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Abstract

In this article, we establish Minkowski, Brunn-Minkowski and Aleksan-
drov-Fenchel type inequalities for differences of quermass- and dual quer-
massintegrals of mixed Blaschke-Minkowski and mixed radial Blaschke-
Minkowski homomorphisms.

1 Introduction and Main Results

Let K" denote the set of convex bodies (compact, convex subsets with non-
empty interiors) in Euclidean space IR and let S" denote the set of star bodies
(compact sets, starshaped with respect to the origin with continuous radial func-
tions) in R”. Let S"~! denote the unit sphere in R”?, and let V(K) denote the
n-dimensional volume of a body K. For the standard unit ball B in IR"”, we write
wy, = V(B) for its volume. Moreover, W;(K) and W;(L) denote the quermassinte-
grals of K € K" and the dual quermassintegrals of L € §", respectively.

The notion of projection bodies goes back to Minkowski and was surveyed in
Bolker’s article [6]. A number of important results regarding this classical notion
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and its generalizations were obtained in recent years (see [1, 3,5, 7, 9, 11, 16, 26,
28, 36, 39, 40, 53]) and the books (see [12, 25, 41]). Moreover, projection bodies
were extended in other ways, e.g., to mixed projection bodies by Lutwak (see [28,
29]). Recently, Lutwak, Yang and Zhang introduced for p > 1 L,-projection bod-
ies and obtained a series of striking results [32], see also [19, 33, 34, 37, 46-52]. Mo-
tivated by well known properties of the projection body operator IT : K" — K",
Schuster [42] introduced the notion of Blaschke-Minkowski homomorphisms:

A map ® : K" — K" is called a Blaschke-Minkowski homomorphism if it
satisfies the following conditions:

(a) @ is continuous.

(b) @ is Blaschke-Minkowski additive, i.e., for all K, L € K",

®(K#L) = K + OL.
(c) @ intertwines rotations, i.e., for all K € K" and ¢ € SO(n),
O(0K) = ODK.

Here ®K + ®L denotes the Minkowski sum, see (2.3), of ®K and ®L and K#L
denotes the Blaschke sum of the convex bodies K and L, see (2.6). SO(n) is the
group of rotations in n dimensions.

Schuster also obtained the following result which generalizes the notion of
mixed projection bodies from [42].

Theorem 1.A. There is a continuous operator

K x o x KN K,

n—1

symmetric in its arquments such that, for Ky, --- ,K,, € K" and Ay, -+ , Ay >0,

MK+ +AuKy) = Y Ay Ay, PO(Kiy, LK, ) (1.1)

i, Ap—1

The operator @ : K" x --- x K" — K" is called the mixed Blaschke-Minkowski
ntl
homomorphism induced by ®. If K} = --- =K,,_;_ 1 =K, K,_j =--- =K,_1 =
B, we write &K for ®(K,--- ,K,B,---,B). For 0 < i < n, we write ®;(K, L) for
®(K,--- KL, ,L). Note that oK = ®K.
—_——— ——

n—i—1 i
Schuster [42] also established the following Minkowski, Brunn-Minkowski
and Aleksandrov-Fenchel type inequalities for mixed Blaschke-Minkowski ho-
momorphisms.

Theorem 1.B. If K, L € K"and0<i<n—-1,1<j<n—1,then
Wi (®j(K, L))" > Wy(®K)" /"' W;(®L)! (12)

with equality if and only if K and L are homothetic.
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Theorem 1.C. If K, L€ K"and0<i<n—-1,0<j<n—2,then

% 1 %
Wi(@;(K + L)) T ”11>W(<I>K)"1"11+W(<I>L) 0= (1.3)

with equality if and only if K and L are homothetic.

Theorem 1.D. If Ky, - ,K, € K"and 1 <r <n —1, then

Wj(q)(Kl," n 1 >HW '/"' /K]/K}’-‘rll"' /Kn—l))' (]‘4)
A,_/

r

For generalizations of these results (in particular, of Theorem 1.C) to more gen-
eral Minkowski valuations, we refer to [2, 8, 38, 45].

