
On boundary value problems for perturbed

Hermitean matrix Dirac equations in a fractal

domain

Ricardo Abreu Blaya Juan Bory Reyes

Abstract

We apply Hermitean circulant (2× 2) matrix function theoretic results for
direct account of the jump and Dirichlet type boundary value problems for
solutions of perturbed Hermitean matrix Dirac equations in the case where
the boundary of the considered domains is fractal.

1 Introduction

Euclidean Clifford analysis offers a function theory with the Dirac operator, which
is an elegant generalization to higher dimensions of holomorphic functions in the
complex plane. The best standard reference here is [6]. More recently Hermitean
Clifford analysis emerged as a refinement of the Euclidean setting in the case of
R2n; it focuses on the concept of h-monogenic functions, i.e. null solutions of
two complex Hermitean Dirac operators, which are invariant under the action of
the unitary group. For a treatment of this function theory, we refer the reader
for instance to [7, 8, 9, 22]. Let us mention that holomorphic functions of several
complex variables are a special case of Hermitian monogenic functions. In the
recent papers [1, 2, 3, 4, 10, 11], the Hermitean Clifford analysis setting was
further developed by following a circulant (2 × 2) matrix framework.
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From both, mathematical convenience and physical relevancy, in the Eucli-
dean Clifford algebras-based approach, there has been a great deal of activity in
the study of a function theory associated to the perturbed Dirac operator, which
components are annihilated by the Helmholtz operator. For basic results in this
matter, we refer to [5, 14, 21, 20, 24].

As explained in [1] it is possible to develop in a systematic way a matrix func-
tion theory associated to a Hermitean Helmholtz equation. The study of the jump
and Dirichlet type boundary value problems in this Hermitean Helmholtz set-
ting, but in fractal geometric context, is the main subject of this article.

2 The Hermitean Clifford analysis setting

Let (e1, . . . , em) be an orthonormal basis of Euclidean space Rm and consider the
complex Clifford algebra Cm constructed over R

m. The non-commutative multi-
plication in Cm is governed by the rules:

e2
j = −1, j = 1, . . . , m

ejek + ekej = 0, j 6= k

Cm is then generated additively by elements of the form eA = ej1 . . . ejk , where
A = {j1, . . . , jk} ⊂ {1, . . . , m} with j1 < · · · < jk, while for A = ∅, one puts
e∅ = 1, the identity element. Any Clifford number λ ∈ Cm may thus be writ-
ten as λ = ∑A λAeA, λA ∈ C, its Hermitean conjugate λ† being defined by
λ† = ∑A λc

A eA, where the bar denotes the real Clifford algebra conjugation, i.e.
the main anti-involution for which ej = −ej, and λc

A stands for the complex con-
jugate of the complex number λA.

Euclidean space Rm is embedded in the Clifford algebra Cm by identifying
(x1, . . . , xm) with the real Clifford vector X given by X = ∑

m
j=1 ejxj, for which

X2 = − < X, X >= −|X|2. The Fischer dual of X is the vector valued first order
Dirac operator ∂X = ∑

m
j=1 ej ∂xj

, factorizing the Laplacian: ∆m = −∂2
X; it under-

lies the notion of monogenicity of a function, the higher dimensional counterpart
of holomorphy in the complex plane.

Suppose Ω is a bounded domain, with sufficiently smooth boundary Γ, in
Rm. We will be interested in functions g : Ω → Cm, which might be written as
g = ∑A gAeA with gA complex valued. Property, such continuity, differentiability,
integrability, and so on, are ascribed coordinate-wise. A Clifford algebra valued
function g, defined and differentiable in Ω of R

m, is then called (left) monogenic
in Ω iff ∂Xg = 0 in Ω.

The transition from Euclidean Clifford analysis as described above to the Her-
mitean Clifford setting is essentially based on the introduction of a complex struc-
ture J, i.e. an SO(m) element, satisfying J2 = −1m. Since such an element can not
exist when the dimension of the vector space is odd, we put m = 2n from now
on. In terms of the chosen orthonormal basis, a possible realization of the complex
structure is J[e2j−1] = −e2j and J[e2j] = e2j−1, j = 1, . . . , n. Two projection ope-

rators ± 1
2(12n ± i J) associated to J then produce the main objects of Hermitean



On boundary value problems for perturbed Hermitean matrix 735

Clifford analysis by acting upon the corresponding objects in the Euclidean set-
ting.

