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Abstract

In this paper, some existence and multiplicity results involving eigenval-
ues are established for a class of degenerate quasilinear elliptic system by
using Ekeland’s variational principle, the mountain pass theorem and the
critical point theory.

1 Introduction

In this paper, we consider the problem





−div(h1(x)|∇u|p−2∇u) = λa(x)|u|p−2u + Fu(x, u, v) in Ω,
−div(h2(x)|∇v|q−2∇v) = µb(x)|v|q−2v + Fv(x, u, v) in Ω,
u = v = 0 on ∂Ω,

(1.1)

where Ω is a bounded smooth domain in R
N, 1 < p, q < N, λ, µ are non-negative

parameters, and F ∈ C1(Ω × R
2, R) satisfies

(F0) F(x, 0, 0) = 0 for all x ∈ Ω, there exist two constants s0, t0 > 0 such that
Fs(x, s, t) = Fs(x, s, t0) for all (x, s, t) ∈ Ω × R × (R\[−t0, t0]), Ft(x, s, t) =
Ft(x, s0, t) for all (x, s, t) ∈ Ω × (R\[−s0, s0])× R,
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and the growth condition:

lim
|s|→∞

Fs(x, s, t)

a(x)|s|p−1
= 0, lim

|t|→∞

Ft(x, s, t)

b(x)|t|q−1
= 0 (1.2)

uniformly in (x, t) ∈ Ω × R and (x, s) ∈ Ω × R respectively, where ∇F = (Fs, Ft)
stands for the gradient of F with respect to (s, t) ∈ R

2.
We observe that there exists a vast literature on non-uniformly nonlinear el-

liptic problems in bounded or unbounded domains. Many authors studied the
existence of solutions for such problems (equations or systems), for instance see
[5, 6, 7, 8, 9, 10, 14, 17, 18, 19, 21, 22]. In a recent paper Caldiroli et al. [5] consid-
ered the Dirichlet elliptic problem

−div(h(x)∇u) = λu + g(x, u) in Ω, (1.3)

where Ω is a (bounded or unbounded) domain in R
N (N ≥ 2), and h is a nonneg-

ative measurable weighted function that is allowed to have ”essential” zeroes at
some points in Ω, i.e., the function h can have at most a finite number of zeroes
in Ω.

The results in [5] were used by Zographopoulos [21], Zhang et al. [18] and
Chung et al. [7, 8, 9] to study the existence of solutions for a class of degenerate
elliptic systems.

In [1], Afrouzi et al. motivated by the paper of Ou and Tang [15], obtained
three solutions for problem (1.1) in the case h1 = h2 ≡ 1 as the parameters λ and
µ approach λ1 and µ1 from the left, respectively. Inspired by [1, 11, 13, 15, 20]
and [22], the goal of this paper is to prove some existence and multiplicity results
involving eigenvalues for a class of degenerate elliptic systems.

Let h1, h2 be positive weight functions a.e. in Ω such that

h1 ∈ L1
loc(Ω), h−s1

1 ∈ L1(Ω), s1 ∈
(N

p
, ∞
)
∩
[ 1

p − 1
, ∞
)

, (1.4)

h2 ∈ L1
loc(Ω), h−s2

2 ∈ L1(Ω), s2 ∈
(N

q
, ∞
)
∩
[ 1

q − 1
, ∞
)

. (1.5)

We define the spaces W
1,p
0 (Ω, h1), W

1,q
0 (Ω, h2) as being the completions of C∞

0 (Ω)
with respect to the norms defined by

‖u‖h1 ,p =

(∫

Ω
h1(x)|∇u|p dx

) 1
p

, ∀u ∈ C∞
0 (Ω),

‖v‖h2 ,q =

(∫

Ω
h2(x)|∇v|q dx

) 1
q

, ∀v ∈ C∞
0 (Ω)

respectively, and set H = W
1,p
0 (Ω, h1)×W

1,q
0 (Ω, h2). It is clear that H is a reflexive

Banach space under the norm

‖w‖H = ‖u‖h1 ,p + ‖v‖h2 ,q

for all w = (u, v) ∈ H.
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We recall some facts about the homogeneous degenerate eigenvalue problem

{
−div(h1(x)|∇u|p−2∇u) = λa(x)|u|p−2u in Ω,
u = 0 on ∂Ω,

(1.6)

where Ω is a bounded domain in R
N, 1 < p < N and h1 satisfies (1.4). With the

number s given in (1.4) we define

ps1
=

ps1

s1 + 1
, p∗s1

=
Nps1

N − ps1

=
Nps1

N(s1 + 1)− ps1
> p.

In this paper, we assume that the coefficient function a satisfies

meas{x ∈ Ω : a(x) > 0} > 0, a ∈ L
r1

r1−p (Ω), for some p < r1 < p∗s1
.

