converges as t → ∞, under the hypothesis: the roots λ1, . . . , λn

of equation λn + ∑
n−1
i=0 aiλ

i = 0 have distinct real parts and ri ∈ C0, i.e., ri(t) →
0 as t → +∞, for i = 0, . . . , n − 1. Perron [25], at the beginning of the twenti-
eth century, improved this result assuring the existence of n linearly independent
solutions y1, . . . , yn, such that y′i(t)/yi(t) converges to λi as t → +∞, under the
same hypothesis. In case ri ∈ Lp for some p ≥ 1, there are results for systems
of linear differential equations, which can be applied to this equation. These re-
sults are due to Levinson [2, 6, 12, Th. 1.3.1] for p = 1 and to Hartman-Wintner
[20, 12, Th.1.5.1] for p ∈ (1, 2]. In [16]-[18], by using a nonlinear transformation
and a general Riccati equation we have studied second and third order equations
(1). In the class of C0 and Lp functions we have obtained precise formulae and
estimated their errors. In almost diagonal linear systems, perhaps the first results
in this sense were obtained in Pinto et al. [31, 30, 29].

In this paper, by using a certain Riccati equation, [16, 26, 2, chap. 6], we gen-
eralize Poincaré’s and Perron’s classical problem of approximation to the class of
almost periodic type functions, namely, we consider equation

y′′ + (a1 + r1(t))y
′ + (a0 + r0(t))y = 0, (2)

where ai are constants and ri are almost periodic complex-valued functions for
i = 0, 1. Under sufficient conditions, we have obtained an almost explicit formula
for the solutions. In particular, if λ± are the roots of the polynomial P(λ) =
λ2 + a1λ + a0, γ = λ+ − λ−, with Re γ 6= 0, r0 and r1 are sufficiently small in a
L∞-sense and almost periodic then there exists a fundamental system of solutions
y± : R → C satisfying

y±(t) = eλ±t exp

(
∓ 1

γ

∫ t

0
[r0(s) + λ±r1(s) + r1(s)z±(s)

+z2
±(s)] ds ∓ 1

γ
[z±(t)− z±(0)]

)
,

y′±(t) = (λ± + z±(t))y±(t),

where z± satisfy a Riccati equation, is an almost periodic complex-valued func-
tion and

z±(t) = O

(
∓
∫ ∓∞

t
e∓α(t−s)|r0(s) + λ±r1(s)| ds

)

for some 0 < α < |Re γ| (see Theorem 1 and (21)). Let us point out that without
loss of generality, we always can assume that Re γ > 0. These formulae remem-
ber us the Floquet’s Theorem for the periodic case, which is not longer true for
almost periodic type coefficients.

On the other hand, this result is also true for ri, i = 0, 1 in either C0 or Lp,
see [2, 6, 12, 16]. In general, z± are related with the logarithmic derivative of y±
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and represent the error function belonging to spaces under consideration C0, Lp

or almost periodic type functions, and are small with respect to the norm in the
space; L∞ in our case. Our procedure allows us to address a new class of pertur-
bations, introducing a new class of functions in the context of almost periodicity:
the p-almost periodic functions. See Definition 2 and Remark 7. In other words,
there exist several classes of almost periodic type functions verifying these re-
sults. This is the case of those with a summand C0 or Lp (asymptotically almost
periodic functions or p-almost periodic functions), namely, ri = µi + νi, i = 0, 1
with µi ∈ AP(R, C) and either νi ∈ C0 or νi ∈ Lp for i = 0, 1, see Theorems
2-4. An important consequence is that this decomposition of the coefficients ri,
i = 0, 1 induces the decomposition z± = θ±+ψ±, where θ± is the almost periodic
part and ψ± is C0 or Lp, respectively. These functions θ± and ψ± satisfy their own
equations, which can be treated and solved separately, implying the existence of
new solutions. See equations (22)-(23) and Theorem 4. In section 4, we will dis-
cuss the results through an illustrative example. Finally, let us emphasize that
the used method is scalar [16, 17, 18, 26], reducing the order of the equation and
avoiding the usual diagonalization process [6, 12, 13, 14].

2 Almost periodic functions and Riccati equations

In this section we shall present a certain class of almost periodic type functions,
review some facts to Green’s type operators and show some existence results for a
nonlinear equation, which we will apply to a Riccati equation related with (2). In
order to make a better exposition of these topics, we consider three subsections.

2.1 Almost periodic type functions

First, let us introduce the notion of almost periodic function used throughout this
paper. See [8, 23, 33].

Definition 1. a) A continuous function f : R → C is almost periodic (in the
Bochner sense [3]) if for every sequence {α′

n} ⊂ R there exists a subse-
quence {αn} ⊂ {α′

n} such that limn→+∞ f (t + αn) exists uniformly on the
real line. The set of almost periodic functions from R to C will be denoted
by AP(R, C).

b) A continuous function f : R × C → C satisfies f ∈ AP(R × C, C) if for
every sequence {α′

n} ⊂ R there exists a subsequence {αn} ⊂ {α′
n} such

that limn→+∞ f (t + αn, z) exists uniformly for t ∈ R and for z on compact
subsets of C.

In order to perturb almost periodic functions we present the following result.

Lemma 1. Let f ∈ AP(R, C) and p ≥ 1. If f (t) → 0 as t → +∞ then f ≡ 0. If
f ∈ Lp[0,+∞) then f ≡ 0.

More generally, if f ∈ AP(R, C) and f (t) → c as t → +∞ then f ≡ c. This
Lemma is straightforward and, for the sake of self-containment, we shall present
a proof here.
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Proof: First, assume that f (t) → 0 as t → +∞. By assumptions, there exists an
increasing sequence {nk}k∈N ⊂ N and a function g such that f (t + nk) → g(t)
as k → +∞ uniformly for t ∈ R. Since, for every t ∈ R, t + nk → +∞, we have
that f (t + nk) → 0 = g(t) as k → +∞. Hence, g(t) = 0 for all t ∈ R and due to
uniform convergence, for all ε > 0 there exists N ∈ N such that | f (t + nk)| < ε
for all k ≥ N and t ∈ R, namely, for all ε > 0, | f (t)| < ε for all t ∈ R. Therefore,
f ≡ 0.

Now, assume that f ∈ Lp[0,+∞), i.e.,
∫ ∞

0 | f |p < +∞. Then, we get that

lim
n→+∞

∫ +∞

0
| f (t + n)|p dt = lim

n→+∞

∫ +∞

n
| f (t)|p dt = 0.

Thus, f (· + n) converges to 0 in Lp[0,+∞). Hence, there exists a subsequence
nk ∈ N such that f (· + nk) converges a.e. to 0 as k → +∞. On the other hand,
there exists a subsequence, that we will still denote by {nk}k, with nk → +∞ as
k → +∞ and a function f ∗, such that f (·+ nk) → f ∗ uniformly in R as k → +∞,
in view of f ∈ AP(R, C). Therefore, by the uniform convergence of { f (·+ nk)}k,
we conclude that f ∗ ≡ 0 in [0,+∞). Finally, we find that f ≡ 0, since f ∗ ≡ 0 in
[0,+∞) implies f (t) → 0 as t → +∞.

