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Abstract

We extend the nonstandard hull construction of Luxemburg and we show
that the proposed extension covers various other constructions such as the
tracial and the weak nonstandard hull. We provide a novel proof that the
tracial nonstandard hull of an internal von Neumann algebra is itself a von
Neumann algebra. We prove that some extensively studied properties of
C∗–algebras are preserved and reflected by the nonstandard hull construc-
tion. Eventually, we show how to obtain hull–like representations of the two
K–groups associated to the nonstandard hull of an internal C∗–algebra.

1 Introduction

In this paper we first provide a unifying approach to different constructions that
turn out to be generalizations of the nonstandard hull construction due to
Luxemburg [19]. It is well known that, in turn, the nonstandard hulls gener-
alize the ultraproducts introduced in the framework of functional analysis by
Dacunha–Castelle and Krivine [10]. (See the remarks in [15].)

In Section 2 we fix some notation and we recall the main tools which are avail-
able in a nonstandard setting. In this section we also try to convey some basic
ideas about the use of nonstandard techniques à la A. Robinson.

For sake of completeness, in Section 3 we present the original nonstandard
hull construction. We generalize this construction in Section 4. In spite of its sim-
plicity, the proposed generalization is powerful enough to cover the tracial and
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the weak nonstandard hull constructions, as shown in Subsections 4.1 and 4.2
respectively. In Subsection 4.1 we also provide a proof that the tracial nonstan-
dard hull of an internal von Neumann algebra is itself a von Neumann algebra.

In section 5 we show that the nonstandard hull of a factor in the class of inter-
nal weakly central C∗-algebras is itself a factor C∗–algebra. We also prove that, for
an internal C∗–algebra, the properties of being prime and primitive are preserved
and reflected by the nonstandard hull construction.

In section 6, we provide “hull-like” representations of the K0– and the
K1–groups associated to the nonstandard hull of an internal C∗–algebra. This
is not completely trivial because, speaking in terms of ultraproducts, in general
the K0–group of an ultraproduct of C∗–algebras is not the model theoretic ultra-
products of the K0–groups of the factors. Similarly for the K1–group. Actually, in
order to give a hull-like representation of the K1–group of a nonstandard hull, we
resort to the original definition in terms of the notion of suspension.

In the attempt to make the paper potentially interesting to both logicians and
functional analysts, we often recall basic facts about nonstandard techniques or
operator theory. For the same reason, some proofs do contain more details than
actually needed.

In the following the reader will find some very specific comments that are
mostly intended either for the logicians or for the functional analysts. These com-
ments can be safely skipped by the non-experts in the field they pertain to.

A final comment: the results presented in this paper can also be obtained in
the setting of ultraproducts of normed structures and, very likely, in variants of
the continuous logic setting introduced in [4]. The choice of nonstandard hulls is
just a matter of the author’s familiarity with nonstandard techniques.

2 Preliminaries

We assume familiarity with the basics of Banach space theory and of the theory
of operator algebras, as introduced, for instance, in [22] and [5] respectively.

We also assume familiarity with the construction of a nonstandard universe,
and with the nonstandard techniques, as presented in [6], [1] or [24]. In the
following we briefly introduce the notion of nonstandard universe and the tools
that are available therein. We refer the reader to the suggested bibliography for
the technical details.

Nonstandard universe. A nonstandard universe is a set-theoretic construction that
allows to properly extend each infinite mathematical object A under considera-
tion to an object ∗A, in a way that A and ∗A satisfy the same first order properties
that are expressible by means of bounded quantifier formulas in the language of
set theory. This is referred to as the Transfer Principle. More precisely, one starts
with an infinite set X of individuals (to be regarded as ur-elements) and closes it
under countably many applications of union and power set operation. The limit
V(X) is called the superstructure constructed on X. Then, by means of a bounded
ultrapower construction (see [6]), one gets:
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1. an infinite set Y (usually a nontrivial ultrapower of X);

2. the structure (V(Y),∈), where V(Y) is the superstructure constructed on Y;

3. a bounded elementary embedding ∗ : (V(X),∈) → (V(Y),∈) with the
properties that ∗X = Y and, for every infinite set A ⊆ V(X), the set
{ ∗a : a ∈ A} is properly contained in ∗A.

We recall that the property of elementary embedding means that, for each
bounded quantifier formula ϕ(x1, . . . , xn) in the language of set theory and each
A1, . . . , An ∈ V(X), the following are equivalent:

1. ϕ is true of A1, . . . , An in (V(X),∈);

2. ϕ is true of ∗A1, . . . , ∗An in (V( ∗X),∈).

Borrowing the model-theoretic notation, we write the equivalence of (1) and
(2) as follows:

(V(X),∈) |= ϕ[A1, . . . , An] ⇔ (V( ∗X),∈) |= ϕ[ ∗A1, . . . , ∗An].

The triple (V(X), V( ∗X), ∗) is called a nonstandard universe. When there is
no ambiguity, one simply says that V( ∗X) is a nonstandard universe. If A ∈
V(X), the set ∗A is called the nonstandard extension of A.

In the rest of this section we fix a nonstandard universe (V(X), V( ∗X), ∗) and
we introduce its main features.

Transfer Principle. As previously hinted, a bounded elementary embedding is an
elementary embedding with respect to the class of bounded quantifier formulas
in the language of set theory. The Transfer Principle is just the statement that the
∗ map is a bounded elementary embedding. One use of the Transfer Principle is
the following: suppose we want to prove a property of some object A ∈ V(X)
and suppose that this property can be expressed by means of a bounded quan-
tifier formula ϕ(x) in the language of set theory. We try to prove instead that
ϕ[ ∗A] holds in (V( ∗X),∈), which might be easier for the reason that (V( ∗X),∈)
is usually a much richer structure than (V(X),∈) (see the paragraph about Sat-
uration below). If we succeed, we “transfer” back and we get that ϕ[A] holds in
(V(X),∈).

Standard and internal elements. In V( ∗X), there are standard, internal and external
elements. Standard elements are those belonging to the range of the ∗ map. An
internal element is a member of some standard sets. External means non-internal.

Saturation. Let κ be an uncountable cardinal. A nonstandard universe is κ-satu-
rated if every family F of fewer than κ internal sets that has the finite intersection

property (i.e.
⋂

G 6= ∅ for any finite subfamily G of F) satisfies
⋂

F 6= ∅. So
κ-saturation is a κ-compactness property for the family of internal sets: it ensures
enough set existence. The existence of nonstandard universes of any prescribed
degree of saturation follows from the results in [6, §5.1].

Internal Definition Principle. Since the Transfer Principle applies to bounded for-
mulas, it refers to internal elements. For instance, assuming that N ⊂ X, the
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“transfer” of the well-ordering property of (N,<) is the statement that every
nonempty internal subset of ∗N has least element with respect to the nonstan-
dard extension of < . The Saturation property also refers to (families of) internal
sets. Hence it is important to establish sufficient conditions for being an inter-
nal set. This is the aim of the Internal Definition Principle of Keisler ([6, §4.4]). It
states that if ϕ(x1, . . . , xn, y) is a bounded quantifier formula and A1, . . . , An, B are
internal sets, then the set defined in (V( ∗X),∈) by the formula with parameters
ϕ(A1, . . . , An, y), denoted by

{y ∈ B : (V( ∗X),∈) |= ϕ[A1, . . . , An, y]},

is internal.

In practice, when using nonstandard techniques, one does not need to spec-
ify a nonstandard universe. Similarly to a monster model in model theory, one
assumes the existence of a sufficiently saturated nonstandard universe (V(X),
V( ∗X), ∗) such that V(X) contains all the ordinary mathematical objects under
consideration.