The vector space C2n thus decomposes as W+ ⊕ W− into two isotropic sub-
spaces. The real Clifford vector is now denoted

X =
n

∑
j=1

(e2j−1x2j−1 + e2jx2j)

with the corresponding Dirac operator

∂X =
n

∑
j=1

(e2j−1∂x2j−1
+ e2j∂x2j

)

while we will also consider their so-called ’twisted’ counterparts, obtained through
the action of J, i.e.

X| =
n

∑
j=1

(e2j−1x2j − e2jx2j−1)

∂X| =
n

∑
j=1

(e2j−1∂x2j
− e2j∂x2j−1

)

As was the case with ∂X, a notion of monogenicity may be associated in a natural
way to ∂X| as well. The projections of the vector variable X on the spaces W±

then yield the Hermitean Clifford variables Z and Z†, given by

Z =
1

2
(X + i X|) and Z† = −1

2
(X − i X|)

and those of the Dirac operator ∂X yield (up to a factor) the Hermitean Dirac
operators ∂Z and ∂Z† , given by

∂Z = −1

4
(∂X − i ∂X|) and ∂Z† =

1

4
(∂X + i ∂X|)

The Hermitean vector variables and Dirac operators are isotropic, i.e.
(Z)2 = (Z†)2 = 0 and (∂Z)

2 = (∂Z†)2 = 0, whence the Laplacian allows for

the decomposition ∆2n = 4 (∂Z∂Z† + ∂Z†∂Z). These objects lie at the core of the

Hermitean function theory by means of the following definition (see e.g. [7, 9]).

Definition 1. A continuously differentiable function g in Ω ⊂ R
2n with values in C2n

is called left Hermitean monogenic (or left h-monogenic) in Ω, iff it satisfies the system
∂Zg = 0 = ∂Z† g or the equivalent system ∂Xg = 0 = ∂X|g.

In this definition lies the origin of the statement that h-monogenic functions
constitute a refinement of monogenic ones. In a similar way right h-monogenicity
is defined. Functions which are both left and right h-monogenic are called two-
sided h-monogenic.
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3 Function theory for perturbed Hermitean Dirac operators.

A matrix approach.

For the convenience of the reader we repeat the relevant material from [1] without
proofs, thus making our exposition self-contained.

For a ∈ R, a fundamental solution for the Helmholtz operator ∆2n + a2 in R2n

is given by the formula

θa(X) := − 1

(4π)n

∫ ∞

0
exp

(
a2t − |X|2

4t

)
dt

tn
, a 6= 0,

whose main properties are collected in [21, Proposition 3.1].
Then fundamental solutions to the perturbed Euclidean Dirac operators

∂X + a and ∂X| + a are respectively

Ea(X) = −[(∂X − a)θa(X)],

E|a(X) = −[(∂X| − a)θa(X)].

The Hermitian counterparts of fundamental solutions (Ea, E|a) are give by

EA = −(Ea + iE|a),

E †
A = (Ea − iE|a),

or, more explicitly,

EA(Z) = 4[(∂Z† + A†)θa(Z)],

E †
A(Z) = 4[(∂Z − A)θa(Z

†)],

where

A = −1

4
(a − i a), A† =

1

4
(a + i a).

The Hermitean Cauchy kernels EA and E †
A are not the fundamental solutions to

the respective perturbed Hermitean Dirac operators ∂Z and ∂Z† . However, the

circulant (2 × 2) matrix

EA :=

(
EA E †

A
E †

A EA

)
(1)

can be thought of as a fundamental solution of the operator

DA

(Z,Z†)
= D(Z,Z†) +A,

where

D(Z,Z†) =

(
∂Z ∂Z†

∂Z† ∂Z

)
, A =

(
A A†

A† A

)
,

i.e. DA

(Z,Z†)
EA = δ, with δ =

(
δ 0
0 δ

)
and δ being the Dirac delta distribution.