The authors in [13] established the existence of sequence of positive eigenvalues
{λk}k∈N where λk determined by the following way. Let

M1 =

{
u ∈ W

1,p
0 (Ω, h1) :

∫

Ω
a(x)|u|p dx = 1

}
,

I1(u) =
∫

Ω
h1(x)|∇u|p dx, u ∈ W

1,p
0 (Ω, h1).

Then we get
λk = inf

A1∈∑k

sup
u∈A1

I1(u), (1.7)

where ∑k = {A1 ⊂ M1 : there exists a continuous, odd and surjective
γ1 : Sk−1 → A1} and Sk−1 denotes the unit sphere in R

k, λk → ∞ as k → ∞.
It has been proved in [11, Chapter 3] that the principal eigenvalue λ1 is simple
and isolated and all eigenfunctions corresponding to λ1 do not change sign in Ω.
It is obvious that

λ1 = inf
u∈M1

I1(u),

which implies that

∫

Ω
h1(x)|∇u|p dx ≥ λ1

∫

Ω
a(x)|u|p dx, ∀u ∈ W

1,p
0 (Ω, h1). (1.8)

Besides, the corresponding normalized eigenfunction ϕ1 belongs to W
1,p
0 (Ω, h1).

Similarly, we consider the eigenvalue problem

{
−div(h2(x)|∇v|q−2∇v) = µb(x)|v|q−2v in Ω,
v = 0 on ∂Ω.

(1.9)

Where h2 satisfies condition (1.5), meas{x ∈ Ω : b(x) > 0} > 0, b ∈ L
r2

r2−q (Ω)

for some q < r2 < q∗s2
where q∗s2

= Nqs2

N(s2+1)−qs2
> q. Let

M2 =

{
v ∈ W

1,q
0 (Ω, h2) :

∫

Ω
b(x)|v|q dx = 1

}
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and

I2(v) =
∫

Ω
h2(x)|∇v|q dx, v ∈ W

1,q
0 (Ω, h2).

By a standard argument, problem (1.9) has a sequence of eigenvalues with the
variational characterization

µk = inf
A2∈∑

′
k

sup
v∈A2

I2(v), (1.10)

where ∑
′
k = {A2 ⊂ M2 : there exists a continuous, odd and surjective γ2 : Sk−1 →

A2} and µk → ∞ as k → ∞. We also have

µ1 = inf
v∈M2

I2(v),

which implies that

∫

Ω
h2(x)|∇v|q dx ≥ µ1

∫

Ω
b(x)|v|q dx, ∀v ∈ W

1,q
0 (Ω, h2). (1.11)

Besides, the corresponding normalized eigenfunction ψ1 belongs to W
1,q
0 (Ω, h2).

Let

W ′ =

{
w = (u, v) ∈ H :

∫

Ω
a(x)|ϕ1|

p−2ϕ1u dx = 0

and
∫

Ω
b(x)|ψ1|

q−2ψ1v dx = 0

}
.

We can easily prove that W ′ is complementary subspace of W = 〈ϕ1〉 × 〈ψ1〉.
Therefore, we have the following direct sum

H = W ⊕ W ′.

Now we are ready to state our main results.

Theorem 1.1. Suppose that the nonlinearity F satisfies the conditions (F0), (1.2) and

lim
|s|, |t|→∞

F(x, sϕ1, tψ1) = ∞ (1.12)

uniformly in x ∈ Ω. Then for any λ < λ1 and µ < µ1 sufficiently close to λ1 and µ1,
problem (1.1) has at least three solutions.

Theorem 1.2. Suppose that the nonlinearity F satisfies satisfies the conditions (F0), (1.2)
and

lim
|(s,t)|→∞

(
1

p
Fs(x, s, t)s +

1

q
Ft(x, s, t)t − F(x, s, t)

)
dx = −∞. (1.13)

Then for λk < λ < λk+1, µk < µ < µk+1 and also for the case λ = λk, µ = µk, problem
(1.1) has at least one solution.



A class of degenerate quasilinear elliptic systems 773

2 Preliminaries

For each λ, µ ∈ R, let I : H → R be the functional defined by

Iλ,µ(u, v) =
1

p

∫

Ω
h1(x)|∇u|p dx +

1

q

∫

Ω
h2(x)|∇v|p dx −

λ

p

∫

Ω
a(x)|u|p dx

−
µ

q

∫

Ω
b(x)|v|q dx −

∫

Ω
F(x, u, v) dx. (2.1)

Since the potential F satisfies (1.2), it follows that Iλ,µ ∈ C1(H, R) and its deriva-
tive is

I ′λ,µ(u, v)(η1 , η2) =
∫

Ω
h1(x)|∇u|p−2∇u · ∇η1 dx +

∫

Ω
h2(x)|∇v|q−2∇v · ∇η2 dx

− λ
∫

Ω
a(x)|u|p−2uη1 dx − µ

∫

Ω
b(x)|v|q−2vη2 dx

−
∫

Ω
Fu(x, u, v)η1 dx −

∫

Ω
Fv(x, u, v)η2 dx

for all (u, v), (η1, η2) ∈ H. In addition, (u, v) ∈ H is a weak solution of prob-
lem (1.1) if and only if (u, v) is a critical point of Iλ,µ. It is well known that the
following lemma holds.