Actually, since a significant amount of functional analysis can be developed
inside V(R), we can assume that we work in a sufficiently saturated nonstandard
universe (V(R), V( ∗R), ∗), where ∗R is some nontrivial ultrapower of the reals
and the restriction of the ∗ map to R is just the identity. In particular we have
N ⊂ ∗

N and, by the Transfer Principle, ∗
N \ N is an external set (see the be-

ginning of paragraph on the Internal Definition Principle). This shows why the
∗map cannot be an elementary embedding with respect to the class of all formu-
las.

In the following, we always work under the assumption of “sufficient satura-
tion”, ω1-saturation being the minimum requirement.

A remark on the terminology: in the following we shall use the attribute “ordi-
nary” for the usual mathematical objects. Typically they will be structures arising
in functional analysis. We would rather use “standard” for “ordinary”, if it were
not the case that “standard” has the precise technical meaning explained above.

So if X ∈ {semi–normed, Banach, C∗-, von Neumann}, an “ordinary X alge-
bra” will be just a “X algebra” in the usual sense.

An “internal X algebra” will be a structure which lives in some nonstandard
universe and satisfies the transfer of all the properties defining an ordinary X
algebra. In particular, since we stipulate that the ordinary X algebras are complex
algebras, the internal X algebras are algebras on some nonstandard extension ∗C

of the complex field.
Ordinary (internal) C∗–algebras are always unital. We denote by 1 the algebra

unit and we often identify C1 ( ∗C1) with C ( ∗C).

A comment on the use of the ∗ symbol: to avoid confusion, the reader should
keep in mind that a ∗ on the left–hand side of an ordinary mathematical object
refers to its nonstandard extension. A ∗ on the right–hand side of an object (ordi-
nary or internal) refers to the adjoint of that object, whenever that makes sense.
In our opinion, the use of two different star symbols would not provide any
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significant simplification. Worse than that, it would possibly make either the
nonstandard or the operator theory people uncomfortable.

We fix some notation and further nonstandard terminology. Let M be an
internal X algebra with (semi–)norm ‖ ‖ . Let u, v ∈ M. We write u ≈ v if
‖u − v‖ <

1
n for all 0 < n ∈ N. In such case we say that u and v are infinitely

close. If ‖u‖ < n for some n ∈ N, we say that u is finite. We denote by Fin(M)
the set of finite elements of M and by I the set of infinitesimal elements, namely
I = {x ∈ M : ‖x‖ ≈ 0}.

For r ∈ Fin( ∗R) it can be shown that there exists a unique s ∈ R such that
r ≈ s: s is called the standard part of r and is denoted by ◦s.

By an ideal in a X algebra, we always mean a closed, two–sided, proper ideal.
Hence an ideal in a C∗–algebra M is a closed linear subspace of M which is
closed under left and right multiplication by elements of M and under involu-
tion (we often refer to the latter property as to self–adjointness). Actually, for a
C∗–algebra ideal, self-adjointness is a consequence of the other properties (see
[5, Proposition II.5.1.1]).

If property Y is stronger than property X , we may consider X ideals in a Y
algebra, with an obvious meaning of the terminology.

A homomorphism of C∗-algebras will always be an algebra homomorphism
that commutes with the involution.

We shall make use of the Strong Operator Topology (SOT, for short) on the
ordinary C∗–algebra B(H) of bounded linear operators on an Hilbert space H.
We recall that the SOT is the topology of pointwise convergence on B(H): a net
{ai}i∈I in B(H) converges to a ∈ B(H) if and only if, for all v ∈ H, {ai(v)}i∈I

converges strongly (i.e. in the norm topology of H) to a(v).
The importance of the SOT lies in the celebrated Kaplansky’s Bicommutant

Theorem stating that the following are equivalent for a unital, self-adjoint subal-
gebra M of B(H):

1. M is a von Neumann algebra (i.e. M is equal to its bicommutant);

2. M is closed in the SOT.

Further notions and results will be introduced when they are used.

3 The nonstandard hull

In this section we review Luxemburg’s nonstandard hull construction. We present
it in a slightly different manner from Luxemburg’s, for sake of generalizing the
construction later on.

We shall define the nonstandard hull of an internal C∗-algebra M. The
C∗–algebra case does cover all the others, with the exception of von Neumann
algebras. It is known among the functional analysts that the ultrapower of a
C∗–algebra N can be faithfully represented as a von Neumann algebra if and
only if N is finite dimensional. Not surprisingly, an analogous result holds for
nonstandard hulls: the nonstandard hull of an internal C∗–algebra M can be
faithfully represented as a von Neumann algebra if and only if M is (standard)
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finite dimensional. We sketch a proof of the latter result in Section 4.1. In light
of that result, in Section 4.1 we shall work with the tracial nonstandard hull, a
modified construction that preserves the property of closedness with respect to
the Strong Operator Topology (see the Introduction).

Let ‖ ‖ be the norm on M. We first notice that Fin(M) is an ordinary complete
semi–normed self-adjoint algebra with respect to the semi–norm ◦ ‖ ‖ (the stan-
dard part of the internal norm). Moreover, Fin(M) satisfies the C∗–condition
◦ ‖x∗x‖ = ( ◦ ‖x‖)2. Completeness of ◦ ‖ ‖ is the only property whose proof
requires a little argument. We provide quite a detailed proof that completeness
follows from ω1–saturation. Further applications of saturation will follow the
same pattern and will not be detailed to the same extent.

Proposition 1. Let M be an internal C∗–algebra. Every Cauchy sequence in Fin(M)
converges in Fin(M).

Proof. Let (xn)n∈N be a Cauchy sequence in Fin(M). For each k ∈ N
+ let nk be

such that

∀m, n > nk(
◦ ‖xn − xm‖ <

1

2k
).

Then ∀m, n > nk(‖xn − xm‖ <
1
k ). Without loss of generality, assume that

h < k ⇒ nh < nk. Let M ∈ N be such that ‖xn‖ < M for all n ∈ N.
Let S be the internal set of all internal sequences from ∗

N to M.
Let Ak, k ∈ N

+, be the set of internal sequences ȳ = (yn)n∈ ∗N that satisfy the
following properties:

1. ȳ ∈ S;

2. ∀n ∈ ∗N(‖yn‖ < M);

3. ∀m ≤ nk(yn = xn);

4. ∀m, n ∈ ∗N(m, n > nk ⇒ ‖ym − yn‖ < 1/k).

For each k ∈ N+, the set Ak is internal by the Internal Definition Principle
(see the Introduction). Furthermore, the family {Ak : k ∈ N+} has the finite
intersection property: let k ∈ N+ and let ȳ be the sequence defined as follows:

yn =

{
xn if n ≤ nk;
xnk

if n > nk

Then ȳ ∈ A1 ∩ · · · ∩ Ak. By Saturation, let ȳ ∈
⋂

k∈N+ Ak. Fix any N ∈ ∗N \ N.
Then yN ∈ Fin(M) and, for all k ∈ N+,

∀n ∈ N(n > nk → ‖xn − yN‖ < 1/k).

Therefore ◦ ‖xn − yN‖ → 0 as N ∋ n → ∞.

Now we continue the construction of the nonstandard hull. Let M be as above
and let I = {x ∈ M : ‖x‖ ≈ 0}. Notice that x ∈ I ⇔ ◦ ‖x‖ = 0. It is easy to check

that I is a closed ideal in Fin(M). Let M̂ = Fin(M)/I be the quotient algebra.
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We let x̂ = x + I. By basic results on quotients of ordinary semi-normed alge-

bras, M̂ is an ordinary Banach self-adjoint algebra with respect to the operations
canonically defined on the quotient and with respect to the norm

‖x̂‖ = inf
y∈I

◦ ‖x + y‖ = ◦ ‖x‖ .

Notice that the context prevents any ambiguity in the use of symbol ‖ ‖ .

Clearly, the norm on M̂ satisfies the C∗-condition ‖(x̂)∗ x̂‖ = (‖x̂‖)2. There-

fore M̂ is a C∗–algebra, which is called the nonstandard hull of M.
If ∗M is a nonstandard extension of an ordinary X algebra M, we still write

M̂ for ∗̂M. As previously noticed, the context prevents any ambiguity. Moreover
∗M is uniquely determined by M, once a nonstandard universe has been fixed.