Intersection bodies first appeared in a paper by Busemann (see [10]) but were
explicitly defined and named only later by Lutwak (see [30]). They turned out
to be critical for the solution of the Busemann-Petty problem (see [13-15, 21-23,
54] and [17, 18, 27] for recent Ly,-generalizations of intersection bodies). In 2006,
radial Blaschke-Minkowski homomorphisms were introduced by Schuster [42],
the most prominent example being the intersection body operator.

AmapV¥ :S" — §"is called a radial Blaschke-Minkowski homomorphism if
it satisfies the following conditions:

(a7) ¥ is continuous.

(bq) Forall K, L € §",

¥Y(K+L) = YKF+YL.

(c1) Forall K € §" and ¢ € SO(n),
¥(9K) = 9FK.

Here YK+YL is the radial Minkowski sum, see (2.8), of YK and YL and K+L
denotes the radial Blaschke sum of the star bodies K and L, see (2.11).

Theorem 1.AL42}. There is a continuous operator
¥:8"x---x8" =8,
—_—
n—1

symmetric in its arquments such that, for Ly,--- , L, € S"and Aq,--- , Ay > 0,

Y(MLiF - FAuLn) = ) Aj--- A

1 In—

(L, L ). (15)

Theorem 1.A, generalizes the notion of radial Blaschke-Minkowski homomor-
phisms. We call ¥ : §" x --- x 8" — S" the mixed radial Blaschke-Minkowski
—_——

n—1
homomorphism induced by ¥. Mixed radial Blaschke-Minkowski homomor-
phisms were first studied in the articles (see [43,44]). If Ky = --- = K,,_;_1 = K,
K, j=--+-=K,_1 = B, we write ¥;K for ¥(K,--- ,K,B,---,B). For0 < i < n,

we write ¥;(K, L) for ¥(K,--- ,K,L,---,L). Note that oK = ¥YK.
—_——— ———

n—i—1 i
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For mixed radial Blaschke-Minkowski homomorphisms, Schuster [42] estab-
lished the following dual Minkowski, Brunn-Minkowski and Aleksandrov-Fen-
chel type inequalities.

Theorem 1.B... If K,L € S"and0<i<n—-1,1<j<n—1,then
Wi(¥(K, L))" < W;(¥K)" W, (YL)/ (1.6)
with equality if and only if K and L are dilates.

Theorem 1.C... If K, L € S"and0<i<n—-1,0<j<n—2, then

S S S
W(‘I’(K+L)) —)(n=j-1) <W(‘PK)"1"11+W(‘I’L) —)(n=j-1) (1.7)
with equality if and only if K and L are dilates.

Theorem 1.D.. IfKy,- - ,K, € S"and1 <r <n —1, then

Wi(T(Kl," n 1 < HW /Kj/Kr+1/"' /Kl’l—l)) (]‘8)
A,_/
r

with equality if and only if Ky, - - - , K, are dilates.

The aim of this paper is to establish the following new Minkowski, Brunn-
Minkowski and Aleksandrov-Fenchel type inequalities for difference of quermass-
and dual quermassintegrals of mixed Blaschke-Minkowski and mixed radial
Blaschke-Minkowski homomorphisms. First volume difference inequalities were
established by Leng [24]. Since this seminal paper, inequalities for differences
of geometric functionals have become the focus of increased attention (see e.g.,

[35, 56-59]).

Theorem 1.1. Let K,L € K", D,D’ € §", D C K, D' C L, and let D' be a dilate of D.
Thenfor0<i<n-11<j<n-1,

[Wi(@;(K, 1))~ Wit (D, D))"

> [Wi(cpK) _ Wi(TD)] e [Wi(ch) — Wi(TD/)}j

with equality if and only if K and L are homothetic and W;(®K)/W;(¥D) =
W;(®L)/W;(¥YD').

