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Abstract

We investigate the initial value problem for a semilinear heat equation
with exponential-growth nonlinearity in two space dimension. First, we
prove the local existence and unconditional uniqueness of solutions in the
Sobolev space H1(R2). The uniqueness part is non trivial although it fol-
lows Brezis-Cazenave’s proof [3] in the case of monomial nonlinearity in di-
mension d ≥ 3. Next, we show that in the defocusing case our solution is
bounded, and therefore exists for all time. In the focusing case, we prove
that any solution with negative energy blows up in finite time.

1 Introduction

Consider the initial value problem for a semilinear heat equation
{

∂tu = ∆u + f (u)
u(0) = u0

(1)

where u(t, x) : R
+ × R

d → R, d ≥ 2 and f ∈ C1(R, R) is a given function
satisfying f (0) = 0. The Cauchy problem (1) has been extensively studied in the
scale of Lebesgue spaces Lq, especially for polynomial type nonlinearities i.e

f (u) := ±|u|γ−1u, γ > 1. (2)
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In such a case, observe that the equation enjoys the interesting property of scaling
invariance

uλ(t, x) := λ2/γ u(λ2t, λx), λ > 0 (3)

i.e. if u solves (2) then also does uλ. The Lebesgue space Lqc(Rd) with exponent

qc := d(γ−1)
2 is also the only one invariant under the same scaling (3). This prop-

erty defines a sort of trichotomy in the dynamic of solutions of (2), and basically
one can notice the following three different regimes for initial data in Lq:

THE SUBCRITICAL CASE I.E. q > qc ≥ 1: Weissler in [28] proved the existence
of a unique solution u ∈ C([0, T); Lq(Rd)) ∩ L∞

loc(]0, T]; L∞(Rd)). Later on, Brezis-

Cazenave [3] proved the unconditional uniqueness of Weissler’s solutions.1

THE CRITICAL CASE i.e. q = qc and d ≥ 3: There are two sub-cases:

• If qc > γ + 1, then we have local wellposedness of the Cauchy problem
where the existence is also due to Weissler [28] and the unconditional uni-
queness to Brezis-Cazenave [3].

• If q = qc = γ+ 1 or equivalently q = d
d−2 and γ− 1 = 2

d−2 (double critical or

energy critical case2): Weissler [29] proved the conditional wellposedness.
When the underlying space is the unit ball of R

d, Ni-Sacks [20] showed that
the unconditional uniqueness fails. This result was extended to the whole
space by C. Tarsi [24] for suitable initial data. See also [16] for general initial
data.

THE SUPERCRITICAL CASE I.E. q < qc : there are indications that there exists
no (local) solution in any reasonable weak sense (cf. [3, 28, 29]). Moreover, it is

known that uniqueness is lost for the initial data u0 = 0 and 1+ 1
d < γ <

d+2
d−2 , see

Haraux-Weissler [7].

The way in constructing solutions consists in using a fixed point argument in
suitable spaces where the free solution lives and the nonlinear terms can be well
estimated using the heat regularizing properties. Note that the solution can be
written as

u(t) = et∆u0 + M(u)(t),

where M is the integral operator defined by M(u)(t) :=
∫ t

0 e(t−s)∆ f (u(s)) ds. This
operator behaves differently in the sub and critical cases. It is clearly continuous
in C([0, T); Lq(Rd)) when the nonlinearity is subcritical, while it is discontinuous
in the critical case (see [20] for more details).

In the energy critical case, the nice idea of Ni and Sacks [20] to prove the non-
uniqueness is constructive and based on the fact that the Poisson equation does

1Uniqueness in the natural space where solutions exist, namely C(Lq).
2Observe that in such a case, the potential energy term is finite.
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not regularize as much as the heat equation when the source term is only an inte-
grable function. In the energy critical case, the potential term |u|γ−1u ∈ L∞

t (L1).
So, Ni and Sacks constructed a singular stationary solution in the punctured unit
ball. The singularity holds only at the center of the ball and is weak enough to
extend the singular solution (in the distributional sense) to the whole ball. Then,
they constructed a local solution which will immediately enjoy a smoothing
effect that the stationary singular solution will never have. This makes the two
solutions different and the unconditional non-uniqueness immediately follows.

