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Abstract

In this paper, relationships between the Ricci curvature and the squared
mean curvature for integral submanifolds of an f .p.k.-space form by a basic
inequality, are studied. We show that if an integral submanifold of maximum
dimension of an f .p.k.-space form satisfies the equality case, then it must be
minimal.

1 Introduction

In words of B. Y. Chen, to “find simple relationships between the main extrin-
sic invariant and the main intrinsic invariants of a submanifold” is one of the
basic problems in the theory of submanifolds ([7]). In this way, he established
a relationship between sectional curvature function and the shape operator for
submanifolds in real space forms [7] and another relationship between the Ricci
curvature and the squared mean curvature [9]. Corresponding relationships have
been proved for submanifolds of Sasakian space forms [18], C-totally real sub-
manifolds in sasakian space forms [15], integral submanifolds of S-space forms
[15], submanifolds of S-space forms [16].

On the other hand, for manifolds with an f -structure, D. E. Blair has intro-
duced S-manifolds as the analogue of the Kähler structure in the almost com-
plex case and of Sasakian structure in the almost contact case [3]. Also, f .p.k.-
space forms are introduced by M. Falcitelli and A. M. Pastore as generalization of
Sasakian space forms [10].
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The purpose of the present paper is to study Ricci tensor, sectional curvature
and scalar curvature of submanifolds of a generalized f .p.k.-space form and ob-
tain similar relationship to Chen’s one mentioned above. In section 2, we state
definitions of f .p.k.-space form and its curvature tensor . Section 3 is devoted to
the study sectional curvature of submanifold of an f .p.k.-space form. In section 4,
we investigate Ricci tensor and scalar curvature of submanifold of an f .p.k.-space
form. In section 5, we study Chen’s relationship between the Ricci curvature and
the squared mean curvature for integral submanifolds. Finally, in section 6, we
find minimality of integral submanifolds of maximum dimension.

2 Preliminaries

In the class of f -structures introduced in 1963 by Yano [26], particularly interest-
ing are the so-called f -structures with complemented frames, also called globally
framed f -structures or f -structures with parallelizable kernel (briefly
f .p.k.-structures) ([3]). An f .p.k.-manifold is a manifold M2n+s on which is de-
fined an f -structure, that is a (1, 1)-tensor field ϕ satisfying ϕ3 + ϕ = 0, of rank
2n, such that the subbundle kerϕ is parallelizable. Then, there exists a global
frame {ξi}, i ∈ {1, . . . , s}, for the subbundle kerϕ, with dual 1-form ηi, satisfying
ϕ2 = −I + ηi ⊗ ξi, ηi(ξ j) = δi

j, from which ϕξi = 0, ηi ◦ ϕ = 0 follow. An

f .p.k.-structure on a manifold M2n+s is said to be normal if the tensor field N =
[ϕ, ϕ] + 2dηi ⊗ ξi vanishes, [ϕ, ϕ] denoting the Nijenhuis torsion of ϕ. It is known
that one can consider a Riemannian metric g on M2n+s associated with an f .p.k.-

structure (ϕ, ξi, ηi), such that g(ϕX, ϕY) = g(X, Y) −
s

∑
i=1

ηi(X)ηi(Y), for any

X, Y ∈ Γ(T2n+s M), and the structure (ϕ, ξi , ηi, g) is then called a metric f .p.k.-
structure. Therefore, T2n+sM splits as complementary orthogonal sum of its sub-
bundles Imϕ and kerϕ. We denote their respective differentiable distributions by
D and D⊥.
Let Ω denote the 2-form on M2n+s defined by Ω(X, Y) = g(X, ϕY), for any
X, Y ∈ Γ(T2n+s M).

Several subclasses have been studied from different points of view ([2, 3]),
also dropping the normality condition and, in this case, the term almost precedes
the name of the considered structures or manifolds. As in ([3]), a metric f .p.k.-
structure is said a K-structure if it is normal and the fundamental 2-form Ω is
closed; a manifold with a K-structure is called a K-manifold. In particular, if
dηi = Ω, for all i ∈ {1, . . . , s}, the K-structure is said an S-structure and M2n+s an
S-manifold. Finally, if dηi = 0 for all i ∈ {1, . . . , s}, then the K-structure is called
a C-structure and M2n+s is said a C-manifold. Obviously, if s = 1, a K-manifold
M2n+1 is a quasi Sasakian manifold, a C-manifold is a cosymplectic manifold and
an S-manifold is a Sasakian manifold.