In the literature one can find an extensive study of the properties of the non-

standard hull M̂ of an ordinary X algebra M. Here we just mention that the

norm on M̂ is always complete (even when M is semi–normed); M isometrically

embeds into M̂; if M is infinite dimensional then M̂ is nonseparable. Moreover

it holds that, for every finite dimensional subalgebra N of M̂ and every positive
real ǫ, there exists an ǫ-isometry from N into M. Roughly speaking, this means
that N can be embedded into M “up to any prescribed degree of accuracy”. This

is the property of finite representability of M̂ into M.

We finish this section with a comment that might be of interest to functional
analysts. In order to prove that the quotient of an ordinary C∗-algebra M with
respect to a closed ideal I is a C∗–algebra, the key step is to prove that the quotient
norm satisfies the C∗–condition. To do that one uses an approximate unit for I
(see [5, II.5]). Notice that proving the C∗–condition for the norm defined on a
nonstandard hull is completely straightforward.

4 An extension of Luxemburg’s construction

In this section we want to introduce a slightly more general nonstandard hull
construction obtained by factoring out the finite elements Fin(M) of an internal
X algebra M with respect to a closed ideal J. Let us assume that M is an internal

C∗–algebra. Notation and results from Section 3 are in force. Let M̃ = Fin(M)/J

and x̃ = x + J. We claim that M̃ is a C∗–algebra with respect to the operations
canonically defined on the quotient and with respect to the norm

‖x̃‖ = inf
y∈J

◦ ‖x + y‖ (1)

To prove the above claim, the key observations are that I ⊆ J and Ĵ = J/I is

a closed ideal in the nonstandard hull M̂ of M. Therefore M̂/ Ĵ is a C∗–algebra
with respect to the norm

∥∥∥x̂ + Ĵ
∥∥∥ = inf

ŷ∈ Ĵ
‖x̂ + ŷ‖ = inf

y∈J

◦ ‖x + y‖ .
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Moreover, the map π : M̂ → M̃ ; x̂ 7→ x̃ is a surjective homomorphism

such that ker π = Ĵ. Hence M̂/ Ĵ is isomorphic to M̃ and the claim is proved. It
worths recalling that an injective homomorphism of C∗-algebras is an isometry
(see [5, II.2.2.9]).

By arguing as in the proof of [24, Theorem 3.22] (but see also [3], on which the
content of sections 3.2 and 3.3 of [24] is based), one can show that the self–adjoint

elements Re(M) of M satisfy the condition (Re(M) ∩ Fin(M))∼ = Re(M̃),

from which we get the following for the positive elements: (Fin(M+))∼ = (M̃)+.
Technically speaking, one says that self–adjoint and positive elements are liftable.
General liftability results, analogous to those proved in [24] (see [13] for their
formulation in ultraproduct language), seem not hold for arbitrary M and J.

We stress that liftability is crucial for sake of proving properties of M̃ by work-
ing inside the internal algebra M, where all the nonstandard techniques can be
exploited.

4.1 Tracial nonstandard hull

We recall that a representation of an ordinary C∗-algebra M is a homomorphism
from M to B(H), for some Hilbert space H. A faithful representation is an injec-
tive one. It follows from [5, II.2.2.9] that a faithful representation is isometric.

If M is an ordinary (internal) C∗-algebra, we denote by Proj (M) the (internal)
set of its (internal) projections. We recall that, if p, q are projections in B(H), p < q
simply means that ran(p) ⊂ ran(q).

In Section 3, we already mentioned that, with the exception of the (standard)
finite dimensional case, the nonstandard hull of an internal C∗-algebra cannot be
faithfully represented as an ordinary von Neumann algebra. We sketch a non-
standard proof of this fact as a corollary of results, here stated without proof,
which are instances of more general results from [3] (they also appear in [24]).
All of them have corresponding ultraproduct versions.

In the next three results, M is an internal C∗-subalgebra of the internal
C∗-algebra of bounded linear operators on some internal Hilbert space H. It

worths recalling that the nonstandard hull M̂ of M is a C∗-subalgebra of the

ordinary algebra B(Ĥ), where Ĥ is the nonstandard hull of the internal Hilbert

space H. It is easy to verify that Ĥ is an ordinary Hilbert space. Therefore M̂ is
an algebra of operators.

Proposition 2. For any â ∈ Proj
(
M̂

)
there is p ∈ Proj (M) such that â = p̂.

A brief comment on the preceding proposition: it might well be the case that

â ∈ Proj
(
M̂

)
even if a /∈ Proj (M) . In any case, Proposition 2 ensures that there

exists p ∈ Proj (M) such that p ≈ a. This p is called a lifting of â.

Proposition 3. Let p0, . . . , pn ∈ Proj (M) be such that p̂0 < · · · < p̂n. Then there
exist q0, . . . , qn ∈ Proj (M) such that q0 < · · · < qn and p̂i = q̂i for all 0 ≤ i ≤ n.

Proposition 4. If the nonstandard hull M̂ of M contains is a strictly increasing family

{p̂n}n∈N of projections, then M̂ is not a von Neumann algebra.
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Corollary 5. The following are equivalent for an internal C∗-algebra M:

1. M is (standard) finite dimensional;

2. M̂ can be faithfully represented as a von Neumann algebra.

Proof. (1) ⇒ (2) This follows by Transfer of the result that an ordinary finite
dimensional C∗-algebra is isomorphic to a finite direct sum of internal matrix

algebras of finite dimension over C. Therefore M̂ is a finite direct sum of

matrix algebras over C, each having standard finite dimension. Hence M̂ is a
von Neumann algebra.

(2) ⇒ (1) Without loss of generality, let M̂ be infinite dimensional and von Neu-

mann. Then, for each n ∈ N, there exists in M̂ an increasing family

p̂0 < · · · < p̂n of projections. (Recall that M̂ is generated by its own projec-
tions.) By Proposition 2 we can assume that pi ∈ Proj (M) , for all 1 ≤ i ≤ n.
Hence Proposition 3 applies and, in M, there are finite arbitrarily long strictly
increasing sequences of projections. By Saturation there exist N ∈ ∗N \ N and
a strictly increasing sequence (pK)K<N of projections in M. Hence, by Proposi-

tion 4, M̂ is not a von Neumann algebra. Therefore, if M̂ is von Neumann, it is
finite dimensional and so is M.

Indeed there is a modified hull construction that, applied to any internal
C∗-algebra which admits an internal tracial state, produces an ordinary C∗-algebra
that has a faithful representation as a von Neumann algebra. In this subsection
we outline this construction.

Let M be an internal, unital C∗-algebra with norm ‖ ‖ . The notation and the
results of Sections 3 and 4 are in force.

Let τ : M → ∗C be an internal tracial state, namely a positive linear functional
of norm one (equivalently: τ(1) = 1) with the property that τ(x∗x) = τ(xx∗), for
all x ∈ M.

By [5, II.3.1.8], 9x9 = τ(x∗x)1/2 is a seminorm on M with the property that
9x9 ≤ ‖x‖ , for all x ∈ M. This will be useful in the following.

Using also [5, II.3.1.9(ii)], we get that

Jτ = {x ∈ Fin(M) : τ(x∗x) ≈ 0}

is a closed ideal in Fin(M) with respect to the seminorm ◦ ‖ ‖ . As shown in

Section 4, the quotient M̃
τ
= Fin(M)/Jτ inherits the structure of a C∗-algebra.

Recall that ‖x̃‖ = infy∈Jτ
◦ ‖x + y‖ .