Let us finally mention that the well posedness in Sobolev and Besov spaces
was investigated in [21, 17].

In two space dimension, observe that the energy3 scaling index qc = d
d−2

becomes infinite. So any power nonlinearity 1 < γ < ∞ is subcritical in the
sense that one can always choose a Lebesgue space Lq (other than L∞) where one
can prove the well-posedness for the Cauchy problem (4). However, when tak-
ing an infinite polynomial e.g exponential nonlinearity, the only Lebesgue space
in which Weissler’s result is applicable is L∞. To this extent, the Cauchy problem
(4) is always subcritical in L∞ and one can wonder if there is any notion of critical-
ity in two space dimensions. The loss of the scaling property for inhomogeneous
nonlinearities also does not help in having any insight toward an answer.

The ultimate aim is to show that in 2D, a kind of trichotomy (similar to the
one described above in higher dimensions) can still be defined. It is based on the
topology of the initial data. More precisely, consider the Cauchy problem





∂tu − ∆u = ±u(eu2 − 1) in R
2

u(0) = u0 .

(4)

However, our goal in this paper is to study whether or not there exists local/global
solution to the Cauchy problem (4) when the data is no longer in L∞.

First, observe that for an exponential nonlinearity, the largest Lebesgue type
space in which the equation is meaningful in the distributional sense is of Orlicz
kind. In this respect, Ruf and Terraneo [23] showed a local existence result for
small initial data in Orlicz space. This result was extended to global existence by
Norisuke Ioku [14]. In what follows, we will focus our attention only to the case
d = 2.
We will show that we have a “good” H1 theory for the Cauchy problem (4) i.e.
finite time/global existence of solutions (depending on the sign of the nonlinear-
ity), and unconditional uniqueness.
Our results show that even though there is no a scaling property for this problem,
a sort of trichotomy analogous to the one described in higher dimension can still
be defined. It is based on the topology of the initial data. In a forthcoming paper,
we show the non-existence of solutions of the Cauchy problem (4) if the initial

3i.e. qc = γ + 1.
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data is in the Sobolev space Hs(R2) with s < 1, and the loss of uniqueness if u0

belongs to some Orlicz space.

This paper is organized as follows. In the next section, we state our main
results. In Section 3, we recall some basic definitions and auxiliary lemmas. The
fourth section deals with the H1 regularity regime.

Finally, we mention that C will be used to denote an absolute constant which
may vary from line to line. We also use A . B to denote an estimate of the form
A ≤ CB for some absolute constant C and A ≈ B if A . B and B . A.

2 Main results

First, we prove that without any restriction on the size of the initial data, the
Cauchy problem (4) is locally well-posed in the Sobolev space H1(R2). To do
so, we use a standard fixed point argument. The uniqueness part is non trivial
although it follows the steps of Brezis-Cazenave’s proof [3] in the case of mono-
mial nonlinearity in dimension d ≥ 3. Thanks to a standard blow-up criterion
(see for example [3]), the parabolic regularization effect and the maximum princi-
ple, we prove that in the defocusing case, the maximal solution remains bounded
and therefore can be extended for all positive time. Recall that the energy is given
by

J(u(t)) :=
1

2
‖∇u(t)‖2

L2(R2) −
∫

R2
F(u(t)) dx, with F(u) =

∫ u

0
f (v) dv .

Our main result can be stated as follows.

Theorem 2.1. Let u0 ∈ H1(R2).

1) There exist T > 0 and a unique u solution to (4) in C([0, T]; H1), moreover
u ∈ C((0, T]; L∞).

2) If f (u) = −u(eu2 − 1), then the (above) solution is global.

3) If f (u) = u(eu2 − 1), then a data u0 6= 0 with J(u0) ≤ 0 gives a unique solution
blowing up in finite time.

Remark 2.2. The first assertion of the above Theorem remains true for f (u) = ±ueu2
,

and the second one also extends to the case f (u) = −ueu2
. This means that we need to

remove the quadratic term from the nonlinearity only for the blow up result.