We recall that the Levi-Civita connection ∇ of a metric f .p.k.-manifold satisfies
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the following formula ([3]):
2g((∇X ϕ)Y, Z) = 3 dΩ(X, ϕY, ϕZ) − 3dΩ(X, Y, Z)

+ g(N(Y, Z), ϕX) + N
(2)
j (Y, Z)η jX (2.1)

+ dη j(ϕY, X)η j(Z)− 2dη j(ϕZ, X)η j(Y),

where N
(2)
j is given by N

(2)
j (X, Y) = 2dη j(ϕX, Y) − 2dη j(ϕY, X).

Furthermore, for S-manifolds we have ∇Xξ j = −ϕX, j = 1, ..., s, ([4]). Putting

ξ̄ =
s

∑
j=1

ξ j, η̄ =
s

∑
j=1

ηj is its dual form with respect to g and:

(∇X ϕ)Y = g(ϕX, ϕY)ξ̄ + η̄(Y)ϕ2X. (2.2)

We remark that (2.2) together with £ξi
g = 0 and £ξi

η j = 0 , i, j ∈ {1, . . . , s},
characterizes the S-manifolds among the metric f .p.k.-manifolds.

A metric f .p.k.-manifold (M2n+s, ϕ, ξi, ηi, g) has pointwise constant (p.c.)
ϕ-sectional curvature if at any p ∈ M2n+s, c(p) = Rp(X, ϕX, X, ϕX) does not
depend on the ϕ-section spanned by {X, ϕX}, for any unit X ∈ Dp. Several
results involving the pointwise constancy of the ϕ-sectional curvatures of an
almost contact metric manifold (i.e. for s = 1) are recently obtained in [1, 14].
We refer to [5] for a systematic exposition of the classical curvature results on
contact metric manifolds.
We recall some known results.

Proposition 2.1. ([18, 19]) A Sasaki manifold (M2n+1, ϕ, ξ, η, g) has p.c. ϕ-sectional
curvature c if and only if its curvature tensor field verifies:

R(X, Y, Z) =
1

4
(c + 3){g(Y, Z)X − g(X, Z)Y}

+
1

4
(c − 1){g(X, ϕZ)ϕY − g(Y, ϕZ)ϕX + 2g(X, ϕY)ϕZ (2.3)

+ η(X)η(Z)Y − η(Y)η(Z)X + g(X, Z)η(Y)ξ − g(Y, Z)η(X)ξ},

for any X, Y, Z tangent to M2n+1.

A Sasaki manifold M2n+1 with constant ϕ-sectional curvature c ∈ R is called
a Sasakian space form and denoted by M2n+1(c). It is well known that, if n ≥ 2,
a Sasaki manifold M2n+1 with p.c. ϕ-sectional curvature c is a Sasakian space
form. As examples of Sasakian space forms we mention R2n+1 and S2n+1, with
standard Sasakian structures ([2]).

Definition 2.2. ([3]) An almost contact metric manifold (M2n+1, ϕ, ξ, η, g) is a gen-
eralized Sasakian space form, denoted by (M2n+1, f1, f2, f3), if it admits three smooth
functions f1, f2, f3 such that its curvature tensor field verifies, for any X, Y, Z ∈ TM:
R(X, Y, Z) = f1{g(Y, Z)X − g(X, Z)Y}

+ f2{g(X, ϕZ)ϕY − g(Y, ϕZ)ϕX + 2g(X, ϕY)ϕZ} (2.4)

+ f3{η(X)η(Z)Y − η(Y)η(Z)X + g(X, Z)η(Y)ξ − g(Y, Z)η(X)ξ},

Remark 2.3. Any generalized Sasakian space form has p.c. ϕ-sectional curvature
c = f1 + 3 f2. Obviously, a Sasaki manifold of p.c. ϕ-sectional curvature c satisfies
(2.4) with f1 = 1

4(c + 3), and f2 = f3 = 1
4(c − 1). A cosymplectic manifold with p.c.