By [5, II.3.1.8], we get that x∗y∗yx ≤ ‖y‖2 x∗x, for all x, y ∈ Fin(M). From
[5, II.3.1.9] it follows that

Jτ = {x ∈ Fin(M) : τ(x∗x) ≈ 0}

is a closed ideal in Fin(M) with respect to the seminorm ◦ ‖ ‖ . As shown in

Section 4, the quotient M̃
τ
= Fin(M)/Jτ inherits the structure of a C∗-algebra.
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With the above notation in force, we can state and prove the following:

Theorem 6. Let M be an internal C∗–algebra and let τ : M → ∗
C be an internal

tracial state. Then M̃
τ

has a faithful representation as a von Neumann algebra.

Proof. First of all observe that τ induces a tracial state θ on M̃
τ

defined by
θ(x̃) = ◦τ(x). Notice in particular that from [5, II.6.2.6] we get that τ(x) ≈ τ(y)
when x − y ∈ Jτ, so θ is well-defined.

Let us consider the GNS representation of M̃
τ

associated to θ. (For its con-
struction, see [5, II.6.4]). We notice that, under our assumptions, there is a simpli-
fication with respect to the general construction, due to the fact that

θ(x̃∗ x̃) = 0 ⇔ x̃ = 0.

Therefore θ is faithful and the pre–inner product 〈x̃, ỹ〉 = θ(ỹ∗ x̃) is actually

an inner product on M̃
τ
. A saturation argument similar to that presented in Sec-

tion 3 shows that M̃
τ

is complete with respect to such inner product. We denote
by ‖·‖2 the corresponding norm.

Let Lx̃ : M̃
τ
→ M̃

τ
be the operator of left multiplication by x̃. Clearly, the

homomorphism π : M̃
τ
→ B(M̃

τ
) defined by π(x̃) = Lx̃ is injective, hence

isometric by [5, II.2.2.9]: ‖x̃‖ = ‖Lx̃‖B(M̃ τ
)

.

So far we have proved that π is a faithful representation of M̃
τ
. Next we

prove that that π[M̃
τ
] is closed with respect to the SOT (see the Introduction).

Let (Lx̃i
)i∈I ⊂ M̃

τ
be a net converging to some f ∈ B(M̃

τ
) with respect to

the SOT. Then (‖x̃i‖)i∈I is bounded and we can pick the xi’s so that there exists
r ∈ R+ for which ‖xi‖ ≤ r for all i ∈ I.

Let Mr = {x ∈ M : ‖x‖ ≤ r} and d(x, y) = 9x − y9, x, y ∈ Mr, where 9 9
is the semi–norm associated to the tracial state τ defined at the beginning of this
subsection. Then (Mr, d) is an internal pseudometric space. Note that the galaxy
of 0, namely the set {y ∈ Mr : 9y 9 is finite}, is just Mr. Let x̄ = {y ∈ Mr :
d(x, y) ≈ 0} and Mr = {x̄ : x ∈ Mr}.

Define a distance d̄ on Mr as follows: d̄(x̄, ȳ) = ◦d(x, y). By Saturation,
(Mr, d̄ ) is a complete metric space. Moreover, d̄(x̄, ȳ) = ‖x̃ − ỹ‖2 , for all
x, y ∈ Mr.

By SOT-convergence, (x̃i)i∈I = (Lx̃i
(1̃))i∈I converges to f (1̃) with respect to

‖ ‖2 , hence it is a Cauchy net with respect to the latter norm. Thus (xi)i∈I is

Cauchy in (Mr, d̄ ). By completeness of (Mr, d̄ ) there exists x ∈ Mr such that

d̄(xi − x) → 0. Hence ‖x̃i − x̃‖2 → 0 and so Lx̃ = f . This proves that M̃
τ

is
closed with respect to the SOT.

Versions of the previous theorem stated in ultraproduct language or proved
in specific cases already appear in the literature, see for instance [21], [17], [16] or
[14]. To the best of our knowledge, the above proof is novel.
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4.2 Weak nonstandard hull

In this subsection, we first present the weak nonstandard hull construction (see [24])
in a way that fits into the setting of Section 4. Then we comment on a slight
generalization of such construction.

Let ∗M be the nonstandard extension of an ordinary Banach space M. Let M′

be the dual of M. For notational simplicity we write φ also for the nonstandard
extension ∗φ of φ ∈ M′. Let M′

1 be the closed unit ball of M′.
Let Jw = Fin( ∗M) ∩ {x ∈ ∗M : φ(x) ≈ 0 for all φ ∈ M′

1}. Clearly Jw con-
tains the subspace {x ∈ Fin( ∗M) : ‖x‖ ≈ 0} of the ordinary semi–normed space
Fin( ∗M). Moreover, it is easy to check that Jw is a closed subspace of Fin( ∗M).
Then, by the remark made at the beginning of this section, we get at once that

M̃w = Fin( ∗M)/Jw is a Banach space, called the weak nonstandard hull of M.

In [24], the author proves that M̃w is isometrically isomorphic to the bidual
M′′ of M.

Actually, M̃w is first presented in [24] as a nonstandard hull obtained from
a family of internal seminorms (those canonically associated to the elements of
M′

1). If M is an internal Banach space and F ⊆ M′
1, then the above construction

can be repeated by letting

JF = Fin(M) ∩ {x ∈ M : φ(x) ≈ 0 for all φ ∈ F}

and M̃F = Fin(M)/JF . By the remark made at the beginning of this section, M̃F

is a Banach space. Note that the latter construction includes, as a special case, the
original weak nonstandard hull.

5 Preservation of properties

In this section we work with C∗–algebras. We provide a number of results show-
ing that significant properties are preserved and reflected by the nonstandard
hull construction. We stress that the same results can be obtained also in the
ultraproduct or in the continuous logic setting (see [4]).

We begin with some lifting results in the vein of those in [3]. Most of them
involve the notion of projection, because of its crucial role in a C∗-algebra, if any
exists besides 0 and 1. Actually there are easy examples of so called projectionless
C∗-algebras like C or C([0, 1]). The first example of an infinite dimensional, simple
(i.e without proper ideals), projectionless C∗-algebra is due to Blackadar.

Let M be a C∗-algebra. We recall that u ∈ M is a partial isometry if u∗u is a
projection (see [5, II.1.5.7]). Recall also that two projections p, q ∈ M are Murray-
von Neumann equivalent in M (notation: p ∼ q) if there is a partial isometry u
such that u∗u = p and uu∗ = q (see [5, II.3.3.3]).

The notation p ∼ q should not be confused with p ≈ q, the latter meaning that
‖p − q‖ is infinitesimal.

We denote by U(M) the multiplicative group of unitary elements in an (ordi-
nary or internal) C∗–algebra M.
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Let M̂ be the nonstandard hull of an internal C∗–algebra M. If X ⊆ M, we

let X̂ = {x̂ : x ∈ Fin(X)}.
A unitary element u in a C∗-algebra is one such that u∗u = 1 = uu∗. The

following proposition shows that each unitary element of M̂ is liftable.

Proposition 7. Let M be an internal C∗–algebra. Then U(M̂) = Û(M).

Proof. For the nontrivial inclusion, let û ∈ U(M̂). A fortiori, û is a partial isome-
try. Hence, by [24, Theorem 3.22], there exists a partial isometry v ∈ M such that
v ≈ u. Therefore vv∗ = p ≈ 1 and v∗v = q ≈ 1, for some internal projections p, q
on M. By Transfer of [5, II.3.3.4], the condition p ≈ 1 implies p ∼ 1. Hence p = 1.
Similarly for q. Therefore v is unitary and v̂ = û.

Let Aut(M) be the automorphism group of an ordinary or internal C∗–algebra
M. By an automorphism here we mean what is often referred to as a ∗-automor-
phism. An inner automorphism θ is one such that there exists u ∈ U(M) for
which θ(x) = uxu∗ for all x ∈ M. We shall write θu to denote the inner automor-
phism associated to u ∈ U(M). We denote by Inn(M) the inner automorphism
group.

Let M̂ be the nonstandard hull of an internal C∗–algebra M. If θ ∈ Aut(M)

then the map θ̂ : M̂ → M̂ defined by θ̂(x̂) = θ̂(x) is in Aut(M̂). If A ⊆ Aut(M),

we let Â = {θ̂ : θ ∈ A}.