This fact motivates to introduce the following notion.
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Definition 2. Let g1, g2 be continuously differentiable functions defined in Ω ⊂ R
2n

and taking values in C2n, and consider the matrix function

G1
2 =

(
g1 g2

g2 g1

)

Then G1
2 is called (left) HA-monogenic in Ω if and only if it satisfies in Ω the system

DA

(Z,Z†)
G1

2 = O. Here O denotes the matrix with zero entries.

Remark 3.1. The important case of H-monogenic functions (see [1, 2, 3, 4, 10, 11]) arises
when we take A = O in the above definition.

Notions of continuity, differentiability and integrability of a circulant matrix
function G1

2 are introduced through the corresponding notions for its entries. In

particular, we will need to define in this way the classes C
0,ν(E) and Lp(E) of,

respectively, Hölder continuous and p-integrable circulant matrix functions over
some suitable subset E of R

2n. However, introducing the non-negative function

‖G1
2(X)‖ = max{|g1(X)|, |g2(X)|}

these classes of circulant matrix functions may be defined by means of the tradi-
tional conditions

sup
X,Y∈E; X 6=Y

‖G1
2(X)− G1

2(Y)‖
|X − Y|ν < +∞.

and ∫

E
‖G1

2(X)‖p
< +∞.

In the sequel we will also use the notations C1(E) for circulant matrix func-
tions whose entries are, together with their derivatives, continuous in E and the
Sobolev space W1

p(E) of Lp(E)-matrix whose entries are weakly differentiable in
the sense of Sobolev.

The fundamental solution of the operator DA

(Z,Z†)
now allows us to explicitly

express and to introduce the corresponding Teodorescu operator:

T A
Ω G1

2(Y) := −
∫

Ω
EA(Z − V)G1

2(X) dW(Z, Z†),

where V = 1
2(Y + i Y|) and dW(Z, Z†) is -up to a constant complex factor- the

volume element given by

dVX = (−1)
n(n−1)

2

(
i

2

)n

dW(Z, Z†).

For further use, let us mention some mapping properties of the operator T A
Ω

, as
formulated in the following theorem. The proof is an adaptation of results proved
in [5, 15, 16] to our matrix context.
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Theorem 1. Let Ω ⊂ R
2n and p > 2n. Then

• T A
Ω

: Lp(Ω) −→ W1
p(Ω) is continuous.

• If G1
2 ∈ Lp(Ω), then

D
A

(Z,Z†)
T A

Ω
G1

2(Y) =

{
(−1)

n(n+1)
2 (2i)nG1

2(Y), Y ∈ Ω,

O, Y ∈ R2n \ Ω.

• T A
Ω

: Lp(Ω) −→ C0,ν(R2n) is continuous for any 0 < ν ≤ p−2n
p .

For our purposes, let us reformulate in matrix form a very important theorem
from real analysis: the Whitney extension theorem [23].

Theorem 2 (Whitney Extension Theorem). Let E ⊂ R2n be compact and

G1
2 ∈ C0,ν(E). Then, there exists a compactly supported matrix function G̃

1
2 satisfying

(i) G̃
1
2|E = G1

2;

(ii) G̃
1
2 ∈ C1(R2n \ E);

(iii) ‖D(Z,Z†) G̃
1
2(X)‖ ≤ c dist(X, E)ν−1, for X ∈ R

2n \ E.

4 Box dimension and d-summable sets in R2n

We now briefly recall some specific preparatory material concerning fractal sets
in R2n.

Let E be an arbitrary subset of R2n. Then for any s ≥ 0 its Hausdorff measure
Hs(E) may be defined by

Hs(E) = lim
δ→0

inf

{
∞

∑
k=1

(diam Bk)
s : E ⊂

∞⋃

k=1

Bk, diam Bk < δ

}

the infimum being taken over all countable δ-coverings {Bk} of E with open or
closed balls. For s = 2n, the Hausdorff measure H2n coincides, up to a positive
multiplicative constant, with the Lebesgue measure L2n in R2n.