The previous Theorem shows that the H1 regularity supports well the expo-
nential nonlinearity. That is why we have obtained a “good” H1-theory.
For small data, the solution to (4) given by the previous Theorem is global. In
fact, following the proof of Nakamura-Ozawa [19] for the Schrödinger equation
we have

Proposition 2.3. There exists ε > 0 such that for any u0 ∈ H1(R2) satisfying
‖u0‖H1(R2) ≤ ε, the solution to (4) given by the previous Theorem is global.
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3 Background material

In this section we will fix the notation, state the basic definitions and recall some
known and useful tools. First we recall the standard smoothing effect (see for
example [3]).

Lemma 3.1. There exists a positive constant C such that for all 1 ≤ β ≤ γ ≤ ∞, we
have

‖et∆ϕ‖Lγ ≤ C

t
1
β− 1

γ

‖ϕ‖Lβ , ∀t > 0, ∀ϕ ∈ Lβ(R2) (5)

where et∆ϕ := Kt ∗ ϕ = 1
4πt e−

| . |2
4t ∗ ϕ.

Using Young and Hölder inequalities and the precedent Lemma with the fol-
lowing integral formula

u(t) = et∆u0 +
∫ t

0
e(t−s)∆ (∂tu − ∆u) (s) ds

we deduce the following estimates

Proposition 3.2.

sup
t∈[0,T]

‖u(t, .)‖H1(R2) ≤ C
(
‖u(t0, .)‖H1(R2) + ‖∂tu − ∆u‖L1([0,T],H1(R2))

)
. (6)

sup
t∈[0,T]

‖u(t, .)‖L∞(R2) ≤ C
(
‖u(t0 , .)‖L∞(R2) + ‖∂tu − ∆u‖L1([0,T],L∞(R2))

)
. (7)

We recall the following nonlinear estimates which are consequence of the
mean value theorem and the convexity of the exponential function. See [10, 6].

Lemma 3.3. For any ε > 0 there exists Cε > 0 such that

| f (U1)− f (U2)| ≤ Cε|U1 − U2|
2

∑
i=1

(
e(1+ε)U2

i − 1
)

. (8)

| f ′(U1)− f ′(U2)| ≤ Cε|U1 − U2|
2

∑
i=1

(
e2(1+ε)U2

i − 1
)1/2

. (9)

In order to control the nonlinear part in L1
t (H1

x), we will use the following
Moser-Trudinger inequality [1, 18, 27].

Proposition 3.4. Let α ∈ (0, 4π), a constant Cα exists such that for all u ∈ H1(R2)
satisfying ‖∇u‖L2(R2) ≤ 1, we have

∫

R2

(
eα|u(x)|2 − 1

)
dx ≤ Cα‖u‖2

L2(R2). (10)

Moreover, (10) is false if α ≥ 4π.
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Let us mention that α = 4π becomes admissible if we require ‖u‖H1(R2) ≤ 1

rather than ‖∇u‖L2(R2) ≤ 1. Precisely

sup
‖u‖

H1(R2)
≤1

∫

R2

(
e4π|u(x)|2 − 1

)
dx < ∞ (11)

and this is false for α > 4π. See [22] for more details.

Now, we give some technical results which will be useful later. The following
lemma is classical (see for example [26]) but the proof seems to be new.

Lemma 3.5. Let u ∈ H1(R2). Then for any α > 0 and 1 ≤ q < ∞,

eαu2 − 1 ∈ Lq(R2).

Proof of Lemma 3.5. Without loss of generality, we may assume that α = q = 1
and u is radial. First, let us observe that thanks to the following well known
radial estimate

|u(r)| ≤ C√
r
‖u‖H1 ,

we obtain for any a > 0,

∫

|x|≥a

(
e|u(x)|

2 − 1
)

dx ≤
∫

|x|≥a
|u(x)|2 e|u(x)|

2
dx ≤ e

C
a ‖u‖2

H1 ‖u‖2
L2 < ∞ .

Therefore, to conclude the proof it is sufficient to show that for suitable a > 0,
we have ∫ a

0
eu2(r) r dr < ∞ . (12)

For a > 0 and 0 < r < a, write

|u(r)− u(a)| =
∣∣∣
∫ a

r

√
s u′(s)

ds√
s

∣∣∣

≤ 1√
2π

‖∇u‖L2(|x|<a)

(
− log(

r

a
)
)1/2

.