Lemma 2.1 (see [22]). Assume that Ω is a bounded domain in R
N and the weight h

satisfies

h ∈ L1
loc(Ω), h−s ∈ L1(Ω), s ∈

(N

p
, ∞
)
∩
[ 1

p − 1
, ∞
)

.

Then the following embeddings hold true

(i) W
1,p
0 (Ω, h) →֒ Lp∗s (Ω) continuously for 1 < p∗s < N;

(ii) W
1,p
0 (Ω, h) →֒ Lr(Ω) compactly for r ∈ [1, p∗s ).

Putting

U :=

{
u ∈ W

1,p
0 (Ω, h1) :

∫

Ω
a(x)|ϕ1 |

p−2ϕ1u dx = 0

}
,

V :=

{
v ∈ W

1,q
0 (Ω, h2) :

∫

Ω
b(x)|ψ1|

q−2ψ1v dx = 0

}
.

Then U and V are closed subspaces and they hold that

W
1,p
0 (Ω, h1) = U ⊕ 〈φ1〉, W

1,q
0 (Ω, h2) = V ⊕ 〈ψ1〉.

Proposition 2.2. Set

λ = inf
u∈U\{0}

‖u‖
p
h1 ,p∫

Ω
a(x)|u|p dx

, µ = inf
v∈V\{0}

‖v‖
q
h2,q∫

Ω
b(x)|v|q dx

.

Then we have λ1 < λ and µ1 < µ, where λ1 and µ1 are defined above.
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Proof. Indeed, we argue by contradiction. Since λ1 ≤
‖u‖

p
h1,p∫

Ω
a(x)|u|p dx

holds for each

u 6= 0, we assume that λ1 = λ, i.e.

λ = inf
u∈W

1,p
0 (Ω,h1)\{0}

‖u‖
p
h1 ,p∫

Ω
a(x)|u|p dx

.

Then, we may suppose that there exist a sequence {un}n ⊂ U and u ∈ W1,p(Ω, h1)
such that

∫

Ω
a(x)|un |

p dx = 1, lim
n→∞

‖un‖
p
h1,p = λ, un ⇀ u ∈ W

1,p
0 (Ω, h1),

and thus un → u strongly in Lp(Ω).
Since U is closed and un converges strongly to u in Lp(Ω), we get u ∈ U and∫

Ω
a(x)|u|pdx = 1 holds. Using weak lower semicontinuity of the norm and the

variational characterization of λ1, we get

λ1 ≤ ‖u‖
p

W
1,p
0

≤ lim
n→∞

inf ‖un‖
p

W
1,p
0

= λ = λ1,

which implies that u = ±ϕ1. This contradicts ±ϕ1 6∈ U. Analogously, we can
prove that µ1 < µ.

In what follows, we recall some basic definitions and results to prove our
theorems.

Definition 2.3. The functional I is said to satisfy the Palais-Smale condition at
level c, (PS)c , if every sequence for which

I(wn) → c, ‖I ′(wn)‖H∗ → 0,

possesses a convergent subsequence. When I satisfies (PS)c , for all c ∈ R, we
simply say that I satisfies the (PS) condition.

Definition 2.4. The functional I satisfies (Ce)c condition at level c ∈ R if any
sequence {wn} ⊂ H such that

I(wn) → c, (1 + ‖wn‖H)‖I ′(wn)‖H∗ → 0 as n → ∞,

has a convergent subsequence. The functional I satisfies (Ce) condition if I
satisfies (Ce)c at any c ∈ R. The (Ce) condition was introduced by Cerami, it
is a weaker version of the (PS) condition (see [4]).

Definition 2.5 (see [16]). Let Q, Q0 be submanifolds of a Banach space X with
Q0 ⊂ Q, S be a closed subset of a Banach space Y and Γ ⊂ C0(Q0, Y\S). We say S
and (Q, Q0) are Γ− linking if for any map h ∈ C0(Q, Y) such that h|Q0

∈ Γ there
holds h(Q) ∩ S 6= ∅.

Lemma 2.6 (see [20]). Suppose that X, Y are Banach spaces. Consider submanifolds
Q, Q0 ⊂ X with Q0 ⊂ Q and a closed subset S ⊂ Y such that (Q, Q0) and S are
Γ− linking. Let Γ∗ = {γ ∈ C0(Q, Y) : γ|Q0

∈ Γ}. For f ∈ C1(Y, R) satisfies
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(1) ∃γ0 ∈ Γ∗ such that supx∈Q f (γ0(x)) < +∞;

(2) ∃β > α such that infy∈S f (y) ≥ β and supx∈Q0
f (γ(x)) ≤ α for γ ∈ Γ∗;

(3) f satisfies the (Ce) condition.

Then, the number c := infγ∈Γ∗ supx∈Q f (γ(x)) defines a critical value c ≥ β of f .