Now, let E be compact. The Hausdorff dimension αH(E) of E is then defined
as the infimum of all s ≥ 0 such that Hs(E) < +∞. For more details concerning
the Hausdorff measure and dimension we refer to [12]. Frequently however, see
[19], the so-called box dimension is used, defined for a compact set E ⊂ R2n as

α(E) = lim
ε→0

sup
log NE(ε)

− log ε

where NE(ε) stands for the minimal number of ε-balls needed to cover E. Note
that the limit above remains unchanged if NE(ε) is replaced by the number of
k-cubes, with 2−k ≤ ε < 2−k+1, intersecting E. A cube Q is called a k-cube if it is
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of the form [l12−k, (l1 + 1)2−k]× · · · × [l2n2−k, (l2n + 1)2−k], where k and l1, . . . , l2n

are integers. The box dimension and the Hausdorff dimension of a given com-
pact set E can be equal, which is for instance the case for the so-called (2n − 1)-
rectifiable sets (see [13]), but in general we have that αH(E) ≤ α(E).

The following geometric notion was introduced in [17], and is essential in their
method of integrating a form over a fractal boundary.

Definition 3. The compact set E is said to be d-summable if the improper integral∫ 1
0 NE(x) xd−1 dx converges.

Lemma 1 ([17]). It holds that

(i) any d-summable set E has box dimension α(E) ≤ d;

(ii) if α(E) < d, then E is d-summable;

(iii) if E is d-summable, then it is also (d + ε)-summable for every ε > 0.

In what follows, we will take Ω ⊂ R2n to be a Jordan domain, i.e. a bounded
oriented connected open subset of R

2n, the boundary Γ of which is a compact
topological surface. For our purpose, we will assume that the Hausdorff and box
dimensions of Γ satisfy 2n − 1 ≤ αH(Γ) ≤ α(Γ) < 2n. Note that this includes
the case when Γ is fractal in the sense of Mandelbrot, i.e. when 2n − 1 < αH(Γ).
Under these conditions, there will always exist d ∈ [2n − 1, 2n[ such that Γ is
d-summable, see Lemma 1.

We will also need the so-called Whitney decomposition of Ω, which we will
only recall briefly; for details we refer to [23]. Consider the lattice Z2n in R2n and
the collection of closed unit cubes defined by it; let M1 be the mesh consisting
of those unit cubes having a non-empty intersection with Ω. We then recursively
define the meshes Mk, k = 2, 3, . . ., each time bisecting the sides of the cubes of
the previous one. The cubes in Mk thus have side length 2−k+1 and diameter

|Q| =
√

2n2−k+1. We then define, for k = 2, 3, . . .,

W1 = {Q ∈ M1 | all neighbour cubes of Q belong to Ω}
W k = {Q ∈ Mk | all neighbour cubes of Q belong to Ω, and

6 ∃Q∗ ∈ W k−1 : Q ⊂ Q∗
}

for which it can be proven (see [23]) that

Ω =
+∞⋃

k=1

W k =
+∞⋃

k=1

⋃

Q∈W k

Q ≡
⋃

Q∈W
Q,

all cubes Q in the Whitney decomposition W of Ω having disjoint interiors.
We then have the following relation between the d-summability of the boun-

dary Γ and the Whitney decomposition of Ω.

Lemma 2 ([17]). If Ω is a Jordan domain of R2n and its boundary Γ is d-summable, then
the expression ∑Q∈W |Q|d, called the d-sum of the Whitney decomposition W of Ω, is
finite.
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5 Boundary value problems

The theory of perturbed Dirac operator has been proven to be a very efficient
toolkit to treat large classes of boundary value problems in almost all areas of
physics and engineering such as for instance, electromagnetism, optic, elasticity,
fluid dynamics, hydroacustic and geophysic, see [5, 14, 15, 18, 20, 21, 24] and
many other books and articles.

It is worth pointing out that the study of boundary value problems for such
physical models has been confined to domains with sufficiently smooth boun-
dary, Lipschitz domains in the worst case scenario, see for instance [20, 21]. Of
course, for the purpose of numerous applications, and for sake of pure mathe-
matical generality, it would be of great interest to be able to lift these geometric
restrictions. In this section we deal with two important boundary value problems
in the theory of perturbed Hermitean matrix Dirac equation in the more challeng-
ing case of domains with fractal boundaries.