ϕ-sectional curvature c satisfies (2.4) with f1 = f2 = f3 = 1
4 c.
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Proposition 2.4. ([3]) An S-manifold M2n+s has p.c. ϕ-sectional curvature c if and
only if its curvature tensor field verifies:

R(X, Y, Z) =
1

4
(c + 3s){g(ϕX, ϕZ)ϕ2Y − g(ϕY, ϕZ)ϕ2X}

+
1

4
(c − s){g(Z, ϕY)ϕX − g(Z, ϕX)ϕY + 2g(X, ϕY)ϕZ} (2.5)

+ {η̄(X)η̄(Z)ϕ2Y − η̄(Y)η̄(Z)ϕ2X + g(ϕY, ϕZ)η̄(Y)ξ̄

− g(ϕX, ϕZ)η̄(X)ξ̄}.

for any X, Y, Z tangent to M2n+1.

An S-manifold M2n+s with constant ϕ-sectional curvature c ∈ R is called an
S-space form and denoted by M2n+s(c). Moreover, it is also well known that if
n ≥ 2 then an S-manifold with p.c. ϕ-sectional curvature c is an S-space form.
We remark that for s = 1 (2.5) reduces to (2.3).

Definition 2.5. In [19], Oubiña introduced the notion of a trans-Sasakian manifold. An
almost contact metric manifold M is called trans-Sasakian manifold if there exist two
functions α and β on M such that ([22]):

(∇X ϕ)(Y) = α{g(X, Y)ξ − η(Y)X} + β{g(ϕX, Y)ξ − η(Y)ϕX}, (2.6)

for vector fields X, Y on M. From (2.6) it is easy to see that:
∇Xξ = −αϕX + β(X − η(X))ξ. (2.7)

In particular, if β = 0, then M is said to be an α-Sasakian manifold. Sasakian manifolds
appear as examples of α-Sasakian manifolds with α = 1.

On the other hand, if α = 0, then M is said to be a β-Kenmotsu manifold. Kenmotsu
manifolds, defined in [14], are particular examples with β = 1.

Another important kind of trans-Sasakian manifolds is that of cosymplectic manifolds
obtained for α = β = 0.

Proposition 2.6. ([13]) An almost contact metric manifold is said to be an almost
C(α)-manifold if its Riemannian curvature tensor verifies:

R(X, Y, Z, W) = R(X, Y, ϕZ, ϕW) + α{g(X, W)g(Y, Z) − g(X, Z)g(Y, W)

+ g(X, ϕZ)g(Y, ϕW) − g(X, ϕW)g(Y, ϕZ)},

for vector fields X, Y, Z, W on M, where α is a real number. Moreover, if such a manifold
has constant ϕ-sectional curvature equal to c, then its curvature tensor is given by:

R(X, Y)Z =
1

4
(c + 3α2){g(Y, Z)X − g(X, Z)Y}

+
1

4
(c − α2){g(X, ϕZ)ϕY − g(Y, ϕZ)ϕX + 2g(X, ϕY)ϕZ

+ η(X)η(Z)Y − η(Y)η(Z)X + g(X, Z)η(Y)ξ − g(Y, Z)η(X)ξ},

and so, it is a generalized Sasakian space form with f1 = 1
4(c + 3α2) and f2 = f3 =

1
4(c − α2).

Example A. The products between a complex space form and a one dimen-
sional manifold are the main examples of cosymplectic space forms, which are
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often seen as the odd dimensional version of complex space forms. We mention
CPn × R and CHn × R as special examples.

(See [14) A Kenmotsu manifold is a warped product I × f N of an interval I

and a Kähler manifold N with warping function f (t) = set, where s is a nonzero
constant and a Kenmotsu space form is a space of constant curvature -1, and then
it is locally hyperbolic space.
There exists no connected Kenmotsu space form of dimension ≥ 5. Examples of
Kenmotsu space forms are not known so far and according to D. E. Blair (in a
private conversation), one doubts that there are any.

For example of almost C(α)-manifold we observe that Sasakian manifolds are
C(1)-manifolds.

Pseudo-umbilical, totally contact umbilical, totally contact geodesic, totally
umbilical and totally geodesic hypersurfaces of an S-space form are also S-space
forms.

Let F denote any set of smooth function Fij on M2n+s such that Fij = Fji for
any i, j ∈ {1, 2, . . . , s}.