For the proof of Lemma 2.6 we refer the readers to [20].

3 Proofs of the main results

3.1 Proof of Theorem 1.1.

We will prove Theorem 1.1 by using Ekeland’s variational principal and the moun-
tain pass theorem. More precisely, the proof will be divided into four steps.

Step 1. For λ < λ1 and µ < µ1, the functional Iλ,µ is coercive in H, Iλ,µ is
bounded from below on W ′ and there is a constant m, independent of λ, µ, such
that infW ′ Iλ,µ ≥ m.

From the conditions (F0), (1.2) and the continuity of the potential F, for any
ε > 0, there exists a positive constant Mε = M(ε) such that

∣∣∣∣
∂F

∂s
(x, s, t)

∣∣∣∣ ≤ εa(x)|s|p−1 + Mǫ,

∣∣∣∣
∂F

∂t
(x, s, t)

∣∣∣∣ ≤ εb(x)|t|q−1 + Mǫ

for all (x, s, t) ∈ Ω × R
2. By Hölder’s inequality, we have

F(x, u, v) =
∫ u

0

∂F

∂s
(x, s, v) ds + F(x, 0, v)

=
∫ u

0

∂F

∂s
(x, s, v) ds +

∫ v

0

∂F

∂s
(x, 0, s) ds + F(x, 0, 0)

≤
∫ u

0
(εa(x)|s|p−1 + Mε) ds +

∫ v

0
(εb(x)|s|q−1 + Mε) ds

=
ε

p
a(x)|u|p + Mεu +

ε

q
b(x)|v|q + Mεv

for all (u, v) ∈ H. Hence,

∣∣∣∣
∫

Ω
F(x, u, v) dx

∣∣∣∣ ≤
∫

Ω
|F(x, u, v)| dx

≤ ǫ

(
1

p

∫

Ω
a(x)|u|p dx +

1

q

∫

Ω
b(x)|v|q dx

)
+ Mǫ

∫

Ω
u dx + Mǫ

∫

Ω
v dx

≤
ǫ

pλ1

∫

Ω
h1(x)|∇u|p dx +

ǫ

qµ1

∫

Ω
h2(x)|∇v|q dx

+ Mε|Ω|
p−1

p S1

(∫

Ω
h1(x)|∇u|p dx

) 1
p

+ Mε|Ω|
q−1

q S2

(∫

Ω
h2(x)|∇v|q dx

) 1
q
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≤
ε

pλ1

∫

Ω
h1(x)|∇u|p dx +

ε

qµ1

∫

Ω
h2(x)|∇v|q dx

+ C1

[(∫

Ω
h1(x)|∇u|p dx

) 1
p

+

(∫

Ω
h2(x)|∇v|q dx

) 1
q

]
,

(3.1)

where S1, S2 are the embedding constants of W
1,p
0 (Ω, h1) →֒ Lp(Ω), W

1,q
0 (Ω, h2) →֒

Lq(Ω), respectively and C1 = max{Mε|Ω|
p−1

p S1, Mε|Ω|
q−1

q S2}.

For λ < λ1 and µ < µ1, from the definition of λ1, µ1 and (3.1), we get

Iλ,µ(u, v) =
1

p

∫

Ω
h1(x)|∇u|p dx +

1

q

∫

Ω
h2(x)|∇v|q dx −

λ

p

∫

Ω
a(x)|u|p dx

−
µ

q

∫

Ω
b(x)|v|q dx −

∫

Ω
F(x, u, v) dx

≥
1

p

(
1 −

λ

λ1
−

ε

λ1

) ∫

Ω
h1(x)|∇u|p dx

+
1

q

(
1 −

µ

µ1
−

ǫ

µ1

) ∫

Ω
h2(x)|∇v|q dx − C1‖(u, v)‖H .

Letting ε = min{λ1−λ
2 ,

µ1−µ
2 }, it follows that Iλ,µ is coercive in H.

Similarly, from Proposition 2.2 we obtain

Iλ,µ(u, v) ≥
1

p

(
1 −

λ

λ
−

ε

λ1

) ∫

Ω
h1(x)|∇u|p dx

+
1

q

(
1 −

µ

µ
−

ε

µ1

) ∫

Ω
h2(x)|∇v|q dx − C1‖(u, v)‖H

≥
1

p

(
1 −

λ1

λ
−

ε

λ1

) ∫

Ω
h1(x)|∇u|p dx

+
1

q

(
1 −

µ1

µ
−

ε

µ1

) ∫

Ω
h2(x)|∇v|q dx − C1‖(u, v)‖H .

Let ε = 1
2 min

{
λ1(1 −

λ1

λ
), µ1(1 −

µ1
µ )
}

. Hence Iλ,µ is coercive in W and Iλ,µ is

bounded from below on W ′, and moreover, there is a constant m, independent of
λ, µ, such that infW ′ Iλ,µ ≥ m.