Theorem 1.2. LetK,L € K", D,D' € 8", D C K, D' C L, and let D’ be a dilate of D.
Thenfor0 <i<n 0<j<n-—2,
%
[wi(cp]-(K +1L)) - wi(‘f]-(DfrD’))} (= n=7-1)

1 1

> [Wi(q)jK) Wi(¥; D)] - [wi(cbjL) W;(¥,D )] =01
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with equality if and only if K and L are homothetic and W;(®;K)/ Wi (Y;D) =
Wi(®;L) /Wi (¥;D’).

Theorem 1.3. Let K; € K", D; € S"and D; C K; (i =1,--- ,n —1). If the bodies D;
(j=1,---,r)aredilates of each other, then forall 1 <r <n—1,

Wi @(Ky, -+ Ky ) = W(¥(Dy, -+, Dy )|

r
2 WI(CI)(K]/ te /Kler+1/' ce /Ki’l—l)) - WI(T(D]/ o /Dj/ D}’+1/' o /Dn—l))
S—~— S—

] r r

2 Preliminaries

2.1 Support functions and radial functions

If K € K", then its support function, hg = h(K,-) : R" — (—00,00), is defined by
(see[12,41])
h(K,x) =max{x-y:y € K}, x e R", (2.1)

where x - y denotes the standard inner product of x and y.
If K is a compact star-shaped (about the origin) set in R”, then its radial func-
tion, px = p(K,-) : R"\ {0} — [0, 00), is defined by (see[12, 41])

o(K,u) =max{A >0:A-ucK}, ucs" 1 (2.2)

If px is continuous and positive, then K will be called a star body. Two star bod-
ies K, L are said to be dilates (of one another) if px(u),/pr (1) is independent of
ue s

2.2 Mixed volumes

Here, we collect some basic notions and notations from the Brunn-Minkowski
Theory that is needed in the proofs of our main theorems (see, e.g, the books [12]
and [41]).

For K;,K; € K" and Aq,A; > 0 (not both zero), the support function of the
Minkowski linear combination A1 K; + AyK5 is

h(/\lKl —|—)\2K2,-) = /\1h(K1,-) -|-)\2h(K2,'). (2.3)

The volume of a Minkowski linear combination AKy + - -+ + A, Ky, of convex
bodies K, - - - , Kj; can be expressed in the form

V(MK + - 4+ AuKi) = ) V(K- Kiy A - A, (2.4)
i1, in
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The coefficients V(K;,,- - - ,K;,) are called mixed volumes of K; , - - - ,K;, . These
functions are nonnegative, symmetric and translation invariant. Moreover, they
are monotone (with respect to set inclusion), multilinear with respect to Minkow-
ski addition and their diagonal form is ordinary volume, ie., V(K,---,K) =
V(K).

We denote by V;(K, L) the mixed volume V(K,--- ,K,L,---,L), where K ap-
pears n — i times and L appears i times. For 0 < i < n — 1, write W;(K, L) for the
mixed volume V(K,--- ,K,B,---,B,L), where K appears n — i — 1 times and the
unit ball B appears i times. The mixed volume W;(K, K) will be written as W;(K)
and is called the ith quermassintegrals of K.

ForKy,---,K,_1 € K",S5(Ky, - ,K,_1,-) is the Borel measure on S"~1 called
the mixed surface area measure of Kj,---,K,_j, uniquely determined by the
property that for each K € K",

V(K Ky, Ky ) = %/Sl (K, u)dS(Ky, - -, Ky_1, 1), (2.5)
The measures S;(K, ) = S(K, -+ ,K,B,---,B,-), where K appears j times and B
appears n — j — 1 times, are called the surface area measures of order j of K. If
j = n—1, then we write S(K, -) for S,,_1(K, -). The measure S(K, -) is called the
surface area measure of K.