The next corollary is a straightforward consequence of Proposition 7.

Corollary 8. Let M be an internal C∗–algebra. Then ̂Inn(M) = Inn(M̂).

Proof. Since θ̂u = θû, it remains to prove that Inn(M̂) ⊆ ̂Inn(M). The latter
follows from Proposition 7.

We have just shown that all inner automorphisms of M̂ are liftable to inner
automorphisms of M. In the framework of von Neumann algebras, a much more
complicated liftability result has been proved for inner automorphisms of tracial
ultrapowers of a II1 factor (see [26]).

We recall that two projections p, q in a C∗–algebra M are unitarily equivalent
in M if there exists u ∈ U(M) such that upu∗ = q (notation: p ∼u q).

Corollary 9. Let M be an internal C∗–algebra and let p̂, q̂ be unitarily equivalent

projections in M̂. Then there exists projections p′, q′ ∈ M such that p′ ≈ p, q′ ≈ q
and p′ ∼u q′.

Proof. Let û ∈ U(M̂) be such that ûp̂(û)∗ = q̂. By [24, Theorem 3.22] we can
assume that p, q ∈ Proj(M). By Proposition 7, we can further assume that
u ∈ U(M). Then upu∗ ≈ q and upu∗ ∈ Proj(M).
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The previous corollary is analogous to the liftability result for Murray-von
Neumann equivalence of projections proved in [24, Lemma 3.7].

A result similar to Corollary 9 holds with respect to the notion of homotopic
equivalence. Two projections p, q in a C∗–algebra M are homotopic in M if there
exists a continuous mapping θ : [0, 1] → Proj(M) such that θ(0) = p and θ(1) = q
(notation: p ∼h q).

Let M be an internal C∗–algebra. According to the nonstandard terminology,
we say that a mapping θ : ∗[0, 1] → M is S–continuous if

x ≈ y ⇒ θ(x) ≈ θ(y) for all x, y ∈ ∗[0, 1].

We give the following:

Definition 10. Let M be an internal C∗–algebra. Two projections p, q ∈ Proj(M)
are S–homotopic (notation: p ∼Sh q) if there exists an internal S–continuous mapping
θ : ∗[0, 1] → M with the following properties:

1. θ(0) = p;

2. θ(1) = q;

3. θ(x) ∈ Proj(M), for all x ∈ ∗]0, 1[.

Proposition 11. The following are equivalent for p, q ∈ Proj(M), where M is an
internal C∗–algebra:

1. p ∼Sh q;

2. p̂ ∼h q̂.

Proof. (⇒) This is a routine nonstandard argument. Let θ be an internal mapping
witnessing p ∼Sh q. For each 0 < ǫ ∈ R, let

Aǫ = {δ ∈ ∗
R : ∀x, y ∈ ∗[0, 1](|x − y| < δ → ‖θ(x)− θ(y)‖ < ǫ}.

By the Internal Definition Principle, the set Aǫ is internal. Since it contains
the external set of positive infinitesimals, there exists some positive nonin-
finitesimal δ ∈ Aǫ. Therefore the mapping

θ̂ : [0, 1] → Proj(M̂)

x 7→ θ̂(x)

is continuous. Furthermore θ̂ witnesses p̂ ∼h q̂.

(⇐) Let η : [0, 1] → Proj(M̂) be a continuous function such that η(0) = p̂
and η(1) = q̂. We work within the framework of the Neometric spaces of
Fajardo and Keisler (this is another way of dealing with nonstandard tech-
niques). More precisely, we work in the Huge Neometric Family (see [11]).
By [12, Proposition 4.12], the mapping η is neocontinuous. It follows from
the fact that every compact set its neocompact and from [11, Theorem 4.17]
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that η is (uniformly) liftable, namely there exists an internal function

θ : ∗[0, 1] → M such that θ̂(x) = η(◦x), for all x ∈ ∗[0, 1].

Hence θ is S–continuous; θ(0) ≈ p; θ(1) ≈ q and ∀x ∈ ∗]0, 1[ ∃r ∈ Proj(M)
(θ(x) ≈ r). Let

B = {N ∈ ∗
N : ∀x ∈ ∗[0, 1] ∃r ∈ Proj(M)(‖θ(x)− r‖ < 1/N)}.

The set B is internal and contains the external set N. Let N ∈ ( ∗N \ N)∩ B.
For x ∈ ∗[0, 1], let Ax be the nonempty set {r ∈ Proj(M) : ‖θ(x)− r‖ <

1/N)}.

Let ch be an internal choice function on {Ax : x ∈ ∗[0, 1]} (notice that the
latter is internal by the Internal Definition Principle) and let ξ : ∗[0, 1] →
Proj(M) be defined by ξ(0) = p, ξ(1) = q and ξ(x) = ch(Ax), for all
x ∈ ∗]0, 1[. Such ξ witnesses p ∼Sh q.

Notice that the argument used in the previous proof shows that Sh–homotopy
of projections p and q is equivalent to the apparently weaker condition of exis-
tence of an internal S–continuous mapping θ : ∗[0, 1] → Proj(M) with the prop-
erties that θ(0) ≈ p; θ(1) ≈ q and ∀x ∈ ∗]0, 1[ ∃r ∈ Proj(M)(θ(x) ≈ r).

If p, q are projections in an internal C∗–algebra M, then p ∼Sh q implies p ∼u

q. To see that, let θ be as in the definition of Sh-homotopy and let N ∈ ∗N \ N.

Then θ(i/N) ≈ θ( i+1
N ) and hence, by [5, Proposition II.3.3.4], θ( i

N ) ∼u θ( i+1
N ), for

all 0 ≤ i < N. The conclusion follows by transitivity of ∼u .
Notice also that for p, q as above, if p ∼u q then diag(p, 0) ∼Sh diag(q, 0) in the

C∗-algebra M2(M) of 2× 2 matrices with entries in M. (The proof is the same as
[5, Proposition V.1.1.3], completed by the trivial observation that sine and cosine
functions are S–continuous.)

Therefore ∼Sh appears to be, in the internal setting, a natural counterpart
of ∼h in the ordinary setting. Of course, ∼h makes perfect sense for internal
C∗–algebras as well, but, as far as its liftability is concerned, Proposition 11 tells
us that ∼Sh is indeed the right notion.

In the following we investigate whether other properties are preserved and/or
reflected by the nonstandard hull construction.

We recall that a C∗–algebra M is a factor if its center Z(M) is trivial.

Remark 12. Let M be an internal C∗–algebra. It is easy to check that if M̂ is a
factor, then M itself is a factor. For, suppose not. Since the center of a C∗-algebra
can be faithfully represented as a von Neumann algebra and since every von Neumann
algebra is generated by its own projections, there is a nontrivial projection p ∈ Z(M).
Moreover 0 6≈ p 6≈ 1, otherwise p = 0 or p = 1 (see the argument used in the proof of

Proposition 7). Therefore p̂ ∈ Z(M̂) is a nontrivial projection.

It is an open problem whether the nonstandard hull of a factor is itself a factor.
Even if the answer is likely to be false in general, in the case of the internal von
Neumann algebra M = B(H) of bounded linear operators on some internal
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Hilbert space H, we have that M̂ is a factor. To see that, for sake of contradiction
let p̂ ∈ Z(M) be a nontrivial projection. (Again we use the fact that Z(M), being
a von Neumann algebra, is generated by projections.) By [24, Theorem 3.22], we
can assume that p ∈ M is a projection, actually a nontrivial one. Let u ∈ ker(p)
and v ∈ ran(p) be unit vectors. Define f ∈ M as follows: f (u) = v and f|〈u〉⊥ = 0.

Then ‖p f − f p‖ ≥ 1, contradicting to p̂ f̂ = f̂ p̂.
Compare the previous observation with the result, proved in [16], that the

tracial nonstandard hull of MN(
∗C) with respect to the normalized matrix trace

is a factor (indeed a type II1 factor).