Step 2. If λ < λ1 and µ < µ1 are sufficiently close to λ1, µ1, we have t−1 < 0 <

t+1 , t−2 < 0 < t+2 such that Iλ,µ(t
±
1 ϕ1, t±2 ψ1) < m.
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For λ < λ1 and µ < µ1, we have

Iλ,µ(t
+
1 ϕ1, t+2 ψ1) =

t+1
p

p

∫

Ω
h1(x)|∇ϕ1|

p dx +
t+2

q

q

∫

Ω
h2(x)|∇ψ1|

q dx

− λ
t+1

p

p

∫

Ω
a(x)|ϕ1 |

p dx

− µ
t+2

p

q

∫

Ω
b(x)|ψ1|

q dx −
∫

Ω
F(x, t+1 ϕ1, t+2 ψ1) dx

=
t+1

p

p

∫

Ω
h1(x)|∇ϕ1|

p dx +
t+2

q

q

∫

Ω
h2(x)|∇ψ1|

qdx

−
λ

pλ1
t+1

p
∫

Ω
h1(x)|∇ϕ1|

p dx

−
µt+2

q

qµ1

∫

Ω
h2(x)|∇ψ1|

q dx −
∫

Ω
F(x, t+1 ϕ1, t+2 ψ1) dx.

(3.2)

From Fatou’s Lemma and condition (1.12), we get

∫

Ω
F(x, t+1 ϕ1, t+2 ψ1) dx > −m + 1. (3.3)

For λ1 −
pλ1

2t
p
1

< λ < λ1 and µ1 −
qµ1

2t
q
2

< µ < µ1, combining (3.2) and (3.3) yields

Iλ,µ(t
+
1 ϕ1, t+2 ψ1) < m. A similar condition holds for t−1 , t−2 < 0.

Step 3. If λ < λ1 and µ < µ1 the functional Iλ,µ satisfies the (PS) condition.
If {wn} = {(un, vn)} is a (PS) sequence of Iλ,µ, {(un, vn)} must be bounded.

Then passing to a subsequence if necessary, there exists w = (u, v) ∈ H such that

(un, vn) ⇀ (u, v) weakly in H,

(un, vn) → (u, v) strongly in Lp(Ω)× Lq(Ω).

So there exists a strictly decreasing subsequence εn, limn→∞ εn = 0 such that

|I ′λ,µ(un, vn)(un − u, 0)| ≤ εn‖(un − u, 0)‖H .

In particular,

∣∣∣
∫

Ω
h1(x)|∇un |

p−2∇un∇(un − u) dx − λ
∫

Ω
a(x)|un |

p−2un(un − u) dx

−
∫

Ω
Fu(x, un, vn)(un − u) dx

∣∣∣ ≤ εn‖(un − u, 0)‖H . (3.4)

Since un → u in Lp(Ω) and vn → v in Lq(Ω), we have

∫

Ω
a(x)|un |

p−2un(un − u) dx ≤ ‖a‖ r1
r1−p

(∫

Ω
|un|

r1 dx

) p−1
r1
(∫

Ω
|un − u|r1 dx

) 1
r1

,

(3.5)
which approaches 0 as n → ∞.
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Since the potential F satisfies (1.2) we have

∣∣∣∣
∫

Ω
Fu(x, un, vn)(un − u) dx

∣∣∣∣ ≤
∣∣∣∣
∫

Ω
(εa(x)|un |

p−1 + Mε)(un − u) dx

∣∣∣∣

≤ ε‖a‖ r1
r1−p

‖un‖
p−1
r1

‖un − u‖r1
dx + Mε|Ω|

p−1
p ‖un − u‖p, (3.6)

which approaches 0 as n → ∞.
Combining (3.4) with (3.5) and (3.6) we get

lim
n→∞

∫

Ω
h1(x)|∇un|

p−2∇un(∇un −∇u) dx = 0.

Subtracting ∫

Ω
h1(x)|∇u|p−2∇u(∇un −∇u) dx,

which converges to zero as n tends to infinity, we conclude that

lim
n→∞

∫

Ω
h1(x)(|∇un |

p−2∇un − |∇u|p−2∇u)(∇un −∇u) dx = 0. (3.7)

Next, we recall the following useful inequalities:

{
(|ξ|p−2ξ − |η|p−2η, ξ − η) ≥ C2(|ξ| + |η|)p−2|ξ − η|2, if 1 < p < 2,
(|ξ|p−2ξ − |η|p−2η, ξ − η) ≥ C2|ξ − η|p, if p ≥ 2

(3.8)

for all ξ, η ∈ R
N, where C2 is a positive constant and (., .) denotes the usual

product in R
N.