Choosing a > 0 small enough such that

‖∇u‖2
L2(|x|<a) < 2π,

and witting

eu2(r) r . e2(u(r)−u(a))2
r

. r1−β, β :=
‖∇u‖2

L2(|x|<a)

π
,

we end up with (12).
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Proposition 3.6. For any T > 0, and u ∈ C([0, T]; H1(R2)), we have

eu2 − 1 ∈ C([0, T]; L1(R2)).

Proof of Proposition 3.6. Let t ∈ [0, T] and (tn) be a sequence in (0, T) such that
tn → t. Denote by un := u(tn) and u = u(t). We will prove that

eu2
n − 1 → eu2 − 1 in L1(R2).

Set vn := un − u. Clearly, we have

eu2
n − eu2

= eu2
(
(ev2

n − 1)(e2vnu − 1) + (e2vnu − 1) + (ev2
n − 1)

)
.

Hence

‖eu2
n − eu2‖L1 . ‖eu2 − 1‖L2 ‖(ev2

n − 1)(e2vnu − 1) + (e2vnu − 1) + (ev2
n − 1)‖L2

+ ‖(ev2
n − 1)(e2vnu − 1) + (e2vnu − 1) + (ev2

n − 1)‖L1 , (13)

and by Moser-Trudinger inequality we have

lim
n

‖ev2
n − 1‖Lp = 0, for any p ≥ 1. (14)

Now, it is sufficient to prove that

lim
n

‖e2|uvn| − 1‖Lp = 0, for any p ≥ 1.

We prove the last inequality for p = 1. The general case follows by changing vn

by pvn. Denoting by εn = ‖vn‖H1 , we have

e2|uvn| − 1 ≤ eε1/2
n |u|2+ε−1/2

n |vn|2 − 1

= eε1/2
n |u|2 − 1 + eε−1/2

n |vn|2 − 1 +
(

eε1/2
n |u|2 − 1

) (
eε−1/2

n |vn|2 − 1
)

.

Taking advantage of Lebesgue theorem, we obtain ‖eε1/2
n |u|2 − 1‖L1 → 0. For the

second term, we use Moser-Trudinger inequality to get
∫ (

eε−1/2
n |vn|2 − 1

)
dx . ‖ vn√

εn
‖2

L2 . εn .

Finally, using Hölder inequality and arguing in the same manner, we deduce that
the last term tends to zero in L1. This together with (13), (14) ends the proof of
Proposition 3.6.

4 H1-theory: proof of Theorem 2.1

This section is devoted to the proof of Theorem 2.1. We divide the proof into
several steps. First, we show the existence of a local solution to (4), regardless
of the sign of the nonlinearity. In the second step, we prove the uniqueness
in C([0, T); H1). This result, is not straightforward, although it follows Brezis-
Cazenave’s steps. Then we show that in the defocusing case we can extend the
solution globally in time. Finally, we establish a finite time blow-up result in the
focusing case.
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4.1 Local existence

We summarize the result in the following Theorem.

Theorem 4.1. Let u0 ∈ H1(R2). Then, there exist T > 0 and a solution u to (4) in the
class

C([0, T); H1(R2)).

Proof of Theorem 4.1. The idea here is similar to the one used in [12, 11, 10]. In-
deed, we decompose the initial data to a regular part and a small one. We prove
the existence of a local solution v to (4) associated to the regular initial data. Then
to recover a solution of our original problem we solve a perturbed equation sat-
isfied by w := u − v with small data.

We start by giving the local existence in (H1 ∩ L∞)(R2).

Proposition 4.2. Let u0 ∈ (H1 ∩ L∞)(R2). Then, there exists T > 0 (depending upon
u0) and a solution u to (4) such that

u − et∆u0 ∈ C([0, T); (H1 ∩ L∞)(R2)).

Remark 4.3.

i) Recall that

et∆u0 ∈ C([0, T); H1) ∩ C((0, T); L∞) ∩ L∞(0, T)× R
2).

ii) For T > 0 sufficiently small (depending on ‖u0‖L∞ and not on ‖u0‖H1), one has
‖u‖L∞([0,T],H1∩L∞) ≤ 2‖u0‖H1 .