Actually, the previous consideration can be strengthened. In order to do that
we first recall the a C∗–algebra M is weakly central if any two maximal ideals I1

and I2 of M coincide exactly when I1 ∩ Z(M) = I2 ∩ Z(M). The class of weakly
central C∗–algebras contains that of von Neumann algebras. (See [23].)

An element v of a C∗–algebra M induces an inner derivation D(v,M), given
by D(v,M)(w) = vw − wv, for w ∈ M. Clearly, D(v,M) is a bounded linear
operator. Let

‖D(v,M)‖ = sup{‖vw − wv‖ : ‖w‖ ≤ 1 and w ∈ M}

be the operator norm and let d(v, Z(M)) be the distance between v and Z(M).
As remarked at the end of [27], the results proved therein immediately imply the
following:

Proposition 13. Let M be a weakly central C∗–algebra. Then, for all v ∈ M,

d(v, Z(M)) ≤ ‖D(v,M)‖ .

We apply the previous result to prove the following:

Theorem 14. Le M be an internal weakly central C∗–algebra. Then

Z(M̂) = Ẑ(M).

Proof. For the nontrivial inclusion, let v̂ ∈ Z(M̂). Then vw ≈ wv, for all
w ∈ Fin(M) and so ‖D(v,M)‖ , being a supremum of infinitesimals over an in-
ternal set, is itself infinitesimal. From Proposition 13, we get that d(v, Z(M)) ≈ 0.
Let w ∈ Z(M) be such that ‖v − w‖ ≈ 0. Then ‖w‖ is finite and v̂ = ŵ ∈

Ẑ(M).

Corollary 15. Let M be an internal weakly central C∗–algebra. Then

M is a factor ⇔ M̂ is a factor.

In particular the above holds for an internal von Neumann algebra M.

Proof. (⇒) Straightforward from Theorem 14.

(⇐) See Remark 12.
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Recalling that nonstandard hulls generalize ultraproducts, we get from Corol-
lary 15 that the ultraproduct of factor von Neumann algebras is a factor
C∗–algebra (but, in general, not a von Neumann algebra, as pointed out at the
beginning of Section 3).

An analogue of Theorem 14 can be proved for the class of primitive
C∗–algebras. A C∗–algebra is primitive if it has a faithful irreducible represen-
tation. The notion of faithful representation has been introduced in Section 4.1.
A representation is irreducible if it has no nontrivial closed invariant subspaces
(see [5, II.6.1]). Primitive C∗–algebras, and more generally prime C∗–algebras (of
which the primitive ones form a proper subclass, see below), are regarded, within
the class of C∗–algebras, as analogues of factors among von Neumann algebras
(so, a sort of “building blocks”). Thus it is not surprising that a result along the
line of Theorem 14 can be proved for the class of primitive C∗–algebras. We use
the following (see [27, Theorem 2.2.]):

Proposition 16. Let M be a primitive C∗–algebra. Then, for all v ∈ M, there exist a
unique scalar λ(v) such that

‖D(v,M)‖ = 2 ‖v − λ(v)1‖ .

Notice that from the previous proposition we get at once the well known fact
that every primitive C∗–algebra is a factor. Indeed, if M is an internal primitive

C∗–algebra, then M̂ is a factor. For, let v̂ ∈ Z(M̂). Then, by the same argu-
ment used in the proof of Theorem 14, we get ‖D(v,M)‖ ≈ 0. Let λ(v) be as in

Proposition 16. Therefore λ(v) ∈ Fin( ∗C) and v̂ = λ̂(v) ∈ C1. This result will be
strengthened by Corollary 22.

In the following we continue our investigation on which properties of
C∗–algebras and their representations are preserved by the nonstandard hull con-
struction. It is convenient to prove first a number of more general results concern-
ing homomorphisms.

Let M,N be internal C∗–algebras and let f : M → N be an internal homo-
morphism. Since homomorphisms of C∗–algebras are nonexpansive [5, Corollary

II.1.6.6], the map f̂ : M̂ → N̂ , x̂ 7→ f̂ (x) is well–defined. It is straightforward to

check that f̂ is actually a homomorphism. We recall the following:

Fact 17. Let f : M → N be a homomorphism of ordinary C∗–algebras. Then ker f
is a closed ideal in M and the quotient M/(ker f ) is isometrically isomorphic to the
C∗–algebra f [M]. (See [5, Corollary II.5.1.2]). Therefore, for all 0 < ǫ there exists
y ∈ ker f such that ‖x + y‖ < ‖ f (x)‖+ ǫ.

The next proposition is a direct consequence of Fact 17.

Proposition 18. Let M,N be internal C∗–algebras and let f : M → N be an internal
homomorphism. Then

k̂er f = ker f̂ .
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Proof. The left-to-right inclusion is trivial. As for the converse, let x̂ ∈ ker f̂ . Then
‖ f (x)‖ ≈ 0. By Transfer of Fact 17, there exists y ∈ ker f such that ‖x − y‖ ≈ 0.

Hence x̂ = ŷ ∈ k̂er f .

Proposition 19. Let J be an internal closed ideal in an internal C∗–algebra M. Then the

map q̂ : M̂/ Ĵ → M̂/J, x̂ + Ĵ 7→ x̂ + J is an isometric isomorphism.

Proof. By Transfer of the results mentioned in Fact 17, M/J is an internal
C∗–algebra and q : M → M/J, x 7→ x + J, is an internal homomorphism. Then
Proposition 18 and Fact 17 yield the conclusion.

We have already mentioned that we can form the nonstandard hull Ĥ of an in-
ternal Hilbert space H in the same way as with an internal normed space. More-

over Ĥ is itself a Hilbert space with respect to the standard part of the inner
product of H.

Let π : M → B(H) be an internal representation of a C∗–algebra M. We

can regard B̂(H) as a C∗–subalgebra of B(Ĥ), by identifying f̂ ∈ B̂(H) with

F : Ĥ → Ĥ defined by û 7→ f̂ (u). (See [24, §3.3.1].)

Therefore π induces a representation π̂ of M̂ on Ĥ.

Theorem 20. Let π : M → B(H) be an internal representation of a C∗–algebra M.
Then

π is irreducible ⇔ π̂ is irreducible.

Proof. (⇒) Since π is irreducible, it follows from a generalization of Schur’s
Lemma (see [25, Theorem 4.4.12]) that the double commutant π[M]′′ of
π[M] is B(H). Let u, v ∈ H be unit vectors and let T ∈ B(H) be defined by
T(u) = v and T(w) = 0, when w ∈ 〈u〉⊥ . Fix 0 ≈ ǫ > 0. An application of
Kaplansky Density Theorem [7, 44.1(a)] yields x ∈ M satisfying

‖π(x)‖ ≤ 1 and ‖π(x)(u) − v‖ < ǫ. (2)

By Transfer of Fact 17, there exists y ∈ M such that π(x) = π(y) and
‖y‖ < ‖π(x)‖ + 1. Without loss of generality we can therefore assume
x ∈ Fin(M). Finally, from (2), we get π̂(x̂)(û) = v̂.

Being u, v arbitrary unit vectors, we conclude that π̂ is irreducible.

(⇐) By contraposition. Let H1 be an internal nontrivial Hilbert subspace of H
such that π(x)[H1] ⊆ H1, for all x ∈ M.

Then Ĥ1 is a nontrivial Hilbert subspace of Ĥ and π̂(x̂)[Ĥ1] ⊆ Ĥ1, for all
x ∈ Fin(M).

The following holds:

Corollary 21. Let π : M → B(H) be an internal representation of a C∗–algebra M.
Then

π is faithful ⇔ π̂ is faithful.
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Proof. The left-to-right implication follows immediately from Proposition 18. The
converse implication is straightforward, by contraposition.

Corollary 22. Let M be an internal C∗–algebra. Then

M is primitive ⇔ M̂ is primitive.