Let us introduce the following function spaces: BC(R, C) is the set of all bounded
continuous functions from R to C. In addition, we define BC0(R, C) =
{ f ∈ BC(R, C) | f (t) → 0 as t → +∞}, C00(R, C) = { f ∈ BC0(R, C) |
f (t) → 0 as t → −∞}, and L

p
0 = { f : R → C |

∫ ∞

0 | f |p < ∞}. In other words,

from Lemma 1 we have that AP(R, C)∩ BC0(R, C) = {0} and AP(R, C)∩ L
p
0 =

{0}. Thus, we set

Definition 2. c) A bounded continuous function f : R → C is asymptotically
almost periodic if f = φ + g with φ ∈ AP(R, C) and limt→+∞ g(t) = 0.
The set of asymptotically almost periodic functions from R to C will be
denoted by AAP(R, C). In addition, if limt→−∞ g(t) = 0, we will say
f ∈ AAP0(R, C). See [5, 10].

d) A bounded continuous function f : R → C is p-almost periodic with p ≥ 1,
if f = φ + g with φ ∈ AP(R, C) and g ∈ L

p
0 . The set of all p-almost

periodic functions from R to C will be denoted by AP(R, C, p). In addition,
if g ∈ Lp(R), we will say f ∈ AP0(R, C, p). See [10, section 4.3; page 46].

e) A bounded continuous function f : R × C → C satisfied f ∈ AAP(R ×
C, C) if f = φ + g with φ ∈ AP(R × C) and limt→+∞ g(t, x) = 0 uniformly
for x on compact subsets of C. In addition, if limt→−∞ g(t, x) = 0 uniformly
for x on compact subsets of C, we will say f ∈ AAP0(R × C, C).

f ) A bounded continuous function f : R × C → C satisfied f ∈ AP(R ×
C, C, p) if f = φ + g with φ ∈ AP(R × C, C) and g(·, x) ∈ L

p
0 uniformly for

x on compact subsets of C. In addition, if g(·, x) ∈ Lp(R) uniformly for x
on compact subsets of C, we will say f ∈ AP0(R × C, C, p).
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Remark 1. It follows that AP(R, C) ⊂ AAP0(R, C) ⊂ AAP(R, C) ⊂ BC(R, C)
and the direct sums AAP(R, C) = AP(R, C)⊕ BC0(R, C) and AAP0(R, C) =
AP(R, C) ⊕ C00(R, C). Furthermore, AP(R, C), AAP0(R, C) and AAP(R, C)
are closed subspaces of the Banach space BC(R, C) endowed with supremum
norm ‖ · ‖∞. Also, AP(R, C, p) = AP(R, C) ⊕ [L

p
0 ∩ BC(R, C)] and

AP0(R, C, p) = AP(R, C) ⊕ [Lp(R) ∩ BC(R, C)]. Notice that f = φ + g with
φ ∈ AP(R, C) and g ∈ L

p
0 then g|[t0,+∞) ∈ Lp[t0,+∞) for any t0 ∈ R.

2.2 Green’s type operators

Given γ ∈ C with Re γ > 0 and α > 0, we define the operators acting on a
function r : R → C as follows

G
γ
±[r](t) = −

∫ ∓∞

t
e∓γ(t−s) r(s) ds and Lα

±[r](t) = ∓
∫ ∓∞

t
e∓α(t−s) |r(s)| ds.

The Green’s operator G
γ
± and Lα

± allow us to state our results and do satisfy the
following useful inequality.

Lemma 2 ([17]). If β < α then

∣∣∣Gα
±
[
b G

β
±[a]

]
(t)
∣∣∣ ≤ Lα

±
[
bLβ

±[a]
]
(t) ≤ Lα−β

± [b](t)Lβ
±[a](t). (3)

The following inequality implies that the map (0,+∞) ∋ α 7→ Gα
±[r] ∈ BC(R, C)

is a continuous function for r ∈ BC(R, C) fixed.

Lemma 3. Let r ∈ BC(R, C) fixed. For all α, β > 0 it holds

∥∥Gα
±[r]− G

β
±[r]

∥∥
∞
≤ ‖r‖∞

∣∣∣∣
1

α
− 1

β

∣∣∣∣ .

Notice that the same inequality still holds true for the operators Lα
± and Lβ

± with

any function r ∈ BC(R, C), since Lα
±[r] = ±Gα

±
[
|r|
]
.

Proof: Without loss of generality, assume that α < β. Hence, it follows that

∣∣∣Gα
±[r](t)− G

β
±[r](t)

∣∣∣ ≤ ‖r‖∞

∣∣∣∣
∫ ∓∞

t

∣∣∣e∓α(t−s) − e∓β(t−s)
∣∣∣ ds

∣∣∣∣ = ‖r‖∞

∣∣∣∣
1

α
− 1

β

∣∣∣∣

for all t ∈ R, in view of

∫ ∓∞

t

∣∣∣e∓α(t−s) − e∓β(t−s)
∣∣∣ ds =

∫ ∓∞

t

[
e∓α(t−s) − e∓β(t−s)

]
ds = ∓

(
1

α
− 1

β

)
.

Therefore, the conclusion follows.

Let us recall the following result concerning the Green’s operators which has
been useful in asymptotic integration, see [2, 6, 7, 12, 20].
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Lemma 4. Let γ ∈ C, α = Re γ > 0 and let r ∈ BC(R, C) be a bounded contin-
uous function. If r ∈ BC0(R, C) (resp. C00(R, C)) then Lα

±[r] ∈ BC0(R, C) (resp.

C00(R, C)). If r ∈ L
p
0 (resp. Lp(R)) for some p ≥ 1 then Lα

±[r] ∈ BC0(R, C) ∩
L

p
0 (resp. C00(R, C) ∩ Lp(R)). Similarly, if r ∈ Lp(−∞, 0] for some p ≥ 1 then

Lα
±[r](t) → 0 as t → −∞ and Lα

±[r] ∈ Lp(−∞, 0].

Notice that G
γ
±[r] is a solution of the linear equation y′ = ∓γy + r. In order to

study linear equations with r ∈ AP(R, C) and nonlinear perturbations of them
we have the following invariance property of the Green’s operator.

Lemma 5. Let γ ∈ C, Re γ > 0. It holds G
γ
± : E → E, where either E = AP(R, C),

AAP(R, C) or AAP0(R, C). Similarly, if r ∈ AP(R, C, p) (resp. r ∈ AP0(R, C, p))
then G

γ
±[r] ∈ AP(R, C, p) ∩ AAP(R, C) (resp. G

γ
±[r] ∈ AP0(R, C, p) ∩

AAP0(R, C)).

Proof: First, note that for any τ ∈ R we have that

G
γ
±[r](t + τ) = −

∫ ∓∞

t
e∓γ(t−s)r(s + τ) ds = G

γ
±[r(·+ τ)](t).

On the other hand, let {α′
n}n ⊂ R be a sequence. Then, there exists a subsequence

{αn} ⊂ {α′
n} such that limn→+∞ r(t + αn) exists uniformly on the real line. De-

note for every t ∈ R, r∗(t) = limn→+∞ r(t + αn). Hence, we find that

∣∣Gγ
±[r](t + αn)− G

γ
±[r

∗](t)
∣∣

≤ ±
∫ ±∞

t
e±α(t−s)|r∗(s)− r(s + αn)| ds ≤ 1

α
sup

R

|r∗ − r(·+ αn)|,

where α = Re γ. Therefore, limn→+∞ G
γ
±[r](t + αn) = G

γ
±[r

∗](t) uniformly for
t ∈ R.

Finally, it is enough to observe that if f = φ + g with φ ∈ AP(R, C) then we
obtain that G

γ
±[φ] ∈ AP(R, C) and G

γ
±[ f ] = G

γ
±[φ] + G

γ
±[g]. Conclusions follows

from the Definition 2 and Lemma 4.