We omit the proof of Proposition 4.2. Now we solve the perturbed prob-
lem. We decompose the initial data as follows u0 = (I − SN)u0 + SNu0 where
SN = ∑j≤N−1 △j, (△j) being an inhomogeneous frequency localization, and

N is a large integer to be fixed later. Recall that ‖(I − SN)u0‖H1
N−→ 0 and

SNu0 ∈ (H1 ∩ L∞)(R2).
By Proposition 4.2, there exist a time TN > 0 and a solution vN to the prob-
lem (4) with data SNu0. Now, we consider the perturbed problem satisfied by
w := u − vN and with data (I − SN)u0. Namely, let

{
∂tw − ∆w = − f (vN) + f (vN + w)

w(0) = (I − SN)u0.
(15)

Using a standard fixed point argument, we shall prove that (15) has a local solu-
tion in the space XT := C([0, T]; H1(R2)) for a suitable time T > 0 to be chosen.
We denote by ‖u‖T := ‖u‖L∞([0,T];H1(R2)) and we recall that (XT , ‖ . ‖T) is a
Banach space.
Set wl := et∆(I − SN)u0 and consider the map

Ψ : u 7−→
∫ t

0
e(t−s)∆( f (u + vN + wl)− f (vN))(s) ds.
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Let BT(r) be the ball in XT of radius r > 0 and centered at the origin. We prove
that for some T, r > 0, the map Ψ is a contraction from BT(r) into itself.
Applying the energy estimate (6) to u1, u2 ∈ BT(r) and using the smoothing effect
(5), we infer

‖Ψ(u1)− Ψ(u2)‖T . ‖ f (u1 + vN + wl)− f (u2 + vN + wl)‖L1([0,T],L2(R2))

+ T
3
2‖∇( f (u1 + vN + wl)− f (u2 + vN + wl))‖L∞([0,T],L1(R2)).

Set w := u1 − u2 and vi := ui + vN + wl. Using Lemma 3.3, we obtain

‖ f (v1)− f (v2)‖L2(R2) . ∑
i=1,2

‖w(e2v2
i − 1)‖L2(R2)

Since |vi|2 ≤ 2(wl + ui)
2 + 2v2

N and using the simple observation

ea+b − 1 = (ea − 1)(eb − 1) + (ea − 1) + (eb − 1)

we have,

‖w(e2v2
i − 1)‖L2 ≤ ‖w(e4v2

N − 1)‖L2 + ‖w(e4(ui+wl)
2 − 1)‖L2

+ ‖w(e4v2
N − 1)(e4(1+ǫ)(ui+wl)

2 − 1)‖L2 .

By Hölder inequality and Sobolev embedding, we have

‖w(e4v2
N − 1)‖L2 ≤ ‖w‖L2 e4‖vN‖2

L∞≤e4‖vN‖2
L∞‖w‖H1 ,

and

‖w(e4(ui+wl)
2 − 1)‖L2 ≤ ‖w‖L6‖e4(ui+wl)

2 − 1‖L3 . ‖w‖H1‖e4(ui+wl)
2 − 1‖L3 .

Denoting ”N := ‖(I − SN)u0‖H1 , we have ‖∇(ui + wl)‖L2≤r + εN
r,N−→ 0. Hence,

for α > 0, p ≥ 1 and thanks to Moser-Trudinger inequality we derive that for
large N and small r > 0,

‖eα(ui+wl)
2 − 1‖Lp ≤ ‖eαp(ui+wl)

2 − 1‖
1
p

L1 (16)

. (r + εN)
2/p,

and
‖w(e4(ui+wl)

2 − 1)‖L2 . ‖w‖H1(r + εN)
2/3.

Consequently,

‖w(e4v2
N − 1)(e4(1+ǫ)(ui+wl)

2 − 1)‖L2 . e4‖vN‖2
L∞‖w‖H1(r + εN)

2/3.