Analogues of Theorem 20 and Corollary 22 have been proved in [13] for ultra-
products of C∗–algebras. In our opinion, the use of nonstandard techniques leads
to simple, intuitive proofs.

A C∗–algebra M is prime if whenever J and J are ideals of M with I ∩ J = {0},
either I or J is {0}. In order to formulate conditions equivalent to primeness that
will be used in the sequel, we define muv : M → M as follows: muv(w) = uwv,
when u, v ∈ M.

Proposition 23. The following are equivalent for a C∗–algebra M:

1. M is prime;

2. whenever u, v ∈ M are nonzero elements, then there exists w ∈ M such that
uwv 6= 0;

3. ‖muv‖ = ‖u‖ ‖v‖, for all u, v ∈ M.

Proof. See [5, II.5.4.5] and [20] or [8].

Proposition 24. Let M be an internal C∗–algebra. Then

M is prime ⇔ M̂ is prime

Proof. (⇒) We prove that M̂ satisfies (3) of Proposition 23. Let u, v ∈ Fin(M).
We claim that

‖mûv̂‖ = sup
‖ŵ≤1‖

‖ûŵv̂‖ = ◦ sup
‖w‖≤1

‖uwv‖ = ◦ ‖muv‖

For the left-to-right inequality, let ‖ŵ‖ ≤ 1. Then ‖uwv‖ 4 ‖uzv‖ , for some
‖z‖ ≤ 1, where r 4 s means (r ≤ s or r ≈ s). Therefore ‖ûŵv̂‖ = ◦ ‖uwv‖ ≤
◦ sup‖z‖≤1 ‖uzv‖ , from which ‖mûv̂‖ ≤ ◦ ‖muv‖ follows.

The other inequality follows immediately from the definition of (internal)
supremum.

Finally, ‖mûv̂‖ = ◦ ‖muv‖ = ◦(‖u‖ ‖v‖) = ◦ ‖u‖ ◦ ‖v‖ = ‖û‖ ‖v̂‖ .

(⇐) We prove that M satisfies (2) of Proposition 23. Let u, v ∈ M be nonzero
elements and let u1 = u/ ‖u‖ , v1 = v/ ‖v‖ . There exists w ∈ Fin(M) such
that û1ŵv̂1 6= 0. A fortiori uwv 6= 0.
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6 Basics of K–theory

In this section we provide “hull-like” representations of the K0– and the
K1–groups associated to the nonstandard hull of an internal C∗–algebra. This
is not completely trivial because, in the ultraproduct setting, it is not true, in gen-
eral, that the K0–group of an ultraproduct of C∗–algebras is the model theoretic
ultraproduct of the K0–groups of the factors. Similarly for the K1–group. We give
a hull-like representation of the K1–group of a nonstandard hull by looking at the
original definition of K1 in terms of the notion of suspension.

We begin by recalling that if M is a concrete C∗-algebra (i.e. M ⊆ B(H)
for some Hilbert space H) and n ∈ N, the matrix algebra Mn(M) is naturally
isomorphic to B(Hn) (see [5, II.6.6]).

We fix an internal C∗–algebra M ⊆ B(H). By Transfer of the previous result,
we have that, for all N ∈ ∗

N, the matrix algebra MN(M) is naturally isomorphic
to B(HN).

We claim that, for n ∈ N, the nonstandard hull M̂n(M) is isomorphic to

Mn(M̂). Let A = (aij) ∈ Fin(Mn(M)). From ‖A‖ ≥
∥∥aij

∥∥ (see [5, II.6.6.3]), we

get aij ∈ Fin(M) for all 1 ≤ i, j ≤ n. Hence (âij) ∈ Mn(M̂). The map

ϕ : M̂n(M) → Mn(M̂)

(̂aij) 7→ (âij)

is an isomorphism. It is a just a matter of calculation to check the homomorphism
requirements. In particular,

ϕ(ÂB̂) = ϕ(ÂB) = ϕ((
n

∑
k=1

aikbkj)
∧) = (

n

∑
k=1

âik b̂kj),

where the rightmost equality follows from finiteness of all aik, bkj and from n ∈ N.

Therefore ϕ(ÂB̂) = ϕ(Â)ϕ(B̂). The identity ϕ((Â)∗) = (ϕ(Â))∗ follows from
(aij)

∗ = (aji
∗).

Moreover

ϕ(Â) = 0 ⇒ (âij) = (0) ⇒ aij ≈ 0 for all i, j ⇒ ‖A‖ ≈ 0,

where the rightmost implication follows from ‖A‖ ≤ ∑ij

∥∥aij

∥∥ . (Notice that the
assumption n ∈ N is crucial in the previous argument.) Injectivity implies that ϕ
is norm–preserving. Surjectivity is trivial.

In the following we shall identify M̂n(M) with Mn(M̂).

Let M be an ordinary (internal) C∗–algebra. Recall that we always work
with unital algebras. The idea of associating to M an abelian group K0(M)
marks the beginning of K–theory for C∗–algebras. See [5, V.1.1], from which we
borrow the notation. The algebra M∞(M) of matrices with finitely many (hyper-
finitely many, in the internal case) nonzero entries is a not necessarily complete
self–adjoint algebra that satisfies the C∗–axiom, and V(M) is the quotient set of
Proj(M∞(M)) with respect to the Murray-von Neumann equivalence relation ∼
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introduced at the beginning of Section 5. We denote by [p] the ∼-equivalence
class of projection p.

It turns out that (V(M),+, [0]) is an abelian semigroup, where + is given by
[p] + [q] = [p + q], for [p], [q] equivalence classes of orthogonal projections p, q re-
spectively. (The orthogonality condition is not restrictive. See [5].)
Finally, K0(M) is the enveloping group of the semigroup V(M). The definition
of K0(M) is more complicated when M is nonunital, as we shall see later.

From now on we assume that M is an internal concrete C∗–algebra of oper-
ators. This is not restrictive since what we are going to do extends to arbitrary
C∗–algebras by working with faithful representations of theirs.

For N ∈ ∗N, let ιN : MN(M) → M∞(M) be the embedding of MN(M)
into the upper-left corner of M∞(M). We shall also denote by ιn, n ∈ N, the

embedding of Mn(M̂) into the upper-left corner of M∞(M̂).
We let

V̂(M) =
⋃

n∈N+

{
[ιn(p̂)] : p ∈ Proj(Mn(M))

}
.

Keeping in mind the identification of M̂n(M) with Mn(M̂) described above,

it is easy to check that V̂(M) is, up to isomorphism, a subsemigroup of V(M̂).

Actually, let p ∈ Proj(M∞(M̂)). Then p = ιn(q), for some q ∈ Proj(Mn(M̂)).
By [24, Theorem 3.22], there exists r ∈ Proj(Mn(M)) such that r̂ = q. Then

p = ιn(r̂). It follows that V̂(M) is isomorphic to V(M̂). Thus the enveloping

group of V̂(M) yields an explicit description of K0(M̂). Recall that an element

of the enveloping group of V̂(M) can be formally written as [ιn(p̂)]− [ιn(q̂)], for
some n ∈ N and some p, q ∈ Proj(Mn(M)).

The above definition of V̂(M) is closely related to the generalized ultraprod-
uct used in [18, Theorem 4.1]. As such, it might be formulated in terms of yet
another generalization of the nonstandard hull construction. In [18], the author

claims that the latter applies only to get a description of K0(M̂) and that there

seem to be no general way of describing K1(M̂) as some generalized nonstan-

dard hull. Actually, we prove below that there is a representation of K1(M̂)

which closely follows that of K0(M̂) just introduced.

Before proving that, we make an aside remark: by means of similar arguments

to the above, one can also define a semigroup structure on the set V0(M̂∞(M))

of equivalence classes of projections in M̂∞(M). For let p̂ ∈ Proj(M̂∞(M)). Then
there exist N ∈ ∗N and A ∈ MN(M) such that A2 ≈ A; A∗ ≈ A and p = ιN(A).
By [24, Theorem 3.22] we can assume that A is a projection and, consequently,
that p is a projection.