If K1,Kz € K" and Ay, A2 > 0 (not both zero), then there exists a convex body
A1 - Ki#A; - Ky, such that

S()Ll 'Kl#Az'Kz,') :)Lls(Kl,')—l—)LzS(Kz,'). (26)

This addition and scalar multiplication are called Blaschke addition and scalar

multiplication. For K € K" and A > 0, we have A - K = /\ﬁK.
One of the most general and fundamental inequalities for mixed volumes is
the Aleksandrov-Fenchel inequality: If Ky, - -- ,K;, € K" and 1 < m < n, then

m
V(Ky, -+, Ky)™ > V(K]-,- -, Ky, K1, - ,Ka). (2.7)

e

2.3 Dual mixed volumes

In the following we summarize some results from the dual Brunn-Minkowski
Theory (see [31]). Moreover, as an application of the dual Aleksandrov-Fenchel
inequality (see below), we obtain an inequality (Theorem 2.1) for mixed radial
Blaschke-Minkowski homomorphisms.

For L1,L, € 8" and A1, A» > 0 (not both zero), the radial Minkowski linear
combination AjL;+A;L; is the star body defined by

p(A1L1FA2Ly, ) = Ap(Ly, ) + Azp(Lo, -). (2.8)

The volume of a radial Minkowski linear combination A{L;+ - -+ +A,,L,, of star
bodies Ly, - - - , L;; can be expressed as a homogeneous polynomial of degree n:

V()\1L1-T- cet ‘T‘AmLm) = Z V(Lilz' e /Lin)/\il T Ain-
i1, in
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The coefficients V(Lil,- -+, L;,) are called dual mixed volumes of L;,---,L;,.
They are nonnegative, symmetric and monotone (with respect to set inclusion).
They are also multilinear with respect to radial Minkowski addition and
V(L,---,L) = V(L). The following integral representation of dual mixed
volumes holds:

~ 1

Vil L) = [Sn_l (L, 1) - - p(Luy u)du, (2.9)

where du is the spherical Lebesgue measure on $"~!. The definitions of V;(K, L),
W;(K, L), etc. are analogous to the ones for mixed volumes in Section 2.2. We note
that W;(K) is called the ith dual quermassintegral of K € S™. A slight extension
of the notation V;(K, L) for r € R is

V(K1) =1 /5 (K, W) (L) (2.10)

n
Obviously, we have V,(L,L) = V(L) for every r € R and every L € S".
If A1, A» > 0 (not both zero), then the radial Blaschke linear combination A; o
L14A; o Ly of the star bodies Ly and L; is the star body whose radial function
satisfies

"t (Mo LiFAzoLly, ) = A" HLy, o) + A" (Lo, ). (2.11)

This addition and scalar multiplication are called radial Blaschke addition and
scalar multiplication. For L € §" and A > 0, the radial Blaschke and the usual

scalar multiplication are related by A o L = AL,
The most general inequality for dual mixed volumes is the dual Aleksandrov-
Fenchel inequality: If L, -+ ,L, € S" and 1 < m < n, then

m
V(Li, -, L))" <T]V(Lj,---,Lj,Ls1,- -+ , Ln) (2.12)
A
with equality if and only if Ly, - - - , L;, are dilates.
A special case of inequality (2.12) is the dual Minkowski inequality: If K, L &
S" then
Vi(K,L) < V(K)" V(L) (2.13)

with equality if and only if K and L are dilates. A more general version of the
dual Minkowski inequality is: If 0 < i < n — 2, then

W;(K, L) < W;(K)""=1W;(L) (2.14)

with equality if and only if K and L are dilates.
We now use the dual Aleksandrov-Fenchel inequality to obtain the following
inequality for mixed radial Blaschke-Minkowski homomorphims.

Theorem 2.1. Let K€ §"and 0 <i<j<n—1.1f0 <m < n, then

Wi (FK)"~11 < Ul (KT (2.15)
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with equality if and only if ¥;K and ¥ ;K are both balls and dilates of each other.
Here ry denotes the radius of the ball ¥B. For the proof of Theorem 2.1, we
require the following lemmas.