Remark 2. Notice that it is also possible to consider E = PAP (R, C), AA(R, C),
AAA(R, C) or PAA(R, C), namely, the sets of pseudo-almost periodic functions,
almost automorphic functions, asymptotically almost automorphic functions and
pseudo-almost automorphic functions respectively, see for instance [4, 5, 9, 10, 24,
27, 30, 33].

2.3 Riccati equation

In order to study equation (2), we consider a new variable z = (y′/y)− λ, where
λ ∈ C is a root of P. We will find such a function z with property z ∈ AP(R, C),
when ri ∈ AP(R, C), i = 1, 2 are sufficiently small. We will need the following
results, see [2, 12].
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Lemma 6. Suppose that the roots λ± of P are distinct. Then there are two solutions y±
of (2), such that

y±(t) = exp

( ∫ t

0
[λ± + z±(s)] ds

)
, t ∈ R (4)

where z±, satisfy

z′± = −(r0(t) + λ±r1(t))∓ γz± − r1(t)z± − z2
±, γ = λ+ − λ−. (5)

Let us stress that if we know a solution to Ricatti equation (5) then we find a
solution to equation (2). This transformation reduces the order of the equation,
avoiding the usual diagonalization process. Since Riccati equations are nonlinear,
we present the results in a more general way. Consider the scalar differential
equation

z′ ± γz = a(t) + f (t, z), (6)

where α = Re γ > 0. In order to study the existence of solution to (6) we will
need the following fact.

Lemma 7. Assume that f ∈ AP(R×C, C) (resp. AAP(R×C, C)). If z ∈ AP(R, C)
(resp. AAP(R, C) or AAP0(R, C)) then f (·, z(·)) ∈ AP(R, C) (resp. AAP(R, C)
or AAP0(R, C)).

This is also a straightforward fact and again for the sake of completeness we shall
present a proof here.

Proof: Denote u(t) = f (t, z(t)). Given a sequence {α′
n} ⊂ R, let {αn} ⊂ {α′

n} a
subsequence such that {z(· + αn)}n converges to z∗ uniformly on R and
f (t+ αn , x) converges uniformly for t in R and x on compact subsets of C. Denote
g(t, x) = limn→+∞ f (t + αn, x), so that for every M > 0

lim
n→∞

sup
|x|≤M

| f (t + αn, x)− g(t, x)| = 0, uniformly for t ∈ R.

Then, by choosing M > 0 such that ‖z‖∞ ≤ M, it is clear that

|u(t + αn)− g(t, z(t + αn))| ≤ sup
|x|≤M

| f (t + αn, x)− g(t, x)|

implies that u(· + αn) converges uniformly to g(·, z∗) and we conclude that
u ∈ AP(R, C).

Now, assume that f = ψ + h ∈ AAP(R × C, C) (resp. AAP0(R × C, C))
with ψ ∈ AP(R × C, C) and limt→∞ h(t, x) = 0 (resp. as t → −∞) uniformly for
x on compact subsets of C. If z = φ + g ∈ AAP(R, C) (resp. AAP0(R, C)) with
φ ∈ AP(R, C) and g ∈ BC0(R, C) (resp. C00(R, C)) then ψ(·, φ(·)) ∈ AP(R, C)
and

f (t, z(t)) = ψ(t, φ(t)) +
[

ψ
(
t, φ(t) + g(t)

)
− ψ(t, φ(t))

]
+ h
(
t, φ(t) + g(t)

)
.
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Hence, it is clear that lim
t→∞

h
(
t, φ(t) + g(t)

)
= 0, in view of lim

t→∞
sup
|x|≤M

|h
(

t, x
)
| = 0,

(resp. as t → −∞) with M = ‖φ + g‖∞, and also, it follows limt→∞

[
ψ
(
t, φ(t) +

g(t)
)
− ψ(t, φ(t))

]
= 0, since there exists an increasing sequence {nk}k and two

functions φ∗ and ψ∗ such that φ(· + nk) converges uniformly in R to φ∗ and
ψ(· + nk, x) converges uniformly in R for x on compact subsets of C to ψ∗(·, x),
so that

lim
k→∞

[
ψ
(
t + nk, φ(t + nk) + g(t + nk)

)
− ψ(t + nk, φ(t + nk))

]
=

ψ∗(t, φ∗(t))− ψ∗(t, φ∗(t)) = 0.

Given a function f = f (t, x), we shall assume that for some constant M > 0
there exists a bounded function ξM : R → [0,+∞) such that for all t ∈ R and
|zi| ≤ M, i = 1, 2

| f (t, z1)− f (t, z2)| ≤ ξM(t)|z1 − z2|. (7)

Lemma 8. Suppose that a ∈ AP(R, C) (resp. a ∈ AAP(R, C) or a ∈ AAP0(R, C)),
f (·, 0) = 0 and f ∈ AP(R × C, C) (resp. AAP(R × C, C) or AAP0(R × C, C)). If
f satisfies (7), ‖Lα

±[ξM]‖∞ ≤ ε0 < 1 and ‖G
γ
±[a]‖∞ ≤ (1 − ε0)M for some M > 0,

then there is a solution z = z± of (6) such that z ∈ AP(R, C) (resp. z ∈ AAP(R, C)
or z ∈ AAP0(R, C)), is a solution of the integral equation

z = G
γ
±[a + f (·, z)]. (8)

Moreover, for some 0 < β < α, z± satisfy the estimate

z± = O
(
Lβ
±[a]

)
. (9)

Proof: Consider the space AP(R, C) (resp. AAP(R, C) or AAP0(R, C)) which
is a Banach space with the norm ‖z‖∞ = sup{|z(t)| | t ∈ R}. Then define the
operators T = T± as

Tz(t) = −
∫ ±∞

t
e±γ(t−s)

[
a(s) + f (s, z(s))

]
ds = G

γ
±[a + f (·, z)](t).

Note that if z ∈ B = {g ∈ AP(R, C) | ‖g‖∞ ≤ M} then f (·, z(·)) ∈ AP(R, C)
(resp. AAP(R, C) or AAP0(R, C) in case z ∈ AAP(R, C) or z ∈ AAP0(R, C)),
by using Lemma 7. In addition, by Lemma 5 we have that G

γ
±[a] ∈ AP(R, C)

(resp. AAP(R, C) or AAP0(R, C) in case a ∈ AAP(R, C) or a ∈ AAP0(R, C)).
Therefore, T : B → AP(R, C) (resp. AAP(R, C) or AAP0(R, C) in case
B ⊂ AAP(R, C) or B ⊂ AAP0(R, C)). Now, if z ∈ B then | f (t, z)| ≤ ξM(t)|z|
and thus

|Tz(t)| ≤ |Gγ
±[a](t)| + Lα

±[ξMz](t) ≤ M,

since |Gγ
±[a](t)| ≤ (1 − ε0)M and Lα

±[ξM](t) ≤ ε0 for all t ∈ R. Hence, T : B → B
is a contractive operator in view of

|Tz1(t)− Tz2(t)| ≤ Lα
±[ξM](t)‖z1 − z2‖∞ ≤ ε0‖z1 − z2‖∞.
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So, there exists a unique z ∈ B such that Tz = z. Thus, there is a solution z of (6)
such that z ∈ AP(R, C) (resp. AAP(R, C) or AAP0(R, C)) and satisfies (8).