As in [2], if 1 < p < 2, by Hölder’s inequality and substituting zn = h
1
p

1 un,

z = h
1
p

1 u in system (3.8), there exists C3, C4 > 0 such that

0 ≤
∫

Ω
|∇zn −∇z|p dx

=
∫

Ω
|∇zn −∇z|p(|∇zn|+ |∇z|)

p(p−2)
2 (|∇zn|+ |∇z|)

p(2−p)
2 dx

≤

(∫

Ω
|∇zn −∇z|2(|∇zn|+ |∇z|)p−2 dx

) p
2
(∫

Ω
(|∇zn|+ |∇z|)p dx

) 2−p
2

≤ C3

(∫

Ω
(|∇zn|

p−2∇zn − |∇z|p−2∇z, (∇zn −∇z) dx

) p
2

(∫

Ω
(|∇zn|+ |∇z|)p dx

) 2−p
2

≤ C4

(∫

Ω
(|∇zn|

p−2∇zn − |∇z|p−2∇z, (∇zn −∇z) dx

) p
2

which implies ‖un − u‖h1 ,p → 0 as n → ∞.
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If p ≥ 2, by (3.8), there exists C5 > 0 such that

0 ≤ ‖un − u‖h1 ,p ≤ C5

(∫

Ω
(|∇zn|

p−2∇zn − |∇z|p−2∇z, (∇zn −∇z) dx

)
,

so we get ‖un − u‖h1 ,p → 0 as n → ∞. Therefore, ‖un − u‖h1 ,p → 0 for

p > 1 as n → ∞, that is, un → u in W
1,p
0 (Ω, h1) as n → ∞. Similarly, we obtain

vn → v in W
1,q
0 (Ω, h2) as n → ∞. Consequently, the functional Iλ,µ satisfies the

(PS) condition for all λ < λ1, µ < µ1.
In addition, let

∑
±

=
{

w ∈ H : w = ±(t1 ϕ1, t2ψ1) + w′ with t1, t2 > 0 and w′ ∈ W ′
}

.

Then Iλ,µ satisfies (PS)c,∑+
and (PS)c,∑−

for all c < m.
Let {wn} ⊂ ∑+ satisfies Iλ,µ(wn) → c < m and I ′λ,µ(wn) → 0 an n → ∞.

Since Iλ,µ is coercive and the potential F satisfies (2), there is w ∈ H such that
‖wn‖H → ‖w‖H strongly in H. If w ∈ ∂ ∑+ = W ′, since infW ′ Iλ,µ ≥ m, we get
Iλ,µ(wn) → c ≥ m, which is impossible. Hence w ∈ ∑+ and Iλ,µ satisfies the
(PS)c,∑+

condition. Similarly we have that (PS)c,∑−
holds for all c < m.

Step 4. If λ < λ1 is sufficiently close to λ1 and µ < µ1 is sufficiently close to
µ1, we get

−∞ < inf
∑±

Iλ,µ < m,

which implies that Iλ,µ is bounded below in ∑+. Consequently, from Ekeland’s
variational principle, there exists {wn} ⊂ ∑+ such that Iλ,µ(wn) → inf∑±

Iλ,µ

and I ′λ,µ(wn) → 0 as n → ∞. Since Iλ,µ satisfies (PS)c,∑+
for all c < m, there is

z+ ∈ ∑+ such that Iλ,µ(w
+) = inf∑+

Iλ,µ, that is, the infimum is attained in ∑+.
A similar conclusion holds in ∑−. So Iλ,µ has two distinct critical points, denoted

by w+, w−. As in [15], we can obtain the third critical point z of Iλ,µ by applying
mountain pass theorem such that Iλ,µ(w) = c ≥ m.

3.2 Proof of Theorem 1.2.

We will verify the functional Iλ,µ satisfying the condition of Lemma 2.6. We first
verify the Cerami condition.

Let {wn} = {(un, vn)} ⊂ H be a (Ce) sequence. we first prove that {wn}
is bounded in H, then by a standard argument, {wn} has a convergent subse-
quence. Supposing by contradiction that ‖wn‖H → ∞, and defining ûn = un

‖wn‖H
,

v̂n = vn
‖wn‖H

, then ŵn = (ûn, v̂n) is bounded in H and

‖ûn‖h1,p + ‖v̂n‖h2,q = 1

for every n ∈ N. Going if necessary to a subsequence, also denoted by {(ûn, v̂n)},
there is ŵ = (û, v̂) ∈ H such that

(ûn, v̂n) ⇀ (û, v̂) weakly in H,

(ûn, v̂n) → (û, v̂) strongly in Lp(Ω)× Lq(Ω).
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We have

|〈I ′λ,µ(ûn, v̂n), (ûn − û, 0)〉| ≤ ‖I ′λ,µ(ûn, v̂n)‖H∗‖ûn − û‖h1 ,p

≤ ‖I ′λ(ûn, v̂n)‖H∗(‖ûn‖h1,p + ‖û‖h1,p),
(3.9)

which approaches 0 as n → ∞. Since ûn → û in Lp(Ω), v̂n → v̂ in LqΩ), we have

lim
n→∞

∫

Ω
a(x)|ûn |

p−2ûn(ûn − û) dx = 0 (3.10)

and

lim
n→∞

∫

Ω
Fu(x, ûn, v̂n)(ûn − û) dx = 0. (3.11)

By using

〈I ′λ,µ(ûn, v̂n), (ûn − û, 0)〉 =
∫

Ω
h1(x)|∇ûn|

p−2∇ûn∇(ûn − û) dx

− λ
∫

Ω
a(x)|ûn |

p−2ûn(ûn − û) dx −
∫

Ω
Fu(x, ûn, v̂n)(ûn − û) dx

and relations (3.9), (3.10) and (3.11), we obtain

lim
n→∞

∫
h1(x)(|∇ûn |

p−2∇un − |∇û|p−2∇û)(∇ûn −∇û) dx = 0.