Lemma 2.1/42], IfK,Le 8"and 0 <i,j <n—2, then

Wi(K, ¥L) = Wi(L, ¥,K). (2.16)

Lemma 2242, [fK € 8" and 0 < i < n — 2, then
W1 (¥iK) = r¢ W1 (K). (217)

Ifwetake Ly =--- =L, j=L, Ly, j;1 =+ = Ly, = Bin (2.12), we directly
obtain

Lemma23. IfL € $"and 0 <i < j < n, then

W;

l'~

(L) < w)y "WH(L)", (2.18)

with equality if and only if K is a ball.

Proof of Theorem 2.1. The case m = n — 1 of inequality (2.15) follows from a
combination of Lemma 2.2 and Lemma 2.3. Therefore, letm < n—1and Q € S".

From (2.16), we have N N
Wi (Q, ¥;K) = W;i(K, ¥,,Q). (2.19)

Thus from the dual Aleksandrov-Fenchel inequality (2.12), it follows that

VV]‘(K,TmQ)n—i_l = V(K, --,K,B,---,B,B,--- /B,TmQ)n_i_l

n—j—1 j—i i
< W1 (¥ Q) Wi(K, ¥ Q)" 71, (2.20)
From Lemma 2.2 and Lemma 2.3, we deduce
IK/n—l(\IImQ)n_m = r‘rlzl—m ~m+1(Q)n_m < rg_mwnwm(Q)n_m_l (2'21)

with equality if and only if Q is a ball. And from Lemma 2.1 and inequality (2.14),
we obtain

W;(K, ¥, Q)" ™ = Wy (Q, ¥:K)"™™ < Wy (Q)" " "W, (¥;K) (2.22)

with equality if and only if Q and ¥;K are dilates. Therefore, by (2.16) and in-
equalities (2.20), (2.21) and (2.22), we obtain

(n—=i=1)(n—m-1) ~ n—j—1
—m

- . R i B
Wm(Q,TjK)”—Z—lgr{F ‘Wl W (Q) T Wiy (FK) (2.23)

Now take ¥ ;K for Q in (2.23) to get the desired inequality (2.15).
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From the equality conditions of inequalities (2.21) and (2.22), we see that equal-
ity holds in (2.15) if and only if ¥;K and ¥ ;K are both balls that are dilates of each
other. ]

The mixed intersection body of Ky,--- ,K,—1 € S", I(Ky,---,K,—1), was
given by (see [55])

p(I(Klr e /Kn—1>/u) — 5(K1 N uL/ e /Kn—l N uL)/

where 7 denotes (n — 1)-dimensional dual mixed volume and K N u" denotes the
intersection of K € S" with the subspace u" that passes through the origin and is
orthogonal to u. Since the mixed intersection body operator I : 8" x --- x §" —
—————
n—1
S™ is a mixed radial Blaschke-Minkowski homomorphism, we obtain from
Theorem 2.1 the following result.

Corollary 2.1. Let K€ S"and 0 <i <j<n—1.If0 < m < n, then

Wm(IjK)n—i—l < w(n_lm)(j_i)W{,_in(IiK)n_j_l

n—

with equality if and only if K is a ball.

3 Proofs of the Main Results

In this section, we complete the proofs of Theorems 1.1-1.3. For the proof of
Theorem 1.1, we require the following lemma.

Lemma 3.1, Leta,b,c,d >0,0<a<1,0<pB<landa+p =1 Ifa> band
¢ > d, then
acP —v*dP > (a — b)*(c — d)P (3.1)

with equality if and only ifa/b = c/d.