In order to prove (9), let us take the sequence {zn}n≥0 given by z0 = 0 and
zn+1 = Tzn for n ≥ 0. Since T is a contractive operator then as n → ∞, there
holds zn → z. By Lemma 3 there are constants 0 < β < α and ε0 ≤ K < 1

such that ‖Lα−β
± [ξM]‖∞ ≤ K. We choose N such that N ≥ (1 − K)−1, so that

1 + KN ≤ N. Now, we will prove that for all t ∈ R and n ∈ N

|zn(t)| ≤ NLβ
±[a](t). (10)

The induction in (10) is clear for n = 0, 1. Suppose that (10) is true for n = k. So,
for n = k + 1 we get that by using Lemma 2

|zk+1(t)| ≤ Lα
±[a](t) +Lα

±[ξM|zk|](t) ≤ Lα
±[a](t) + NLα

±
[
ξMLβ

±[a]
]
(t)

≤ Lα
±[a](t) + NLα−β

± [ξM](t)Lβ
±[a](t) ≤ [1 + KN]Lβ

±[a](t).

Therefore, (10) is true and the Lemma follows.

Remark 3. Observe that similar results hold if a ∈ V, where V is an invariant
closed subspace of BC(R, C) under the operator T. Thus, there is a solution z =
z± of (6) and (8) such that z ∈ B ∩ V, where B = {g ∈ BC(R, C) | ‖g‖∞ ≤ M}.
However, notice that L

p
0 ∩ BC(R, C) and Lp(R) ∩ BC(R, C) are not closed sub-

spaces of BC(R, C), so that, we cannot obtain directly a version of Lemma 8 in
the subspaces AP(R, C, p) or AP0(R, C, p). Despite of this loss of completeness,
we shall find such solutions in AP(R, C, p) or AP0(R, C, p) by exploiting a de-
composition property.

Under the same assumptions of the previous Lemma, assume that a = φ + g ∈
AAP(R, C) with φ ∈ AP(R, C), g ∈ BC0(R, C) and f = ϕ + h ∈ AAP(R ×
C, C) with ϕ ∈ AP(R×C, C) and h(·, x) ∈ BC0(R, C) uniformly for x in compact
subsets of C. Then, the predicted solution by the previous Lemma z = z± to (6)
and (8) satisfy z ∈ AAP(R, C). Moreover, it holds that z = θ + ψ with θ ∈
AP(R, C) and ψ ∈ BC0(R, C), where

θ = G
γ
±[φ + ϕ(·, θ)] and ψ = G

γ
±[g + h(·, θ) + f (·, θ + ψ)− f (·, θ)]. (11)

In fact, we know that z = θ + ψ ∈ AAP(R, C) for some functions θ ∈ AP(R, C)
and ψ(t) → 0 as t → ∞. Replacing in (8) we get that

θ + ψ = G
γ
±[φ + ϕ(·, θ)] + G

γ
±[g + f (·, θ + ψ)− ϕ(·, θ)]

and from the assumptions on φ, g, ϕ and h and Lemmata 4, 5 and 7 we find that

AP(R, C) ∋ θ −G
γ
±[φ+ ϕ(·, θ)] = −ψ+G

γ
±[g+ f (·, θ +ψ)− ϕ(·, θ)] ∈ BC0(R, C).

Thus, we conclude (11), in view of AAP(R, C) = AP(R, C) ⊕ BC0(R). More
precisely, we have that the decomposition in a sum of a and f induces the direct
sum of the solution z and the equation (8) in the direct sum (11). We have just
proven the following
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Corollary 1. Suppose that a ∈ AAP(R, C) (resp. a ∈ AAP0(R, C)), f (·, 0) = 0
and f ∈ AAP(R × C, C) (resp. AAP0(R × C, C)). If f satisfies (7), ‖Lα

±[ξM]‖∞ ≤
ε0 < 1 and ‖G

γ
±[a]‖∞ ≤ (1 − ε0)M for some M > 0, then there is a solution z =

z± of (6) such that z ∈ AAP(R, C) (resp. z ∈ AAP0(R, C)), is a solution of the
integral equation (8), satisfies the estimate (9) and z = θ + ψ with θ ∈ AP(R, C) and
ψ ∈ BC0(R, C) (resp. ψ ∈ C00(R, C))), where θ and ψ satisfy (11).

Now, we present a result which will be useful to study the problem (5) when a
belongs to this new class of almost periodic functions AP(R, C, p) (resp.
AP0(R, C, p)) given in Definition 2 and f is a suitable function that allows us
to find solutions to (5) in this class of functions.

Lemma 9. Assume that f ∈ AP(R×C, C) and satisfies (7). If z ∈ AP(R, C, p) (resp.
z ∈ AP0(R, C, p)) then f (·, z(·)) ∈ AP(R, C, p) (resp. f (·, z(·)) ∈ AP0(R, C, p)).
Furthermore, if f = ϕ + h ∈ AP(R × C, C, p) (resp. f ∈ AP0(R × C, C, p)) with
ϕ ∈ AP(R×C, C) satisfying (7) as above and h(·, x) ∈ L

p
0 (resp. Lp(R)) uniformly for

x in compact subsets of C and z ∈ AP(R, C, p) (resp. AP0(R, C, p)), then f (·, z(·)) ∈
AP(R, C, p) (resp. AP0(R, C, p)).

Proof: Let z = φ + g ∈ AP(R, C, p) (resp. AP0(R, C, p)) with φ ∈ AP(R, C) and
g ∈ L

p
0 (resp. Lp(R)) then for M = max{‖z‖∞, ‖φ‖∞}, f (·, φ(·)) ∈ AP(R, C),

ξMg ∈ L
p
0 , so that

f (t, z(t)) = f (t, φ(t)+ g(t))− f (t, φ(t))+ f (t, φ(t)) = O(ξM(t)|g(t)|)+ f (t, φ(t))

and the conclusions follows. Now, if f = ϕ + h ∈ AP(R × C, C, p) (resp.
f ∈ AP0(R × C, C, p)) then ϕ(·, φ(·) + g(·)) ∈ AP(R, C, p) (resp. AP0(R, C, p))
as above and h(·, φ(·) + g(·)) ∈ L

p
0 (resp. Lp(R)), in view of sup

|x|≤M

|h(·, x)| ∈ L
p
0

(resp. Lp(R)) with M = ‖z‖∞.

In order to state the next result, let us denote for a suitable given function θ,

f̃θ(t, w) = f (t, θ + w)− f (t, θ). (12)

Moreover, assume that f̃θ satisfies (7) with ζM = ζM(t) instead of ξM for some
M > 0.

Lemma 10. Suppose that a = φ + g ∈ AP(R, C, p) (resp. AP0(R, C, p)) with φ ∈
AP(R, C) and g ∈ L

p
0 (resp. Lp(R)), f (·, 0) = 0 and f = ϕ + h ∈ AP(R × C, C, p)

(resp. AP0(R × C, C, p)) with ϕ ∈ AP(R × C, C) and h(·, x) ∈ L
p
0 (resp. Lp(R))

uniformly for x in compact subsets of C, so that, there is a solution θ = θ± ∈ AP(R, C)
of the integral equation

θ = G
γ
±[φ + ϕ(·, θ)]. (13)

If ‖Lα
±[ζM]‖∞ ≤ ε0 < 1 and ‖G

γ
±[g + h(·, θ)]‖∞ ≤ (1− ε0)M, then there is a solution

w = w± of the integral equation

w = G
γ
±[g + h(·, θ) + f̃θ(·, w)] (14)
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where f̃θ is given by (12) and θ satisfies (13), satisfying for some 0 < β < α the estimate

w± = O
(
Lβ
±[g + h(·, θ)]

)
and w± ∈ L

p
0 (resp. Lp(R)). (15)

Conversely, if θ ∈ AP(R, C) and w ∈ L
p
0 (resp. Lp(R)) satisfy (13) and (14) respec-

tively, then z± = θ± + w± ∈ AP(R, C, p) (resp. AP0(R, C, p)) is a solution to (6)
and (8) with a = φ + g and f = ϕ + h.