Substituting ξ = h
1
p

1 ûn, η = h
1
p

1 û in system (3.8), we get ‖ûn − û‖h1 ,p → 0 as
n → ∞, then ‖ûn‖h1,p → ‖û‖h1,p as n → ∞. In a similar way, we get ‖v̂n‖h2,q →
‖v̂‖h2,q as n → ∞. It follows that ‖û‖h1,p + ‖v̂‖h2 ,q = 1. Hence (û, v̂) 6= (0, 0).
Consequently, we conclude that |(un(x), vn(x))| → ∞ as n → ∞ for a.e. x ∈ Ω.
On the other hand, we have

Iλ,µ(un, vn)− I ′λ,µ

(un

p
,

vn

q

)
=

∫

Ω

( 1

p
Fu(x, un, vn)un +

1

q
Fv(x, un, vn)vn − F(x, un, vn)

)
dx → c

as n → ∞, which contradicts (1.13). Hence, {(un, vn)} is bounded in H. By a
standard argument, {(un, vn)} has a convergent subsequence.

Now, we are in the position to prove Theorem 1.2. We will split the proof into
two cases according to the positions of λ, µ.

Case 1: λk < λ < λk+1, µk < µ < µk+1. In this case we will apply Lemma
2.6 to get solutions of problem (1.1). It follows from definition of λk and µk

there exist A1 ∈ ∑k and A2 ∈ ∑
′
k such that supu∈A1

I1(u) = m1 ∈ (λk , λ) and

supv∈A2
I2(v) = m2 ∈ (µk, µ) respectively.

From (3.1) and the definition of the functional Iλ,µ, we deduce for any
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(u, v) ∈ A1 × A2 and t > 0 that

Iλ,µ(t
1
p u, t

1
q v) ≤

t

p

∫

Ω
h1(x)|∇u|p dx +

t

q

∫

Ω
h2(x)|∇v|q dx −

tλ

p

∫

Ω
a(x)|u|p dx

−
tµ

q

∫

Ω
b(x)|v|q dx +

∣∣∣∣
∫

Ω
F(x, t

1
p u, t

1
q v) dx

∣∣∣∣

≤
t

p
(m1 − λ) +

t

q
(m2 − µ) + t

(
ε

pλ1
m1 +

ε

qµ1
m2

)

+ C1t
1
p m

1
p

1 + C1t
1
q m

1
q

2 .

(3.12)

For each k, we set

Fk+1 =

{
u ∈ W

1,p
0 (Ω, h1) :

∫

Ω
h1(x)|∇u|p dx ≥ λk+1

∫

Ω
a(x)|u|p dx

}
,

F′
k+1 =

{
v ∈ W

1,q
0 (Ω, h2) :

∫

Ω
h2(x)|∇v|q dx ≥ µk+1

∫

Ω
b(x)|v|q dx

}
.

For (u, v) ∈ Fk+1 × F′
k+1, we have

Iλ,µ(u, v) ≥

(
1

p
−

λ

pλk+1
−

ǫ

pλ1

) ∫

Ω
h1(x)|∇u|p dx

+

(
1

q
−

µ

qµk+1
−

ε

qµ1

) ∫

Ω
h2(x)|∇v|q dx

− C1

(∫

Ω
h1(x)|∇u|p dx

) 1
p

− C1

(∫

Ω
h2(x)|∇v|q dx

) 1
q

. (3.13)

Taking

ε =
1

2
min

{
λ1(λk+1 − λ)

λk+1
,

µ1(µk+1 − µ)

µk+1
,
(λ − m1)λ1

m1
,
(µ − m2)µ1

m2

}
,

we get from (3.12) and (3.13) that

β := inf
(u,v)∈Fk+1×F′

k+1

Iλ,µ(u, v) (3.14)

and there exists T > 0 such that

α := max
(u,v)∈A1×A2: t≥T

Iλ,µ(t
1
p u, t

1
q v) < β. (3.15)

Now let
TA := {(tu, tv) : (u, v) ∈ A1 × A2, t ≥ T} .

Set Q = Bk (Bk represents the closed unit ball in R
k), ∂Q = Sk−1, and

Γ = {γ ∈ C0(Sk−1, H) : γ is odd and γ(Sk−1) ⊂ TA}.
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For any γ ∈ Γ, by (3.14), (3.15) we obtain

γ(Sk−1) ∩ (Fk+1 × F′
k+1) = ∅,

which shows that
Γ ⊂ C(Sk−1, H\(Fk+1 × F′

k+1)).