Proof of Theorem 1.1. From inequality (1.2), we have for 0 < i < n —1 and
1<j<n—-1,
n—j—1 j
Wi(®(K, L)) > Wi(®K) 7T Wy(®L) 7T (32)
with equality if and only if K and L are homothetic. Since D’ and D are dilates, it
follows from inequality (1.6) that

1 ~

Wi (¥D')7 1. (33)

n

—j—
n—1

Wi(¥;(D,D’)) = Wi(¥D)
Combining (3.2) with (3.3), and using (3.1) we obtain

W;(®;(K, L)) — W;(¥;(D,D’))

n 1 ~ n

j —j=1 ~ i
W;(®L)# 1 — W;(¥D) w1 W; (YD) "

> W;(@K) 1
" n—j—1 Ll

> [w,-(ch) —wi(‘PD)} 1 [W,-(ch) —W,-(‘FD’)} -
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ie.,
[Wi(®;(K, L)) = Wi(¥,;(D,D"))]"™!
> [Wi(@K) - W,-(TD)}"_j o Wi(@L) - Wi(‘PD’)]j . (34)
According to the equality conditions of inequalities (3.1) and (3.2), we see that

equality holds in (3.4) if and only if K and L are homothetic and W;($®K)/ W;(¥D)
= W;(®L)/W;(¥D’). -

If Ky, -+ ,K,—1 € K", then the mixed projection body of Ky, --- ,K,,_1 € K",
IT1(Ky,- - -, Ky,—1), was defined by (see [28])

h(H(Klr T /Kn—l)/u) = U( 11/l/' — Z—l)’

where v denotes (1 — 1)-dimensional mixed volume and K* denotes the image of
K € K" under an orthogonal projection onto the subspace u~ that passes through
the origin and is orthogonal to u. Since the mixed projection body operator IT :
K'x.-..xK" — K" and the mixed intersection body operator

~"

n—1
[:8"x..-x8" — 8" are mixed Blaschke-Minkowski and mixed radial Blas-
—_—

n—1
chke-Minkowski homomorphisms, respectively, Theorem 1.1 directly yields

Corollary 3.1. Let K,L € K", D,D" € 8", D C K, D’ C L, and let D' be a dilate of
D.If0<i<n—1and1 <j<n-—1,then

[Wi(nj(K, L)) - Wy(1,(D, D,))] n—1

j

o wyrin) - w10 35)

> [Wi(HK) - Wi(ID)}
with equality if and only if K and L are homothetic and W; (IIK) /W, (ID) = W;(I1L)
/Wi (ID").
Taking i = 0, j = 1 in inequality (3.5), inequality (3.5) becomes
Corollary 3.2. IfK,L € K", D,D' € §", D C K, D’ C L and D’ is a dilate of D, then

[V(ITi(K, L)) — V(I;(D,D")]" ™

> [V(IIK) — V(ID)]" 2 [V(IIL) — V(ID")],
with equality if and only if K and L are homothetic and V (I1K)/V (ID) = V(IIL)
/V(ID').
Lemma 3.24. Let ai, - ,apand by, - - -, by be two series of positive real numbers and
let p>1.Ifal =Y ,al > 0and b] — Y, b7 > 0, then

1 1 1

n p n [ n [z
af—Zaf + bf—be < | (m +b)? Z a; + b;)P (3.6)
i=2 i=2 i=2
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with equality if and only if a1 /by = a2 /by = - - - = a,/ by.

Proof of Theorem 1.2. By inequality (1.3), we have for 0 <i <nand 0 <j <
n—2,
1 .
W;(®@;(K+ L)) > [Wi(P; K) 0T 4 W (@;L) w0 ] (n=in=j=1)(3.7)

with equality if and only if K and L are homothetic. Since D and D’ are dilates,
by inequality (1.7), we obtain
Wi(%;(DFD')) = [Wh(¥;D) T + Wy(¥;D") 0] (=00, (3.8)

Combining (3.7) and (3.8), it follows from inequality (3.6) that

1
W (@)K + 1)) = Wi (¥ (DF D) 7T
> {[Wi(@ )m + Wi (D L)ﬁ](n—i)(n—j—l)
— [W; (¥, D)m +W(qf D )m]( —i)(n—j—l)}m
> [W;(;K) — Wi (¥;D)] 01070 - [Wi(@;L) — Wy (D) #1077,

that is

[Wy(®;(K + L)) — W,(¥;(DF-D'))] o077
> [Wi(®;K) — W;(¥,D)] 70T + [Wi(@;L) — W;(¥;D')] =077, (3.9)