Proof: Similarly to the proof of Lemma 8, for w ∈ BC(R) define the operator Tθ

as
Tθw(t) = G

γ
±[g + h(·, θ) + f (·, θ + w)− f (·, θ)](t).

By the assumptions it is clear that Tθ : B → B is a contractive operator, where
B = {z ∈ BC(R) | ‖z‖ ≤ M}. So, there exists a unique w ∈ B such that Tθw = w
satisfying the estimate in (15). Hence, it is clear that w ∈ L

p
0 (resp. Lp(R)) by

Lemma 4.

Remark 4. Let us stress that the direct sum of a and f and the existence of the “al-
most periodic part” θ± induce the direct sum of the solution z and the equation
(8) in the direct sum (13) with (14), in these new classes of functions AP(R, C, p)
or AP0(R, C, p). Furthermore, notice that we are not using that g and h(·, θ) are
bounded continuous functions, but we need G

γ
±[g + h(·, θ)] ∈ BC(R, C). Notice

that an analogous version of Lemma 10 could be also obtained for
a ∈ AAP(R, C) or AAP0(R, C) and f ∈ AAP(R × C, C) or AAP0(R × C, C).
In other words, we can study equation (13) in AP(R, C) and then equation (14)
in either BC0(R, C) or C00(R).

3 Main Results

In this section we shall present the main results concerning the linear second
order differential equation (2). Recall that λ± are the roots of the polynomial
P(λ) = λ2 + a1λ + a0, γ = λ+ − λ−. Without loss of generality, we shall assume
that Re γ > 0. Let us notice that the Green’s operator satisfies

∫ t

0
G

γ
±[r](s) ds = ± 1

γ

∫ t

0
r(s) ds ∓ 1

γ

(
G

γ
±[r](t) − G

γ
±[r](0)

)
. (16)

Theorem 1. Consider equation (2) with ri ∈ AP(R, C), i = 0, 1. Assume that

√
8

Re γ

∥∥G
γ
±[r0 + λ±r1]

∥∥
∞
+
∥∥LRe γ

± [r1]
∥∥

∞
< 1. (17)

Then there is a fundamental system of solutions y± : R → C to (2) such that

y±(t) = eλ±t exp

(
∓ 1

γ

∫ t

0
[r0(s) + λ±r1(s) + r1(s)z±(s) + z2

±(s)] ds ∓ 1

γ
z±(t)

)

(18)
and for the derivative

y′±(t) = (λ± + z±(t))y±(t), (19)
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where z± ∈ AP(R, C) satisfy the differential equation (5), and integral equation

z± = −G
γ
±[r0 + λ±r1 + r1z± + z2

±] with z± = O(Lα
±[r0 + λ±r1]) (20)

for some 0 < α < Re γ.

Proof: In view of Lemma 6, we apply Lemma 8 to equations (5). We take −a =
r0 + λ±r1 ∈ AP(R, C) and f (t, z) = −[r1z + z2], so that f ∈ AP(R × C, C) and
we choose ξM = |r1|+ 2M, with M > 0 given by

M =
Re γ

4

(
1 −

∥∥LRe γ
± [r1]

∥∥
∞
+

√(
1 −

∥∥LRe γ
± [r1]

∥∥
∞

)2
− 8

Re γ

∥∥G
γ
±[r0 + λ±r1]

∥∥
∞

)
.

Let us observe that by (17), M is well defined and positive. Thus, we have that

M <
Re γ

2

(
1 −

∥∥LRe γ
± [r1]

∥∥
∞

)
and choosing ε0 = ‖LRe γ

± [r1]‖∞ +
2M

Re γ

we find that ‖G
γ
±[r0 + λ±r1]‖∞ ≤ (1 − ε0)M and ‖LRe γ

± [ξM]‖∞ ≤ ε0 < 1, so that,
the assumptions of Lemma 8 are satisfied. Hence, there are z = z± satisfying (20)
for some 0 < α < Re γ. Notice that it holds that ‖z‖∞ ≤ M. Therefore, there
are two solutions to (2) of the form (4) with z = z± satisfying (20). By using the

integral equation in (20), the identity (16) and dividing by e∓
1
γ z±(0) it follows (18).

Also, (19) follows from (4).
Now, we show that y+ and y− are linearly independent by computing its

Wronskian at t = 0. It is readily checked that W[y+, y−](0) = −[λ+ − λ− +
z+(0)− z−(0)]. Hence, if W[y+, y−](0) = 0 then |λ+−λ−| = |z+(0)− z−(0)| and
we get the following contradiction by using the choice of M, |z+(0)− z−(0)| ≤
2M < Re γ ≤ |λ+ − λ−|. Therefore, it follows that W[y+, y−](0) 6= 0. This com-
pletes the proof.

Remark 5. Since for any γ ∈ C with Re γ > 0 the Green’s operators G
γ
± satisfy

G
γ
± : BC(R, C) → BC(R, C), Theorem 1 can be established in the class of func-

tions BC(R, C), and sufficient conditions easier to check than (17) are also true.
Indeed, for instance if ri ∈ BC(R, C) for i = 0, 1 and

√
8‖r0 + λ±r1‖∞ + ‖r1‖∞ < Re(λ+ − λ−) (21)

then (17) holds, since we find that

√
8
∥∥G

γ
±[r0 + λ±r1]

∥∥
∞

Re γ
+
∥∥LRe γ

± [r1]
∥∥

∞
≤
√

8‖r0 + λ±r1‖∞

(Re γ)2
+

‖r1‖∞

Re γ
< 1.

Remark 6. Define for γ ∈ C with Re γ > 0

D(Gγ
±) = {r : R → C | G

γ
±[r](t) is well-defined for all t ∈ R}
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and for α > 0

D(Lα
±) = {r : R → C | Lα

±[r](t) is well-defined for all t ∈ R}.

Notice that if 0 < β < α then D(Lβ
±) ⊂ D(Lα

±). Furthermore, BC(R, C) ⊂
D(LRe γ

± ) ⊂ D(Gγ
±) and Lp(R) ⊂ D(Lα

±) for all α > 0. Let us notice that Theorem

1 is also true if ri ∈ AP(R, C), i = 0, 1 is replaced by r1 ∈ D(LRe γ−α
± ), r0 + λ±r1 ∈

D(Lα
±) for some 0 < α < Re γ and (17) is replaced by

√
8
∥∥G

γ
±[r0 + λ±r1]

∥∥
∞

Re γ − α
+
∥∥LRe γ−α

± [r1]
∥∥

∞
< 1.

More precisely, (18)-(20) are true with z± ∈ BC(R, C), instead of z± ∈ AP(R, C).
In other words, we just need integrability conditions to state our result. Further-
more, the map

α 7→
∥∥LRe γ−α

± [r1]
∥∥

∞
+

√
8
∥∥G

γ
±[r0 + λ±r1]

∥∥
∞

Re γ − α

is increasing in α ∈ [0, Re γ) for fixed r0, r1.