In what follows, we will take Ω ⊂ R2n to be a Jordan domain with d-summable
boundary Γ, d ∈ [2n − 1, 2n[. For brevity we adopt the temporary notation
Ω+ = Ω, Ω− = R2n \ {Ω ∪ Γ}.

We start by considering the jump problem for HA-monogenic functions on

fractal surfaces in R2n, that is, the problem of reconstructing a HA-monogenic
function Ξ

1
2 in R2n \ Γ vanishing at infinity and having a prescribed jump G1

2
across Γ, i.e.

Ξ
1
2
+ − Ξ

1
2
−
= G1

2, in Γ, Ξ
1
2(∞) = O, (2)

where Ξ
1
2
±
(X) = lim

Ω±∋Y→X
Ξ

1
2(Y).

The next step will be to consider the Dirichlet type problem

D
A

(Z,Z†)
Ξ

1
2 = F1

2, in Ω, (3)

Ξ
1
2 = G1

2, on Γ. (4)

The critical technical results to investigate the solvability of these boundary
value problems are the following

Proposition 1. Let Ω ⊂ R2n with d-summable boundary Γ such that d ∈ [2n − 1, 2n[,

and let G1
2 ∈ C

0,ν(Γ), then D
A

(Z,Z†)
G̃

1
2 ∈ Lp(Ω) for any 0 < p <

2n−d
1−ν .

Proof.

By definition, DA

(Z,Z†)
G̃

1
2 = D(Z,Z†)G̃

1
2 +AG̃

1
2. Since G̃

1
2 ∈ C

0,ν(Ω) it follows that

AG̃
1
2 ∈ Lp(Ω) for any p > 0. The task is now to show that D(Z,Z†)G̃

1
2 ∈ Lp(Ω)

for any p <
2n−d
1−ν . To this end, let W =

⋃∞
k=1 W k be the Whitney decomposition

of Ω. Then we have
∫

Ω

‖D(Z,Z†)G̃
1
2(Y)‖pdV(Y) = ∑

Q∈W

∫

Ω

‖D(Z,Z†)G̃
1
2(Y)‖pdV(Y)

≤ c ∑
Q∈W

∫

Q

dist(Y, Γ)−p(1−ν)dV(Y)
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the last inequality following from Theorem 2 (iii). By construction of the Whitney
decomposition of Ω, we have that, for any Q ∈ W ,

dist(Y, Γ) ≥ |Q|√
2n

, ∀Y ∈ Q

see also [23], whence
∫

Ω

‖D(Z,Z†)G̃
1
2(Y)‖p ≤ c ∑

Q∈W
|Q|2n−p(1−ν).

The finiteness of the last sum follows, on account of Lemma 2, from the d-summa-
bility of Γ, together with the fact that 2n − p(1 − ν) > d.

Proposition 2. Let be Ω ⊂ R
2n with d-summable boundary Γ such that

d ∈ [2n − 1, 2n[. Furthermore, let d
2n < ν ≤ 1 and consider G1

2 ∈ C0,ν(Γ). Then

T A
Ω

DA

(Z,Z†)
G̃

1
2 belongs to C0,µ(Γ), whenever

µ <
2nν − d

2n − d
.

Proof.

Since ν >
d

2n implies that 2n <
2n−d
1−ν , we may choose p such that 2n < p <

2n−d
1−ν .

The proof being a consequence of Theorem 1 and Proposition 1.

5.1 Treatment of the problem (2)

The following theorem provides a criterion for the solvability of the boundary
value problem (2). Compare with the case A = O which was considered in
[3, Theorem 5.1].

Theorem 3. Let G1
2 ∈ C

0,ν(Γ), with ν >
d

2n . Then the jump the problem (2) has a
solution explicitly given by

Ξ
1
2 = G̃

1
2 −

(−1)
n(n+1)

2

(2i)n
T A

Ω
D

A

(Z,Z†)
G̃

1
2, in Ω+ (5)

Ξ
1
2 = − (−1)

n(n+1)
2

(2i)n
T A

Ω
DA

(Z,Z†)
G̃

1
2, in Ω− (6)

Proof.