Now let p = ιK(A) and q = ιN(B) be projections in M∞(M), for some
K, N ∈ ∗N and some A ∈ MK(M), B ∈ MN(M). We define [p̂] + [q̂] = [p̂ + q̂],
where, as mentioned above, we can assume without loss of generality that p̂ and
q̂ are orthogonal. It is straightforward to check that + is well defined.

Furthermore (V(M̂),+, [0]) isomorphically embeds into (V0(M̂∞(M)),+,

[0]). Actually, by the above argument, we have that p ∈ Proj(M∞(M̂)) can be
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written as p = ιn(r̂), for some r ∈ Proj(Mn(M)). The mapping [p] 7→ [ι̂n(r)]

yields a well defined embedding. In general, (V(M̂),+, [0]) is a proper subsemi-

group of (V0(M̂∞(M)),+, [0]), as the following example shows. It can be shown
that (V(C),+, [0]) ≃ (N,+, 0). On the other hand, it is not difficult to check that

̂ιM(IM) ∼ ̂ιN(IN) ⇔ ιM(IM) ∼ ιN(IN) ⇔ M = N,

where IK denotes the identity matrix in MK(
∗C). The first equivalence above

follows from [24, Theorem 3.22(viii)] and from [5, II.3.3.4]. The rightmost equiv-
alence holds by Transfer of the result true in the ordinary setting that, for all
m, n ∈ N, ιm(Im) ∼ ιn(In) if and only if m = n.

It follows by Saturation that V0(M̂∞( ∗C)) has uncountable external cardinal-
ity.

Let us deal with K1(M̂) now. In order to get a hull–like representation of

K1(M̂), where M is an internal unital C∗–algebra, we use the original definition
of K1 based on the notion of suspension.

Let us begin with an ordinary unital C∗–algebra M to fix the terminology
and the notation. The group K1(M) was originally defined as K0(SM), where
the suspension SM of M is the C∗–algebra C0(]0, 1[,M) of continuous func-
tions f : ]0, 1[→ M such that limx→0 f (x) = 0 = limx→1 f (x). Notice that SM
is nonunital.

In order to retain crucial functorial properties of the construction that hold in
the unital case, for instance: half exactness, one considers the unitization (SM)†

of SM (see [5, II.1.2]) and defines K1(M) as a subgroup of K0((SM)†), as done in
[5, V.1.1.17]. Notice that (SM)† can be identified with { f ∈ C([0, 1],M) : f (0) =
f (1) ∈ C1M}.

It turns out that K1(M) is isomorphic to the group of formal differences
[p]− [q], where

p, q ∈
⋃

n∈N+

ιn
(
Proj(Mn((SM)†))

)

satisfy the additional conditions pij(0) = pij(1) = qij(0) = qij(1) ∈ C1M, for all

i, j ∈ N, with the notion of equivalence of formal differences in K0((SM)†) that
comes from the definition of enveloping group.

If we apply the above to the nonstandard hull M̂ of an internal C∗–algebra M,

we see that, in order to present K1(M̂) in a nonstandard hull fashion, it suffices

to provide a “hull–like” description of Proj(Mn((SM̂)†)).

Our first step in that direction is to provide a suitable description of (SM̂)†.
Let C( ∗[0, 1],M) be the internal C∗–algebra of continuous functions

f : ∗[0, 1] → M and let

X = Fin({ f ∈ C( ∗[0, 1],M) : f is S–continuous and f (0) ≈ f (1) ≈ ∗
C1M}).

Recall that, for f , g ∈ X, f ≈ g means that ‖ f − g‖ ≈ 0. On the quotient

X̃ = X/≈ , we define the norm ‖ f≈‖ = ◦ ‖ f‖ , where f≈ denotes the ≈–equiva-
lence class of f ∈ X. One can associate to f≈ the continuous function

f̃ : [0, 1] → M̂, ◦x 7→ f̂ (x)
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which satisfies f̃ (0) = f̃ (1) ∈ C1M̂.
Conversely, by the same argument used in the second part of Proposition 11,

any g ∈ C([0, 1],M̂) with the property that g(0) = g(1) ∈ C1
M̂

can be lifted
to an internal S–continuous f : ∗[0, 1] → M such that f (0) ≈ f (1) ≈ ∗

C 1M.
Actually, there exists an internal continuous function h : ∗[0, 1] → M such that
h ≈ f : pick N ∈ ∗N \ N and let h be the internal piecewise linear function such
that h(i/N) = f (i/N) for all i ∈ ∗N, 0 ≤ i ≤ N.

The condition f ≈ h is ensured by the already mentioned fact that the supre-
mum of an internal set of infinitesimals is infinitesimal. Consequently, h is

S–continuous. Moreover h̃ = g.

It is not difficult to check that ‖ f≈‖ =
∥∥∥ f̃

∥∥∥ , for each f ∈ X. From now on we

identify (SM̂)† with X̃.
We let Mn(X)∼ be the set of equivalence classes

A≈ = {B ∈ Mn(X) : B ≈ A}, A ∈ Mn(X).

Notice that if A ∈ Mn(X) then A ∈ Fin(Mn(C( ∗[0, 1],M))). We define
‖A≈‖ = ◦ ‖A‖ . It is straightforward to check that Mn(X)∼ is an involution
algebra with respect to the operations defined on representatives of equivalence
classes. Moreover it satisfies the C∗–axiom.

Let ((Ak)≈)k∈N be a Cauchy sequence in Mn(X)∼ . By completeness of the

nonstandard hull N of Mn(C( ∗[0, 1],M)), we have (Âk)k∈N → Â, for some
A = (aij) ∈ Fin(Mn(C( ∗[0, 1],M)). In order to prove that Mn(X)∼ is a closed
subalgebra of N , it suffices to show that all aij, 1 ≤ i, j ≤ n, are S–continuous
and satisfy aij(0) ≈ aij(1) ≈ ∗C1M. As shown at the beginning of this section,

we can identify Â with (âij). Let 1 ≤ i, j ≤ n. From (Âk)k∈N → Â, we get that
(âkij)k∈N → âij, from which the required properties follow at once.

Hence Mn(X)∼ is a C∗–algebra. Let

ψ : Mn(X)∼ → Mn(X̃)
(aij)≈ 7→ (ãij)

It is straightforward to check that ψ is a well–defined isomorphism, hence∥∥(aij)≈
∥∥ =

∥∥(ãij)
∥∥ . Therefore Mn(X)∼ ≃ Mn(X̃). Remember that our aim is to

provide a “hull-like” description of Proj(Mn((SM)†)). Up to isomorphism, so far
we have:

Proj(Mn((SM)†)) = Proj(Mn(X̃)) = Proj(Mn(X)∼)

Finally, we claim that (Proj(Mn(X)))∼ = Proj(Mn(X)∼). Concerning the non-
trivial inclusion, let A = (aij) be such that [A] ∈ Proj(Mn(X)∼). Hence (aij) ≈

(aij)
∗ ≈ (aij)

2. Since Mn(X) ⊆ Mn(C( ∗[0, 1],M)), it follows from [24, Theorem
3.22] that there exists (bij) ∈ Proj(Mn(C( ∗[0, 1],M))) such that (bij) ≈ (aij). The
latter condition implies (bij) ∈ Mn(X), by definition of Mn(X).

Similarly to what we obtained for K0(M̂) we thus get a hull-like description

of K1(M̂): an element of K1(M̂) can be represented as a formal difference of
Murray-von Neumann equivalence classes [ιn(p̃)] − [ιn(q̃)], where
p, q ∈ Proj(Mn(X)) satisfy the condition pij(0) ≈ pij(1) ≈ qij(0) ≈ qij(1) ≈
∗C1M, for all 1 ≤ i, j ≤ n.
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