Another kind of perturbations are ri ∈ AAP(R, C) for i = 0, 1. Let us recall
that AAP(R, C) is a closed subspace of BC(R, C). From the ideas used in previ-
ous Theorem and Corollary 1 it readily follows the next result. In particular, the
decomposition of the coefficients ri, i = 0, 1 induces the direct sum of the solution
z. We omit its proof.

Theorem 2. Consider equation (2) with ri ∈ AAP(R, C) (resp. AAP0(R, C)),
i = 0, 1. Assume that (17) holds. Then there is a fundamental system of solutions
y± to (2) satisfying (18) and (19), where z± ∈ AAP(R, C) (resp. AAP0(R, C))
satisfy the differential equation (5), the integral equation and the estimate in (20) for
some 0 < α < Re γ. Moreover, if ri = µi + νi, i = 0, 1 with µi ∈ AP(R, C) and
νi ∈ BC0(R, C) (resp. C00(R, C)) then z± = θ± + ψ±, where θ± ∈ AP(R, C) and
ψ± ∈ BC0(R, C) (resp. C00(R, C)) satisfy

θ± = −G
γ
±[µ0 + λ±µ1 + µ1θ± + θ2

±] (22)

and
ψ± = −G

γ
±[ν0 + λ±ν1 + ν1θ± + (µ1 + ν1 + 2θ±)ψ± + ψ2

±]. (23)

Conversely, if θ± ∈ AP(R, C) and ψ± ∈ BC0(R, C) (resp. C00(R, C)) are solu-
tions of the previous equations respectively, then z± = θ± + ψ± ∈ AAP(R, C) (resp.
AAP0(R, C)) is a solution to (5).

Notice that also, if ri ∈ AAP(R, C) (resp. AAP0(R, C)), i = 0, 1 satisfy (21)
then the Theorem 2 applies. In section 4, we shall see the advantages of studying
separately equations (22) and (23).

A natural question is whether we could perturb ri ∈ AP(R, C), i = 0, 1,
with Lp-functions in equation (2), see [16, 18]. In other words, equation (2) with
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ri ∈ AP(R, C, p), i = 0, 1. Let us stress that L
p
0 ∩ BC(R, C) and Lp(R)∩ BC(R, C)

are not closed subspaces of BC(R, C), so that, we cannot obtain readily a version
of Theorem 2 in the subspaces AP(R, C, p) or AP0(R, C, p). Despite of this loss
of completeness, we shall find such solutions in AP(R, C, p) or AP0(R, C, p) by
exploiting a decomposition property of the coefficients r0 and r1. More precisely,
by using ideas presented in Theorem 1 (see also [16]) and Lemmata 4, 5, 9 and
10 we get the following result, which states again a decomposition property of
z± solution to (5). In other words, we study equation (23), assuming the exis-
tence of a solution of (22). Notice that we can also consider ri ∈ AAP(R, C) or
ri ∈ AAP0(R, C), i = 0, 1, namely, we can study equation (22) in AP(R, C) and
then equation (23) in either BC0(R, C) or C00(R). We also omit its proof.

Theorem 3. Consider equation (2) with ri = µi + νi ∈ AAP(R, C) (resp.
AAP0(R, C), AP(R, C, p) or AP0(R, C, p)), with µi ∈ AP(R, C) and
νi ∈ BC0(R, C) i = 0, 1 (resp. C00(R), L

p
0 or Lp(R)). Assume that there are solu-

tions θ± ∈ AP(R, C) for equations (22), so that
√

8

Re γ

∥∥G
γ
±[ν0 + λ±ν1 + ν1θ±]

∥∥
∞
+
∥∥LRe γ

± [r1 + 2θ±]
∥∥

∞
< 1.

Then there is a fundamental system of solutions y± to (2) satisfying (18) and (19), where
z± = θ± + ψ± ∈ AAP(R, C) (resp. AAP0(R, C), AP(R, C, p) ∩ AAP(R, C) or
AP0(R, C, p) ∩AAP0(R, C)), with θ± ∈ AP(R, C) and ψ± ∈ BC0(R, C) (resp. or
C00(R), L

p
0 ∩ BC0(R, C) or Lp(R) ∩ C00(R, C)) satisfy (23) and for some 0 < β <

Re γ

ψ± = O(Lβ
±[ν0 + λ±ν1 + ν1θ±]). (24)

Remark 7. To the best of our knowledge, this is a first result concerning the study
of functions of the type p-almost periodic, namely, f = φ + g ∈ BC(R) with
φ ∈ AP(R, C) and either g ∈ L

p
0 or g ∈ Lp(R). See [10, section 4.3; page 46].

Notice that actually we do not need that ν0 and ν1 are bounded, but it is enough

that ν0 + λ±ν1 ∈ D(Gγ
±), ν1 ∈ D(LRe γ

± ) and G
γ
±[ν0 + λ±ν1],LRe γ

± [ν1] ∈ BC(R, C).

In order to assure the existence of θ±, by studying equation (22), sufficient
conditions can be found. More precisely, we have the following result ensuring
the existence of both θ± and ψ±.

Theorem 4. Consider equation (2) with ri = µi + νi ∈ AAP(R, C) (resp. AAP0(R, C),
AP(R, C, p) or AP0(R, C, p)), with µi ∈ AP(R, C) and νi ∈ BC0(R, C) i = 0, 1

(resp. C00(R, C), L
p
0 or Lp(R)). Denoting A :=

8

Re γ

∥∥G
γ
±[µ0 + λ±µ1]

∥∥
∞

, B :=

∥∥LRe γ
± [µ1]

∥∥
∞

, C :=
8

Re γ

∥∥G
γ
±[ν0 + λ±ν1]

∥∥
∞

and D :=
∥∥LRe γ

± [ν1]
∥∥

∞
, assume that

A2 + B2 6= 0, √
A + B < 1 (25)

and

B + 2D +
√
(1 − B)2 − A + 2

√

C + 2D

(
1 − B +

√
(1 − B)2 − A

)
< 1. (26)
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Then there is a fundamental system of solutions y± to (2) satisfying (18) and (19), where
z± = θ± + ψ± ∈ AAP(R, C) (resp. AAP0(R, C), AP(R, C, p) ∩ AAP(R, C)
or AP0(R, C, p) ∩ AAP0(R, C)), with θ± ∈ AP(R, C) satisfy (22) and for some
0 < α < Re γ

θ± = O(Lα
±[µ0 + λ±µ1]) (27)

and ψ± ∈ BC0(R, C) (resp. C00(R), L
p
0 ∩ BC0(R, C) or Lp(R) ∩ C00(R, C)) satisfy

(23) and (24) for some 0 < β < Re γ.

Proof: Notice that, similarly to the proof of Theorem 1, by (25) there are θ± ∈
AP(R, C) satisfying (22) and (27) for some 0 < α < Re γ. Moreover, we also
have that

‖θ±‖∞ ≤ Re γ

4

(
1 − B +

√
(1 − B)2 − A

)
,

see proof of Theorem 1. Now, we shall verify that the conditions of Theorem 3
are satisfied in order to assure the existence of ψ±. So, note that

8

Re γ
‖G

γ
±[ν0 + λ±ν1 + ν1θ±]‖∞ ≤ C +

8

Re γ
D‖θ±‖∞

≤ C + 2D

(
1 − B +

√
(1 − B)2 − A

)

and

∥∥LRe γ
± [r1 + 2θ±]

∥∥
∞
≤ B + D +

2

Re γ
‖θ±‖∞

≤ B + D +
1

2

(
1 − B +

√
(1 − B)2 − A

)
.