Therefore,

‖ f (v1)− f (v2)‖L1([0,T],L2) . [e4‖vN‖2
L∞+

(1 + e4‖vN‖2
L∞ )(r + εN)

2/3]T‖w‖L∞([0,T],H1(R2)),
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It remains to control ‖∇( f (v1)− f (v2))‖L∞([0,T],L1(R2)). We have

‖∇( f (v1)− f (v2))‖L1(R2)

= ‖∇v1( f ′(v1)− f ′(v2)) + (∇v1 −∇v2) f ′(v2)‖L1(R2)

≤ ‖∇v1( f ′(v1)− f ′(v2))‖L1(R2) + ‖∇w f ′(v2)‖L1(R2)

≤ E + F.

Arguing as before, we have

E . ‖v1‖H1e4‖vN‖2
L∞ (1 + (r + εN)

1/2)‖w‖H1 ,

and

F . (‖vN‖H1 + 2r + 2εN)e
4‖vN‖2

L∞‖w‖H1 .

Therefore

‖∇( f (v1)− f (v2))‖L∞([0,T],L1(R2)) ≤ C0,r,N‖w‖T ,

which implies that

‖Ψ(u1)− Ψ(u2)‖T ≤ C0,r,N(1 + T)T
1
2‖w‖T. (17)

Now we estimate ‖Ψ(u1)‖T . Taking account of the energy estimate (6) and the
smoothing effect (5), we get

‖Ψ(u1)‖T ≤ C‖ f (v1)− f (vN)‖L1([0,T],L2(R2))+

T
3
2 ‖∇( f (v1)− f (vN))‖L∞([0,T],L1(R2)),

where we set v1 := u1 + vN + wl. Taking v2 = vN, in the precedent computations,
we have

‖Ψ(u1)‖T ≤ C0,r,N(1 + T)T
1
2‖u1 + wl‖T

≤ C0,r,N(r + ‖u0‖H1(R2))(1 + T
1
2 )T

1
2

In conclusion, for some fixed large N and small r, there exists T > 0 small enough
such that Ψ is a contraction of some ball of XT. We obtain the desired solution by
taking u + wl where u is the fixed point of Ψ. The proof is achieved.

4.2 Uniqueness in C([0, T[; H1(R2))

This subsection is devoted to the proof of the uniqueness part of Theorem 2.1.
More precisely, we prove an unconditional uniqueness result.

Theorem 4.4. The solution given in Theorem 4.1 is unique in the class

C([0, T); H1(R2)).
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Proof of Theorem 4.4. Let u, v ∈ C([0, T]; H1) be two solutions to (4) with same
data u0 and set w := u − v. Define the potential

a(t, x) :=

{
f (u)− f (v)

w , if w 6= 0
f ′(u), if w = 0,

so that,

w(t) =
∫ t

0
e(t−s)∆a(s)w(s) ds.

The following Lemma can be seen as an extension of Brezis-Cazenave’s result [3]
to the two dimensional case. The crucial point is to show the continuity of the
potential term (continuity at t = 0). As pointed out in [3], this result seems to
remain open if the potential is only L∞ in time.

Lemma 4.5. Let a ∈ C([0, T]; Lp(R2)) and u ∈ L∞((0, T); Lq(R2)) with 2 ≤ q <

∞, 1 < p < ∞, 1
p +

1
q < 1 and such that

u(t) =
∫ t

0
e(t−s)∆a(s)u(s)ds, ∀ t ∈ [0, T].

Then u = 0 on [0, T].

Proof. It is clear that au ∈ L∞([0, T), Lr(R2)) where
1

r
=

1

q
+

1

p
(1 < r < ∞), so

that by maximal regularity u ∈ L p̃((0, T), W2,r(R2)) for all p̃ < ∞ and satisfies
for almost every t ∈ (0, T) the next equation in Lr(R2) ,

∂tu −△u = au . (18)

Let t0 ∈ [0, T], ψ ∈ C∞
0 (R2) and an := min{n, max{a,−n}}. Denote by vn the

solution to the dual problem
{

−∂tvn − ∆vn = anvn in (0, t0)× R
2,

vn(t0) = ψ.