On account of the assumption on ν, it follows that DA

(Z,Z†)
G̃

1
2 belongs to Lp(Ω),

for p > 2n. Then, the Hölder continuity of Ξ
1
2 in Ω± ∪ Γ directly follows from

Theorem 1, (i) and (iii). Next, the matrix inversion formula (ii) in Theorem 1
yields

DA

(Z,Z†)
Ξ

1
2 = O in R

2n \ Γ

showing the HA-monogenicity of Ξ
1
2 in Ω±. Finally, the validity of the jump

condition (2) is a matter of direct verification.
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5.2 Treatment of the problem (3)–(4)

The aim of this subsection is to apply the previously introduced techniques in
order to treat the boundary value problem (3)–(4).

Theorem 4. Let G1
2 ∈ C

0,ν(Γ), with ν >
d

2n . If there exists Ξ
1
2 ∈ C

0,ν(Ω) such that

{
DA

(Z,Z†)
Ξ

1
2 = O, in Ω

Ξ
1
2 = G1

2, on Γ
(7)

then
[T A

Ω
D

A

(Z,Z†)
G̃

1
2]|Γ = O. (8)

Conversely, if (8) is satisfied, then there exists a function Ξ
1
2 ∈ C0,µ(Ω) (µ < ν) satisfy-

ing (7).

Proof.

Assume (7) to hold and fix Ψ
1
2 = G̃

1
2 − Ξ

1
2. Obviously, Ψ

1
2 ∈ C0,ν(Ω) and

Ψ
1
2|Γ = O. But

T A
Ω

DA

(Z,Z†)
G̃

1
2 = T A

Ω
DA

(Z,Z†)
Ψ

1
2

since T A
Ω

DA

(Z,Z†)
Ξ̃

1
2 = O.

We are thus reduced to proving that T A
Ω

DA

(Z,Z†)
Ψ̃

1
2 = O on Γ. To this end,

define
Ωk =

{
X ∈ Q | Q ∈ W j, for some j ≤ k

}

It simplifies the argument, and causes no loss of generality, to assume that Ωk is
connected. Observe that the boundary of Ωk, denoted Γk, consists of certain faces
of some cubes Q ∈ W k. We then have

∫

Ω
EA(Z − V)DA

(Z,Z†)
Ψ̃

1
2(X) dW(Z, Z†)

= lim
k→∞

∫

Ωk

EA(Z − V)DA

(Z,Z†)
Ψ̃

1
2(X) dW(Z, Z†) (9)

Now, take Y ∈ Ω and choose k0 sufficiently large, such that Y ∈ Ωk0
and

dist(Y, Γk) ≥ |Q0|
2
√

2n
for k > k0, Q0 being a cube of W k0 . The Hermitean Borel-

Pompeiu formula (see [1, Proposition 1]), applied to Ωk, then yields

(−1)
n(n+1)

2 (2i)n
Ψ̃

1
2(Y) +

∫

Ωk

EA(Z − V)DA

(Z,Z†)
Ψ̃

1
2(X) dW(Z, Z†)

=
∫

Γk

EA(Z − V)Nk
(Z,Z†)

Ψ̃
1
2(X) dH2n−1 (10)

where Nk
(Z,Z†)

is the circulant matrix corresponding to the unit normal vector on

Γk. Next, consider X ∈ Γk, let Q ∈ W k be a cube containing X, and take P ∈ Γ

such that |X − P| = dist(X, Γ). Since Ψ̃
1
2|Γ = 0, we have

‖Ψ̃
1
2(X)‖ = ‖Ψ̃

1
2(X)− Ψ̃

1
2(P)‖ ≤ c|X − P|ν ≤ c|Q|ν
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If Σ denotes a face of Γk and Q ∈ W k is the k-cube containing that face Σ, then we
have, for k > k0, that

‖
∫

Σ
EA(Z − V)Nk

(Z,Z†)
Ψ̃

1
2(X) dH2n−1‖ ≤ c

|Q0|2n−1

∫

Σ
‖Ψ̃

1
2(X)‖dH2n−1

≤ c

|Q0|2n−1
|Q|ν−1+2n

Since each face of Γk belongs to some Q ∈ W k, we have, for k > k0,

‖
∫

Γk

EA(Z − V)Nk
(Z,Z†)

Ψ̃
1
2(X) dH2n−1‖ ≤ c

|Q0|2n−1 ∑
Q∈W k

|Q|ν−1+2n ≤

≤ c

|Q0|2n−1 ∑
Q∈W k

|Q|d.