Hence, it is clear that
√

8

Re γ

∥∥G
γ
±[ν0 + λ±ν1 + ν1θ±]

∥∥
∞
+
∥∥LRe γ

± [r1 + 2θ±]
∥∥

∞

≤ 1

2
+

1

2

[
B + 2D +

√
(1 − B)2 − A + 2

√
C + 2D

(
1 − B +

√
(1 − B)2 − A

)]

and the conclusion follows.

Notice that if µ0 = µ1 = 0, namely, A = B = 0 then θ± = 0 and (26) is not

really useful. Actually, in this case it is enough that
√

C + D < 1. Furthermore,
inequality (26) is not the most general condition. For instance, we could estimate

better ‖LRe γ
± [r1 + 2θ±]‖∞, by improving the estimate for θ±, by using its integral

equation (22) and Lemma 2.
On the other hand, observe that in Theorem 2 we have obtained the decom-

position z± = θ± + ψ± and a estimate for z±. In Theorem 3, we have found ψ±
and its estimate. In Theorem 4, we have obtained θ± and ψ± and estimates for
both θ± and ψ± simultaneously. In subsections 4.3 and 4.4 we shall discuss an
example for Theorems 2 and 4.
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Remark 8. An important consequence in case νi ∈ L
p
0 or Lp(R) for i = 0, 1 is

that we can express ψ± as a sum of Lp/k functions for k = 1, . . . , [p], where
[p] is the integer part of p (see [16], Theorem 3). Indeed, denote µ̂ = µ1 + θ±
and ν̂ = ν0 + λ±ν1 + ν1θ± and note that µ̂ ∈ AP(R, C) and ν̂ ∈ Lp. Then
ψ± = ψ ∈ Lq (with either Lq = L

q
0 or Lq = Lq(R)) for all q ≥ p, since ψ is bounded

and ψ = O(Lα
±[ν̂]). If p ∈ (1, 2] then it is clear that

ν1ψ, ψ2 ∈ L1 so that ψ = −G
γ
± [ν̂ + µ̂ψ]− G

γ
±[ν1ψ + ψ2] := ψ1 + w2, with ψ1 ∈ Lp

and w2 ∈ L1. Moreover, if p ∈ (m, m + 1] with m ∈ N and m ≥ 2 then we write
ψ± in the following form

ψ± =
m−1

∑
l=1

ψ±
l + w±

m , (28)

where ψ±
1 = −G

γ
±
[
ν0 + λ±ν1 + ν1θ± + (µ1 + 2θ±)ψ±

1

]
and for l > 1

ψ±
l = −G

γ
±

[
ν1ψ±

l−1 + (µ1 + 2θ±)ψ±
l +

l−1

∑
j=1

ψ±
j ψ±

l−j

]
, (29)

with ψ±
k ∈ L

p/k
0 , (resp Lp/k(R)) k = 1, . . . , m − 1 and w±

m ∈ L
p/m
0 (resp. Lp/m(R)).

By following the previous lines, it is clear that ν1ψ, ψ2 ∈ Lp/2 and we have that
ψ = ψ1 + w2, with ψ1 ∈ Lp and w2 ∈ Lp/2. Upon inserting in (23), we find that

ψ = −G
γ
± [ν̂ + µ̂ψ1]− G

γ
±[µ̂w2 + ν1(ψ1 + w2) + (ψ1 + w2)

2].

Hence, we choose ψ1 = −G
γ
± [ν̂ + µ̂ψ1] and w2 = −G

γ
±[µ̂w2 + ν1(ψ1 + w2) +

(ψ1 + w2)
2]. Note that we can write

w2 = −G
γ
±[µ̂w2 + ν1ψ1 + ψ2

1]− G
γ
±[ν1w2 + 2ψ1w2 + w2

2] = ψ2 + w3,

with ψ2 ∈ Lp/2 and w3 ∈ Lp/3. Replacing w2 = ψ2 + w3 in the equation for
w2, then we choose ψ2 according to (29) and w3. The conclusion (28) and (29)
follows in a recursive way. Finally, we conclude the following decomposition for
the logarithmic derivative of a solution to (2)

y′±
y±

= λ± + θ± +
m−1

∑
l=1

ψ±
l + w±

m .

4 Comments and examples

In this section we will discuss about the conditions of the results and we will
present an example in order to illustrate each one of our results.

The method is general and shows its effectiveness, by the next examples and
applications. For instance, we assume a dichotomy condition of the unperturbed
linear part, so that we are able to manage the convolutions or Green’s opera-
tors. Usually in asymptotic integration these tools play an important role, see for
instance [2, 6, 7, 12]. Let us point out that our results rely on the fixed point argu-
ment by a contraction mapping, so that, we need conditions (17) and
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(25)-(26) in order to have contraction mappings that assure the existence of the
unique bounded (or almost periodic, or asymptotically almost periodic) solution
to the corresponding Riccati equation (5), (22) or (23), depending on the case.
Thus, we are lead to ask that r0 and r1 are small in a suitable way. In other words,
we expect that the solutions to (2) are close, in some sense, to the solutions to
the unperturbed linear part, i.e., r0 = r1 ≡ 0, because otherwise we will not find
such solutions. For instance, if r0 and r1 are constants and big with respect to γ,
the solutions to (2) could have a very different behavior. This is shown by the
following simple example. Consider the equation

y′′ + r1(t)y
′ − (1 − r0(t)) y = 0, (30)

where we have λ+ = 1, λ− = −1 and γ = 2. Assume that r1 ≡ 0. If r0 ≡ 0
then the solutions are y±(t) = e±t and this is the unperturbed case. Now, notice

that if r0(t) = 2 then the solutions are y±(t) = e±
√

3t while if r0(t) = −2 then the
solutions are y±(t) = e±it, where i is the unit imaginary number.

Concerning possible generalizations, on one hand, it would be interesting to
know if similar results (Theorems 1-4) or formula (18) are still valid for higher
order equations (1), namely, for n ≥ 3. In other words, if it is possible to gener-
alize Poincaré’s and Perron’s classical problem of approximation (1) to the class
of almost periodic type functions independently of n, the order of the equation.
On the other hand, let us notice that we are not using in a strong way that (5)
is scalar to prove Lemma 8, so that we could state an equivalent version of this
result in higher dimensions, namely, for z ∈ Rn. This fact lead us to expect results
for system of differential equations. In particular, by using the transformation in
[31], we could look for solutions to an almost diagonal linear system

y′ = [Λ(t) + R(t)]y, y = y(t) ∈ R
n, t ∈ R,

where Λ(t) = diag(λ1(t), . . . , λn(t)) and R(t) is a n × n matrix, by studying a
generalized Riccati equation.

Now, for simplicity, for the rest of this section we shall assume that r1 = 0. The
case r1 6= 0 can be readily addressed by following Theorems 1-4 and the analysis
showed here. Let us stress that estimates or developments for z± will be present
in the formulae for both y± and y′±.

4.1 Application of Theorem 1

Notice that (17) is equivalent to 4‖G2
±[r0]‖∞ < 1, in view of r1 = 0. Hence, there

is a fundamental system of solutions y± to (2) satisfying (18). However, direct
computations, (16), integration by parts and dividing by suitable constants lead
us to find the following expression

y±(t) = e±t exp

(
∓1

2

∫ t

0
r0(s) ds − 1

4

∫ t

0
r0(s)G

2
±[r0](s) ds ± 1

2
G2
±[r0](t) + u±(t)

)
,

y′±(t) = (λ± + z±(t))y±(t),
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where

u±(t) =
3

8
z2
±(t) +

1

2
G2
±[r0z± ∓ 2z2

± + z3
±](t)−

1

4

∫ t

0

[
r0(s)G

2
±[z

2
±](s)− z3

±(s)
]

ds.