By the equality conditions of inequalities (3.6) and (3.7), we know ﬂ’fl’[ equality
holds in (3.9) if and only if K and L are homothetic and W;(®;K)/W;(¥;D) =

Taking the mixed projection body operator I1; and the mixed intersection opera-
tor I; as the mixed Blaschke-Minkowski and the mixed radial Blaschke-Minkowski
homomorphism in Theorem 1.2, we obtain

Corollary 3.3. IfK,L € K", D,D’' € §", D C Kand D' C L, and D' is a dilate of D,
thenfor0 <i<nand0<j<n-—2,

[Wz(H](K + L)) - Wi(lj(D—T-D/))] m

> [wi(HjK) Wi(I, D)] T [Wi(HjL) W (L,D’ )] =T (3.10)

with equality if and only if K and L are homothetic and W;(IL;K)/ Wi(l]'D) =
Wi(IL;L) /Wi (D).
Taking i = 0, j = 0 in inequality (3.10), yields
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Corollary 34. IfK,L € K", D,D' € §" D C Kand D' C L, and D’ is a dilate of D,
then

[VII(K + L)) ~ V(I(DFD'))] 701
> [V(IIK) — V(ID)]70 + [V(IIL) — V(ID')] T
with equality if and only if K and L are homothetic and V(I1IK)/V (ID) = V(IIL)

JV(ID").
Lemma 3.3%, Ifc; >0,b; >0,¢; > b;,i =1,--- ,n, then

(ﬁ(ci —bi)>Z < (]ﬂ[q)ﬁ — (]ﬁ[bl)H (3.11)
i=1 i=1 i=1

with equality if and only if c1 /by = c2/by = -+ - = ¢/ by.
Proof of Theorem 1.3. By inequality (1.4), we havefor1 <r <n—1,

1

r r
Wi(@(Ky, -+ Kno1)) > [[TWA @K, K Keyr, oo K1) | - (312)

S}ilnce Dj(j = 1,---,r) are dilates of each other, it follows from inequality (1.8)
that

r

~ r o~
Wi(T(Dll c. /Dn—l)) = HWZ(T(D]’ cee ,D]', Dr+1/ <. /Dn—l)) (313)
=1 ———

7

Combining (3.12) and (3.13), and using inequality (3.11), we obtain

Wi(q)(Kll e /Kn—l)) - Wi(T(Dll e /Dn—l))

SI=

’
> le(q)(K]/ o /Kj/ Kit1, -+ /Kn—1>) -
=1 ———

r

==

r
Wi(¥(Dj, -+, Dj, Drs1,- -+, Du))
i=1 N——

r

r ~
> |:H(Wi(q)(Kj o Ky Kigq, oo, K1) = Wi(¥(Dj, -+, Dj, Dyya, -+, Dyo1))
=1 ——— ————

Thus

[Wi@(Ky, - Koo)) = W(¥(Dy, -+, Do)

r
>
j=1

Wl((D(K]/ o /Kj/Kr—‘rl/' o /Kn—l)) - WI(T(D]/ o /Dj/Dr+1/' o /Dn—l))
S—~— ——

r r
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From Theorem 1.3 we directly obtain

Corollary 3.5. Let K; € K", D; € S"and D; C K; (i = 1,--- ,n—1). If for
1 <r < n—1the bodies D; (j=1,---,r)aredilates of each other, then

[V(TI(Ky, - -+, Ky—1)) = V(I(Dy, - -+, Dy1))]

r
2 V(H(K]/ e /KjIKV+1/ T /Kn—l)) - V(I(D]/ T /Dj/ D}’+1/ e /Dn—l))
— ——

-
j ; ;
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