Multiplying (18) by vn and then integrating on (0, t0)× R
2, we have

∫ t0

0

∫

R2
(∂tuvn − ∆uvn) dx dt =

∫ t0

0

∫

R2
auvn dx dt

Hence
∫

R2
u(t0)ψ dx =

∫ t0

0
∂t(uvn) dx dt

=
∫ t0

0

∫

R2
u∂tvn + (∆u + au)vn dx dt

=
∫ t0

0

∫

R2
(a − an)uvn dx dt. (19)

In order to prove that u = 0 on [0, T] it is sufficient to observe that

an
n→∞−→ a in C([0, T]; Lp(R2)) (20)
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and
sup
n≥0

‖vn‖L∞([0,t0),Lr′(R2)) ≤ Cr′‖ψ‖
Lr′ (R2), (21)

where
1

r′
= 1 − 1

r
. Now, we prove (21). We take ṽn(t) := vn(t0 − t), and bn(t) =:

an(t0 − t), we have {
∂tṽn − ∆ṽn = bnṽn,
ṽn(0) = ψ.

First, we multiply the precedent equation by |ṽn|r
′−2ṽn then we integrate over R

2,
we obtain

1

r′
d

dt

∫

R2
|ṽn(t, x)|r′ dx +

4(r′ − 1)

r′2

∫

R2
|∇|ṽn|r

′/2|2 dx ≤
∫

R2
|bn||ṽn|r

′
dx

≤
∫

R2
|b||ṽn|r

′
dx.

In the last inequality we used |bn| ≤ |b| because |an| ≤ |a|, where b = a(t0 − .) on
[0, t0].
Using the fact that |bj| ≤ j and Sobolev embedding, we get

∫

R2
|b||ṽn|r

′
dx ≤

∫

R2
|b − bj||ṽn|r

′
dx +

∫

R2
|bj||ṽn|r

′
dx

≤ ‖b − bj‖Lp‖ṽr′/2
n ‖2

L2p′ + j
∫

R2
|ṽn|r

′
dx,

≤ C‖b − bj‖Lp‖∇|ṽn|r
′/2‖2

L2(1+ 1
ε )
+ (j + C)‖ṽn(t)‖r′

Lr′

Since bj
j→∞−→ b in C([0, T]; Lp(R2)), we choose j ≥ 0 large enough such that

C‖b − bj‖Lp ≤ 4(r′ − 1)

r′2
.

Therefore
1

r′
d

dt
‖ṽn(t)‖r′

Lr′ ≤ (j + C)‖ṽn(t)‖r′

Lr′ .

Using Gronwall Lemma, il follows that

‖ṽn(t)‖r′

Lr′ ≤ ‖ψ‖r′

Lr′e
(j+C)r′t

which conclude the proof of (21).
The proof of the Lemma 4.5 is achieved.

Now, in order to apply Lemma 4.5, we need to check that a ∈ C([0, T]; L2).
We proceed by contradiction. Assume that there exists ε > 0, t ∈ [0, T] and a
sequence of real numbers (tn) in [0, T] such that

tn → t and ‖a(tn)− a(t)‖L2 > ε, ∀n ∈ N. (22)

Denote un := u(tn), vn := v(tn) and wn := w(tn). Recall that u, v ∈ C([0, T]; H1).
So up to extraction of a subsequence, we have

a(tn) → a(t) almost everywhere.



Local well posedness of a 2D semilinear heat equation 547

Moreover, by a convexity argument

|a(tn)| ≤ e2u2
n − 1 + e2v2

n − 1.

Since u ∈ C([0, T]; H1), using Proposition 3.6, we infer

e2u2
n − 1 → e2u2 − 1 and e2v2

n − 1 → e2v2 − 1 in L2(R2).

Thus, there exists φ ∈ L2 such that

|a(tn)| ≤ φ.

Using Lebesgue theorem, we deduce that

a(tn) → a(t) in L2.

This contradicts (22), and we conclude that a ∈ C([0, T]; L2).

End of the proof of Theorem 4.4.
It is sufficient to check assumptions of Lemma 4.5. Obviously w ∈ L∞([0, T],
Lq(R2)) for every 2 ≤ q < ∞.