Indeed, by integration by parts and using (5)

z± = −G2
±[r0 + z2

±] = −G2
±[r0]∓

z2
±
2

∓ G2
±[r0z± ∓ 2z2

± + z3
±]

and by properties of the Green’s operator
∫ t

0
z2
±(s) ds = ∓1

2

∫ t

0

[
r0(s)z±(s) + z3

±(s)
]

ds ∓ 1

2

∫ t

0
z±(s)z′±(s) ds

= ±1

2

∫ t

0

[
r0(s)G

2
±[r0](s) + r0(s)G

2
±[z

2
±](s)− z3

±(s)
]

ds

∓ 1

4
[z2
±(t)− z2

±(0)].

4.2 Application of Theorem 2

Notice that if r0 = µ0 + ν0 ∈ AAP(R, C) with µ0 ∈ AP(R, C), ν0 ∈ BC0(R, C)
and it holds 4‖G2

±[µ0 + ν0]‖∞ < 1 then there exist z± = θ± + ψ± ∈ AAP(R, C)
with θ± ∈ AP(R, C), ψ± ∈ BC0(R, C)

θ± = −G2
±[µ0 + θ2

±] and ψ± = −G2
±[ν0 + 2θ±ψ± + ψ2

±]. (31)

Furthermore, by the previous computations it also follows that to (30) with
r0 = µ0 + ν0 there is a fundamental system of solutions y± satisfying

y±(t) = e±t exp

(
∓1

2

∫ t

0
µ0(s) ds − 1

4

∫ t

0
µ0(s)G

2
±[µ0](s) ds ± 1

2
G2
±[µ0](t)

∓ 1

2

∫ t

0
ν0(s) ds − 1

4

∫ t

0

[
µ0(s)G

2
±[ν0](s) + ν0(s)G

2
±[µ0 + ν0](s)

]
ds

± 1

2
G2
±[ν0](t) + uθ

±(t) + v
ψ
±(t)

)
,

y′±(t) = (λ± + θ±(t) + ψ±(t))y±(t),
(32)

where

uθ
±(t) =

3

8
θ2
±(t) +

1

2
G2
±[µ0θ± ∓ 2θ2

± + θ3
±](t)−

1

4

∫ t

0

[
µ0(s)G

2
±[θ

2
±](s)− θ3

±(s)
]

ds

(33)
and

v
ψ
±(t) =

1

2
G2
±
[

µ0ψ± + ν0(θ± + ψ±)∓ 2(2θ±ψ± + ψ2
±) + 3θ2

±ψ± + 3θ±ψ2
± + ψ3

±
]
(t)

− 1

4

∫ t

0

[
µ0(s)G

2
±[2θ±ψ± + ψ2

±](s) + ν0(s)G
2
±[z

2
±](s)+

θ2
±(s)G

2
±[ν0 + 2θ±ψ± + ψ2

±](s)

− z±(s)[2θ±(s)ψ±(s) + ψ2
±(s)]

]
ds +

3

8
(2θ±ψ± + ψ2

±)(t).

(34)
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4.3 Example for Theorems 1 and 2

Suppose that r0 = µ0 + ν0 with µ0(t) = η1

[
2 + cos t + cos(

√
2t)
]

and ν0(t) =
η2

1 + t2
, where η1, η2 ≥ 0. It is clear that µ0 and ν0 are non-negative functions,

µ0 ∈ AP(R, C), ν0 ∈ C00(R, C) ∩ L1(R), ‖µ0‖∞ = 4η1, ‖ν0‖∞ = η2 and ‖r0‖∞ =

4η1 + η2. Hence, if 0 < η1 <
1

8
and η2 = 0, so that r0 = µ0 then 8‖r0‖∞ =

32η1 < 4 = γ2 and by using (21), Theorem 1 applies. On the other hand, it is
straightforward to verify that

G2
±[r0](t) = ±η1 +

η1

5
[±2 cos t+ sin t]+

η1

6
[±2 cos(

√
2t)+

√
2 sin(

√
2t)], η2 = 0,

since for any λ ∈ R and integration by parts

∫ ∓∞

t
e∓2(t−s) cos(λs) ds = ∓cos(λt)

2
± λ

2

∫ ∓∞

t
e∓2(t−s) sin(λs) ds

=
∓2 cos(λt)− λ sin(λt)

4 + λ2
.

Thus, we find that ‖G2
±[r0]‖∞ ≤ η1

(
1 +

√
5

5
+

√
6

6

)
, with η2 = 0. Hence, if

also η1

(
1 +

√
5

5
+

√
6

6

)
<

1

4
then Theorem 1 applies. Let us stress that this last

condition is weaker than the previous one found by (21), since 1 +

√
5

5
+

√
6

6
<

2. In other words, conditions in (21) are stronger than (17) in the Theorem 1.

Furthermore, since ‖G2
±[µ0]‖∞ ≤ η1

(
1+

√
5

5
+

√
6

6

)
and ‖G2

±[ν0]‖∞ ≤ 1

2
‖ν0‖∞ =

η2

2
for η2 > 0, if

∥∥∥G2
±[µ0 + ν0]

∥∥∥
∞
≤ η1

(
1 +

√
5

5
+

√
6

6

)
+

η2

2
<

1

4

then Theorem 2 applies.

4.4 Example for Theorem 4

Notice that if r1 ≡ 0 then B = D = 0 and inequalities (25) and (26) get re-written

4
∥∥∥G2

±[µ0]
∥∥∥

∞
< 1 and

√
1 − 4

∥∥G2
±[µ0]

∥∥
∞
+ 2
√

4‖G2
±[ν0]‖∞ < 1. (35)

Thus, the assumptions of Theorem 4 are satisfied. Therefore, there exist θ± and
ψ± satisfying equations (31), and a fundamental system of solutions y± satisfying
(32). Notice that there exist η1 and η2, so that, inequalities (35) are satisfied, but

4
∥∥∥G2

±[µ0 + ν0]
∥∥∥

∞
= 4

∥∥∥G2
±[µ0]

∥∥∥
∞
+ 4

∥∥∥G2
±[ν0]

∥∥∥
∞
≥ 1.
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In other words, Theorem 4 gives us solutions not directly deduced from the pre-
vious analysis using Theorem 2, cf. subsection 4.3.

Finally, notice that ν0 ∈ L1(R), so that, we find that ψ± ∈ C00(R, C) ∩ L1(R)
and up to divide for a suitable constant, from (32) the following asymptotic for-
mula as t → +∞ is true

y±(t) = (1 + o(1))e±t exp

(
∓1

2

∫ t

0
µ0(s) ds − 1

4

∫ t

0
µ0(s)G

2
±[µ0](s) ds

±1

2
G2
±[µ0](t) + uθ

±(t)
)

,

y′±(t) = (λ± + θ±(t) + o(1))y±(t),

where uθ
± is given by (33), in view of v

ψ
± ∈ L1(R) defined in (34). The same

behavior as t → −∞ is also true with a possibly different o(1).

It is worth to mention that similar analysis for equation (30) could be per-
formed in case r1 6= 0 following Theorem 4.
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Departamento de Matemáticas, Facultad de Ciencias, Universidad de Chile,
Casilla 653, Santiago, Chile,
e-mail: pintoj@uchile.cl