Let Γ∗ = {γ ∈ C0(Bk, H) : γ|Sk−1 ∈ Γ}. Then Γ∗ is nonempty.
We prove that if γ ∈ Γ∗ then γ(Bk)∩ (Fk+1 × F′

k+1) 6= ∅ . In fact, by the definition

of ∑k, ∑
′
k there exist continuous odd surjections γ1 : Sk−1 → A1, γ2 : Sk−1 → A2.

So we can define γ : Sk−1 → A1 × A2 by γ = (γ1, γ2). Define γ : Bk → H by
γ(ts) = tTγ(s) for any s ∈ Sk−1 and any t ∈ [0, 1]. Thus γ ∈ Γ∗. If there exists
(u, v) ∈ γ(Bk) such that

∫

Ω
a(x)|u|pdx = 0,

∫

Ω
b(x)|v|q dx = 0,

then we get γ(Bk) ∩ (Fk+1 × F′
k+1) 6= ∅.

Otherwise, we consider the map γ̂ : Sk → E by

γ̂(x1, ..., xk+1) =

{
π ◦ γ(x1, ..., xk), for xk+1 ≥ 0,

−π ◦ γ(−x1, ...,−xk), for xk+1 < 0,
(3.16)

where

π(u, v) =

(
u∫

Ω
a(x)|u|pdx

,
v∫

Ω
b(x)|v|q dx

)
.

We can easily show that γ̂ is odd. Hence γ̂(Sk) = (γ̂1(S
k), γ̂2(S

k)) ∈ ∑k × ∑
′
k. On

the other hand, we have,

λk+1 = inf
A1∈∑k

sup
u∈A1

I1(u)

then
λk+1 ≤ sup

u∈γ̂1(Sk)

I1(u).

Hence for u ∈ γ̂1(S
k), that is, for some x ∈ Sk−1 such that u = γ̂1(x) we have

λk+1 ≤ I1(u). This implies that γ̂1(x) ∈ Fk+1. Using the definition of γ̂1, we
Obtain that γ1(x) ∈ Fk+1. In a similar way we Obtain that γ2(x) ∈ F′

k+1. So

γ(Bk) ∩ {Fk+1 × F′
k+1} 6= ∅. Hence Sk and Fk+1 × F′

k+1 are Γ− linking. The con-
ditions of Lemma 2.6 are satisfied. So Theorem 1.2 holds for any λk < λ < λk+1,
µk < µ < µk+1 with the critical value

c := inf
γ∈Γ∗

sup
x∈Bk

Iλ,µ(γ(x)).

Case 2: λ = λk, µ = µk. Let δ1 ∈ (0, λk+1 − λk), δ2 ∈ (0, µk+1 − µk), we as-
sume κn ∈ (λk, λk + δ1), τn ∈ (µk, µk + δ2) and κn → λk, τn → µk. It follows
from the case λk < λ < λk+1, µk < µ < µk+1 that there exists cn to be the criti-
cal value of Iκn,τn and (un, vn) be the critical point corresponding to cn satisfying
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I ′κn,τn
(un, vn) = 0 for any n. Thus, for any (τn, κn) there exists a corresponding set

Γ∗
n such that the critical value cn is characterized by

cn := inf
γ∈Γ∗

n

sup
x∈Bk

Iκn ,τn(γ(x)).

For (u, v) ∈ Fk+1 × F′
k+1, let

ε = min

{
(λk+1 − λk − δ1)λ1

2λk+1
,
(µk+1 − µk − δ2)µ1

2µk+1

}
,

we obtain

Iκn ,τn(u, v) ≥
1

p

(
1 −

κn

λk+1
−

ε

λ1

)
‖u‖

p
h1 ,p +

1

q

(
1 −

τn

µk+1
−

ε

µ1

)
‖v‖

q
h2 ,q

− C1

(
‖u‖h1 ,p + ‖v‖h2,q

)

≥
1

p

(
1 −

λk + δ1

λk+1
−

ε

λ1

)
‖u‖

p
h1 ,p +

1

q

(
1 −

µk + δ2

µk+1
−

ε

µ1

)
‖v‖

q
h2,q

− C1

(
‖u‖h1 ,p + ‖v‖h2,q

)
,

which implies that there exists β0 > 0 such that

sup
x∈Bk

Iκn,τn(γ(x)) ≥ sup
(u,v)∈γ(Bk)∩(Fk+1×F′

k+1)

Iκn ,τn(γ(x))

≥ inf
(u,v)∈Fk+1×F′

k+1

Iκn ,τn(γ(x))

≥ β0

for all γ ∈ Γ∗
n. Then one has cn ≥ β0, we get that there exists a subsequence of

critical points (un, vn) which converges to the desired critical point of Iλk,µk
.
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