4.3 Global existence

Consider the solution u to (1) in the defocusing case f (u) = −u(eu2 − 1). With

Proposition 3.6, (by applying to
√

pu and using the inequality epu2 − 1 ≥
(eu2 − 1)p), it follows that u(eu2 − 1) ∈ C([0, T], Lp) for every 1 ≤ p < ∞. This
implies that u − et∆u0 ∈ C([0, T], L∞) so that u ∈ C([0, T), L∞). This means that
u is a classical solution for positive time. The global existence is then a trivial
consequence of the maximum principle and the next standard blow-up criterion
(see for example [3]).

Lemma 4.6. Let u0 ∈ H1(R2) and u ∈ C([0, T∗); H1(R2)) solution to (4). Assume
that T∗

< ∞, then
lim sup

t→T∗
‖u(t)‖L∞(R2) = +∞.

4.4 Blow-up solutions

Recall the energy

J(t) := J(u(t)) =
1

2
‖∇u(t)‖2

L2 −
∫

R2
F(u(t)) dx,

with F(u) = 1
2

(
eu2 − 1 − u2

)
. We show that all solutions with non-positive en-

ergy have a finite lifespan time. More precisely

Proposition 4.7. Let u0 ∈ H1(R2)\{0} such that J(u0) ≤ 0 and u ∈ C([0, T∗[;
H1(R2)) be the maximal solution to (4) with data u0. Then T∗

< ∞.
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The proof is standard and follows for example [15] (see also [13] in the context
of the Klein-Gordon equation). It consists in following the evolution in time of
the function

y(t) :=
1

2

∫ t

0
‖u(s)‖2

L2 ds.

Proof of Proposition 4.7. First, observe that since we have removed the quadratic
term from the nonlinearity, then f (u) enjoys the following property for a certain
positive number ε

(
u f (u) − 2F(u)

)
≥ εF(u) . (23)

Next, multiplying (4) by u, integrating in space we obtain

J′(t) = −‖∂tu(t)‖2
L2 ,

and by an integration in time

J(t) = J(0)−
∫ t

0

∫

R2
(∂tu)

2(s, x) dx ds. (24)

Finally, a straight calculation shows that

y′′(t) = −‖∇u‖2
L2 +

∫

R2
u f (u) dx

≥ 2 + ε

2

( ∫

R2
2F(u) dx − ‖∇u‖2

L2

)

≥ (2 + ε)
( ∫ t

0

∫

R2
∂tu

2 dx ds − J(0)
)

, (25)

where we used property (23) in the second estimate and identity (24) in the last
one. Now, the proof goes by contradiction assuming that T∗ = ∞. We have

Claim 1: There exists t1 > 0 such that
∫ t1

0 ‖∂tu(s)‖2
L2 ds > 0.

Indeed, otherwise u(t) = u0 almost everywhere and thus u solves the elliptic
stationary equation ∆u = − f (u). Then ‖∇u‖2

L2(R2)
=

∫
R2 u f (u)dx, and therefore

0 ≤ ε
∫

R2
F(u0) dx ≤

∫

R2

(
u0 f (u0)− 2F(u0)

)
dx = 2J(0) ≤ 0

giving u0 = 0 which is an absurdity.
Claim 2: For any 0 < α < 1, there exists tα > 0 such that

(y′(t)− y′(0))2 ≥ αy′(t)2, t ≥ tα.

The claim immediately follows from the first one observing that

lim
t→∞

y(t) = lim
t→∞

y′(t) = +∞.

Claim 3: One can choose α = α(ε) such that

y(t)y′′(t) ≥ (1 + α)y′(t)2, t ≥ tα. (26)
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Indeed, we have

y(t)y′′(t) ≥ 2 + ε

2

( ∫ t

0

∫

R2
u2 dxds

) ( ∫ t

0

∫

R2
∂tu

2 dxds
)

≥ 2 + ε

2

( ∫ t

0

∫

R2
u∂tu dxds

)2

≥ 2 + ε

2
(y′(t)− y′(0))2

≥ (2 + ε)α

2
(y′(t))2,

where we used (25) in the first estimate, Cauchy-Schwarz inequality in the second

and Claim 2 in the last one. Now choose α such that (2+ε)α
2 > 1 then

y(t)y′′(t) ≥ (2 + ε)α

2
(y′(t))2.

The fact that this ordinary differential inequality blows up in finite time contra-
dicts our assumption that the solution was global.
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