Definition 2.7. ([10]) A (generalized) f .p.k.-space form denoted by M2n+s(F1, F2,F ),
is a metric f .p.k.-manifold (M2n+s, ϕ, ξi, ηi, g) which admits smooth functions F1, F2, F
such that its curvature tensor field verifies:

R(X, Y, Z) = F1{g(ϕX, ϕZ)ϕ2Y − g(ϕY, ϕZ)ϕ2X}

+ F2{g(Z, ϕY)ϕX − g(Z, ϕX)ϕY + 2g(X, ϕY)ϕZ} (2.8)

+
s

∑
i,j=1

Fij{ηi(X)η j(Z)ϕ2Y − ηi(Y)η j(Z)ϕ2X + ηi(X)ξ j g(ϕY, ϕZ)

− ηi(Y)ξ j g(ϕX, ϕZ)}.

For s = 1, we obtain a generalized Sasakian space form M2n+1( f1, f2, f3) with
f1 = F1, f2 = F2 and f3 = F1 − F11. In particular, if the given structure is either
Sasakian, or Kenmotsu, or possibly cosymplectic, then (2.8) holds with F11 = 1,
F1 = 1

4(c + 3), F2 = 1
4(c − 1) and f3 = F1 − F11 = 1

4(c − 1) = f2 in the first case,

F11 = −1, F1 = 1
4(c − 3), F2 = 1

4(c + 1) and f3 = F1 − F11 = 1
4(c + 1) = f2 in the

second case, and F11 = 0, F1 = 1
4 c, F2 = 1

4c and f3 = 1
4 c in the last case.

Definition 2.8. ([20]) An almost Hermitian manifold M2n is called a generalized com-
plex space form M( f1, f2) if its Riemannian curvature tensor R satisfies:

R(X, Y, Z) = f1{g(Y, Z)X − g(X, Z)Y}+

f2{g(X, JZ)JY − g(Y, JZ)JX + 2g(X, JY)JZ},

for all X, Y, Z ∈ TM, where f1 and f2 are smooth functions on M.

Example B. Any Kähler manifold with constant holomorphic sectional curva-
ture is a generalized complex space form. This is also true for any almost Her-
mitian manifold with constant sectional curvature, as for example 6-dimensional
sphere which is not Kähler manifold. In fact, These cases are the only possible
ones when 2n ≥ 6.
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Example C. (see [10]) Considers a 4-dimensional generalized complex space-
form (M̄, J, ḡ) with R̄ = f1π1 + f2π2, f2 nowhere vanishing and non constant,
and the Riemannian product M4+s = M̄ × Rs, with metric g = ḡ + g0, g0 being

the standard metric on Rs. Put ξk = ∂
∂xk and ϕX̄ = JX̄ for X̄ ∈ TM̄, ϕξk = 0 for

any k ∈ {1, . . . , s} and ηkX = g(X, ξk). Then, (M4+s, ϕ, ξk, ηk, g) is a generalized
f .p.k.-space form.

Let M be an m-dimensional submanifold immersed in a generalized f .p.k.-
space form M̄2n+s. The Gauss-Weingarten formulas are given by:

∇̄XY = ∇XY + h(X, Y); X, Y ∈ TM,

∇̄XN = −ANX +∇⊥
X N; X ∈ TM, N ∈ T⊥M,

where ∇⊥ is the connection in the normal bundle, h is the second fundamental
form of M and AN the Weingarten endomorphism associated with N. Then AN

and h are related by:

g(ANX, Y) = g(h(X, Y), N).

We denote by R̄ and R the curvature tensor fields associated with ∇̄ and ∇,
respectively. The Gauss equation is given by:

R̄(X, Y, Z, W) = R(X, Y, Z, W) + g(h(X, Z), h(Y, W)) − g(h(X, W), h(Y, Z)),
(2.9)

where X, Y, Z, W belong to TM.