The finiteness of the d-sum ∑Q∈W |Q|d of the Whitney decomposition W of Ω,
see Lemma 2, implies

lim
k→∞

∫

Γk

EA(Z − V)Nk
(Z,Z†)

Ψ̃
1
2(X) dH2n−1 = O.

Combining (9) with (10) yields T A
Ω

D
A

(Z,Z†)
Ψ̃

1
2|Γ = O.

On the contrary, if (8) holds the assertion follows directly by taking

Ξ
1
2 = G̃

1
2 − T A

Ω
DA

(Z,Z†)
G̃

1
2.

The following direct consequence of Theorem 4 give representation formulas
for the solutions of the homogeneous perturbed Hermitean Dirac equation under
Dirichlet conditions.

Corollary 1. Let G1
2 ∈ C

0,ν(Ω), with ν >
d

2n be HA-monogenic in Ω with trace g1
2 on

Γ, then
G1

2(X) = g̃1
2(X)− T A

Ω
DA

(Z,Z†)
g̃1

2(X), X ∈ Ω. (11)

We finish with a result concerning the solvability of the problem (3)–(4).

Theorem 5. Let G1
2 ∈ C

0,ν(Γ) and F1
2 ∈ Lp(Ω) such that ν and

p−2n
p are both greater

that d
2n . If there exists a function Ξ

1
2 ∈ C

0,ν(Ω) solution of the problem (3)–(4), then

[T A
Ω

DA

(Z,Z†)
G̃

1
2]|Γ = [T A

Ω
F1

2]|Γ. (12)

Conversely, if (12) is satisfied, then there exists a function Ξ
1
2 ∈ C0,µ(Ω) (µ < ν)

solution of the problem (3)–(4).

Proof.
We first take Θ

1
2 = Ξ

1
2 − T A

Ω
F1

2. Assuming Ξ
1
2 be a solution of (3)–(4) we see that

Θ
1
2 is a solution of the homogeneous problem (7) with G1

2 replaced by

G1
2 − [T A

Ω
F1

2]|Γ ∈ C
0,β(Γ), where

β := min{ν,
p − 2n

p
}.
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It is easy to check that Φ1
2 := G̃

1
2 − T A

Ω
F1

2 − Θ
1
2 ∈ C0,β(Ω) such that Φ1

2|Γ = O.

By assumption, β >
d

2n , then as in the proof of Theorem 4 we have that

T A
Ω

DA

(Z,Z†)
Φ̃1

2]|Γ = O and hence that

T A
Ω

DA

(Z,Z†)
(G̃

1
2 − T A

Ω
F1

2) = T A
Ω

DA

(Z,Z†)
G̃

1
2 − T A

Ω
F1

2 = O,

which proves (12).
The second assertion follows directly by taking

Ξ
1
2 = G̃

1
2 − T A

Ω
D

A

(Z,Z†)
G̃

1
2 + T A

Ω
F1

2.

Corollary 2. Let G1
2 ∈ C

0,ν(Γ) and F1
2 ∈ Lp(Ω) such that ν and

p−2n
p are both greater

that d
2n . If Ξ

1
2 ∈ C

0,ν(Ω) has trace G1
2 on Γ and satisfies DA

(Z,Z†)
Ξ

1
2 = F1

2 on Ω, then

Ξ
1
2(X) = G̃

1
2(X)− T A

Ω
D

A

(Z,Z†)
G̃

1
2(X) + T A

Ω
F1

2(X), X ∈ Ω. (13)

6 Concluding Remark

We have been working under the assumption that the surface of the considered
domain is fractal, which makes the study of boundary value problems rather
complex.

The results obtained in the present work continue the line of research offered
in [1] and provide us with a mathematical basis for the use of the Teodoresco
transform associated to the perturbed Hermitean matrix Dirac operator for the
treatment of boundary value problems in the case of fractal boundaries.
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