3 Sectional Curvature of Submanifolds

Let M be a submanifold of a generalized f .p.k.-space form M̄2n+s(F1, F2,F ). Then
from equation of Gauss we have:

R(X, Y, Z, W) = R̄(X, Y, Z, W) − g(h(X, Z), h(Y, W)) + g(h(X, W), h(Y, Z))

= F1{g(ϕX, ϕZ)g(ϕ2Y, W)− g(ϕY, ϕZ)g(ϕ2 X, W)}

+ F2{g(Z, ϕY)g(ϕX, W) − g(Z, ϕX)g(ϕY, W) +

2g(X, ϕY)g(ϕZ, W)} (3.1)

+
s

∑
i,j=1

Fij{ηi(X)η j(Z)g(ϕ2Y, W)− ηi(Y)η j(Z)g(ϕ2X, W) +

ηi(X)η j(W)g(ϕY, ϕZ) − ηi(Y)η j(W)g(ϕX, ϕZ)}

−g(h(X, Z), h(Y, W)) + g(h(X, W), h(Y, Z)),

for any X, Y, Z, W tangent to M.

Let KM(X, Y) be the sectional curvature determined by orthonormal vectors
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X and Y. Then from equation (3.1) we have:
KM(X, Y) = g(h(X, X), h(Y, Y))− ‖ h(X, Y) ‖2 +3F2g2(X, ϕY)

+ F1{(1 −
s

∑
k=1

ηk(X)2)(1 −
s

∑
k=1

ηk(Y)2)− (
s

∑
k=1

ηk(X)ηk(Y))2}

+
s

∑
i,j=1

Fij{ηi(X)η j(X)(1 −
s

∑
k=1

ηk(Y)2) + ηi(Y)η j(Y)(1 −
s

∑
k=1

ηk(X)2)

+ 2ηi(X)η j(Y)
s

∑
k=1

ηk(X)ηk(Y)}.

Thus we have:

Theorem 3.1. Let M be a submanifold of a generalized f .p.k.-space form M̄2n+s(F1, F2,F ).
Then the sectional curvature of M determined by orthogonal tangent vectors {X, Y} is
given by:
KM(X, Y) = g(h(X, X), h(Y, Y))− ‖ h(X, Y) ‖2 +3F2g2(X, ϕY)

+ F1{(1 −
s

∑
k=1

ηk(X)2)(1 −
s

∑
k=1

ηk(Y)2)− (
s

∑
k=1

ηk(X)ηk(Y))2} (3.2)

+
s

∑
i,j=1

Fij{ηi(X)η j(X)(1 −
s

∑
k=1

ηk(Y)2) + ηi(Y)η j(Y)(1 −
s

∑
k=1

ηk(X)2)

+ 2ηi(X)η j(Y)
s

∑
k=1

ηk(X)ηk(Y)}.

From this we have the following corollaries for the sectional curvature of sub-
manifold determined by orthonormal tangent vectors {X, Y}.

Corollary 3.2. The sectional curvature of a submanifold of an S-space form M̄2n+s(c) is
given by:

KM(X, Y) = g(h(X, X), h(Y, Y))− ‖ h(X, Y) ‖2 +
3

4
(c − s)g2(X, ϕY)

+
1

4
(c + 3s){(1 −

s

∑
k=1

ηk(X)2)(1 −
s

∑
k=1

ηk(Y)2)− (
s

∑
k=1

ηk(X)ηk(Y))2}

+
s

∑
i,j=1

{ηi(X)η j(X)(1 −
s

∑
k=1

ηk(Y)2) + ηi(Y)η j(Y)(1 −
s

∑
k=1

ηk(X)2)

+ 2ηi(X)η j(Y)
s

∑
k=1

ηk(X)ηk(Y)}. (3.3)

Proof. We will get the result by using Fij = 1; ∀1 ≤ i, j ≤ s, F1 = 1
4(c + 3s),

F2 = 1
4(c − s) in (3.2).

Corollary 3.3. The sectional curvature of a submanifold of a generalized Sasakian space
form M̄(c) is given by:

KM(X, Y) = g(h(X, X), h(Y, Y))− ‖ h(X, Y) ‖2 + f1 + 3 f2g2(X, ϕY)−

f3(η
2(X) + η2(Y)). (3.4)
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Proof. We will get the result by using s = 1, F1 = f1, F2 = f2, F11 = f1 − f3 in (3.2).

Corollary 3.4. The sectional curvature of a submanifold of a Sasakian space form M̄(c)
is given by:

KM(X, Y) = g(h(X, X), h(Y, Y))− ‖ h(X, Y) ‖2 +
1

4
(c + 3)

+
1

4
(c − 1)(3g2(X, ϕY) − η2(X)− η2(Y)). (3.5)

Proof. We get the result by using f1 = 1
4(c + 3), f2 = f3 = 1

4(c − 1) in (3.4).

Corollary 3.5. The sectional curvature of a submanifold of a Kenmotsu space form M̄(c)
is given by:

KM(X, Y) = g(h(X, X), h(Y, Y))− ‖ h(X, Y) ‖2 +
1

4
(c − 3)

+
1

4
(c + 1)(3g2(X, ϕY) − η2(X)− η2(Y)). (3.6)

Proof. We get the result by using f1 = 1
4(c − 3), f2 = f3 = 1

4(c + 1) in (3.4).

Corollary 3.6. The sectional curvature of a submanifold of a cosymplectic space form
M̄(c) is given by:

KM(X, Y) = g(h(X, X), h(Y, Y))− ‖ h(X, Y) ‖2

+
1

4
c(1 + 3g2(X, ϕY)− η2(X)− η2(Y)). (3.7)

Proof. By taking f1 = f2 = f3 = 1
4 c in (3.4), we obtain the above.

Corollary 3.7. The sectional curvature of a submanifold of an almost C(α)-manifold
M̄(c) is given by:

KM(X, Y) = g(h(X, X), h(Y, Y))− ‖ h(X, Y) ‖2 +
1

4
(c + 3α2)

+
1

4
(c − α2)(3g2(X, ϕY)− η2(X)− η2(Y)). (3.8)

Proof. We getting f1 = 1
4(c + 3α2), f2 = f3 = 1

4(c − α2) in (3.4), we obtain (3.8).
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4 The Ricci Tensors and Scalar Curvature of a Submanifold

Let M be a submanifold of a generalized f .p.k.-space form M̄2n+s(F1, F2,F ). Then
it is straightforward to calculate the Ricci tensor of M as following:

Ric(X, Y) =
n

∑
k=1

g(R(ek , X)Y, ek)

=
n

∑
k=1

F1{g(ϕek, ϕY)g(ϕ2X, ek)− g(ϕX, ϕY)g(ϕ2ek, ek)}

+
n

∑
k=1

F2{g(Y, ϕX)g(ϕek , ek)− g(Y, ϕek)g(ϕX, ek)

+ 2g(ek, ϕX)g(ϕY, ek)}

+
n

∑
k=1

s

∑
i,j=1

Fij{ηi(ek)η
j(Y)g(ϕ2X, ek)− ηi(X)η j(Y)g(ϕ2X, ek)

+ ηi(ek)η
j(ek)g(ϕX, ϕY) − ηi(X)η j(ek)g(ϕek, ϕY)}

− g(h(ek , Y), h(X, ek)) + g(h(ek , ek), h(X, Y))

= F1{−g(ϕX, ϕY) − g(ϕX, ϕY)
n

∑
k=1

(−1 +
s

∑
α=1

(ηα(ek))
2)}

+ 3F2{g(X, Y) −
s

∑
α=1

ηα(X)ηα(Y)}

+
s

∑
i,j=1

Fij{−
n

∑
k=1

ηi(ek)η
j(Y)g(ϕX, ϕek) + ηi(X)η j(Y)

n

∑
k=1

g(ϕek, ϕek)

+ g(ϕX, ϕY)
n

∑
k=1

ηi(ek)η
j(ek)− ηi(X)

n

∑
k=1

η j(ek)g(ϕY, ϕek)}

+
n

∑
k=1

[g(h(ek , ek), h(X, X)) − g(h(X, ek), h(Y, ek))]

= F1(n − s − 1)(g(X, Y) −
s

∑
α=1

ηα(X)ηα(Y))

+ 3F2(g(X, Y) −
s

∑
α=1

ηα(X)ηα(Y))

+
s

∑
i,j=1

Fij(n − s)ηi(X)η j(Y) + (
s

∑
i=1

Fii)(g(X, Y) −
s

∑
α=1

ηα(X)ηα(Y))

+
n

∑
k=1

[g(h(X, X), h(ek , ek))− g(h(X, ek), h(Y, ek))].

Also, the scalar curvature ρ of a submanifold M of M̄2n+s(F1, F2,F ) is then
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given by:

ρ =
n

∑
t=1

Ric(et, et) = (F1(n − s − 1) + 3F2)(
n

∑
t=1

g(et, et)−
n

∑
t=1

s

∑
α=1

(ηα(et))
2)

+
s

∑
i,j=1

Fij(n − s)
n

∑
t=1

ηi(et)η
j(et) + (

s

∑
i=1

Fii)(
n

∑
t=1

g(et, et)−
n

∑
t=1

s

∑
α=1

(ηα(et))
2)

+
n

∑
t=1

n

∑
k=1

[g(h(et , et), h(ek, ek))− g(h(et, ek), h(et, ek))]

= (n − s)((n − s − 1)F1 + 3F2) + (n − s)
s

∑
i=1

Fii + (n − s)
s

∑
i=1

Fii

+
n

∑
i,j=1

[g(h(ei , ei), h(ej, ej))− g(h(ei , ej), h(ei, ej))]

Thus, we obtain following:

Theorem 4.1. Let M be a submanifold of a generalized f .p.k.-space form M̄2n+s(F1, F2,F ).
Then the Ricci tensor and scalar curvature of M (resp.) are given by:

Ric(X, Y) = ((n − s − 1)F1 + 3F2 +
s

∑
i=1

Fii)g(ϕX, ϕY)

+ (n − s)
s

∑
i,j=1

Fijη
i(X)η j(Y)

+
n

∑
k=1

[g(h(X, X), h(ek , ek))− g(h(X, ek), h(Y, ek))], (4.1)

and:

ρ = (n − s)((n − s − 1)F1 + 3F2 + 2
s

∑
i=1

Fii)

+
n

∑
i,j=1

[g(h(ei , ei), h(ej, ej))− g(h(ei , ej), h(ei, ej))] (4.2)

5 Ricci curvature of integral submanifolds

Let M be an n-dimensional Riemannian manifold. Let {e1, . . . , ek}, 2 ≤ k ≤ n, be
an orthonormal basis of a k-plane section Πk of Tp(M). If k = n then Πn = Tp(M),
and if k = 2 then Π2 is a plane section of Tp(M). For a fixed i ∈ {1, . . . , k}, a k-
Ricci curvature of Πk at ei, denoted RicΠk

(ei), is defined by [9]:

RicΠk
(ei) =

k

∑
j 6=i

Kij, (5.1)

where Kij is the sectional curvature of the plane section spanned by ei and ej. An
n-Ricci curvature RicTp(M)(ei) is the usual Ricci curvature of ei, denoted Ric(ei).

Thus for any orthonormal basis {e1, . . . , en}, we have:

RicTp(M)(ei) = Ric(ei) =
n

∑
j 6=i

Kij.
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The scalar curvature ρ(Πk) of the k-plane section Πk is given by:

ρ(Πk) = ∑
1≤i<j≤k

Kij. (5.2)

Geometrically, ρ(Πk) is the scalar curvature of the image expp(Πk) of Πk at p
under the exponential map at p. The scalar curvature ρ(p) of M at p is identical
with the scalar curvature of the tangent space TpM of M at p, that is, ρ(p) =
ρ(TpM).

Let M be an n-dimensional submanifold of an m-dimensional Riemannian
manifold M̄ equipped with a Riemannian metric ḡ. The relative null space of
M at p is defined by [9]:

Np = {X ∈ TpM : h(X, Y) = 0, ∀Y ∈ TpM},

which is also known as the kernel of the second fundamental form at p [8].
Now, let {e1, . . . , en} be an orthonormal basis of the tangent space TpM and

er belongs to an orthonormal basis {en+1, . . . , em} of the normal space T⊥
p M. We

put:
hr

ij = g(h(ei , ej), er),

and:
‖ h ‖2= g(h(ei , ej), h(ei , ej)).

Let Kij and K̄ij denote the sectional curvature of the plane section spanned by

ei and ej at p in the submanifold M and in the ambient manifold M̄, respectively.

Thus, we can say that Kij and K̄ij are the “intrinsic” and “extrinsic” sectional
curvature of the Span{ei , ej} at p. In view of Gauss equation (2.9), we get:

Kij = K̄ij +
m

∑
r=n+1

(hr
iih

r
jj − (hr

ij)
2). (5.3)

From (5.3) it follows that:
2ρ(p) = 2ρ̄(TpM) + n2 ‖ µ ‖2 − ‖ h ‖2, (5.4)

where ρ̄(TpM) denotes the scalar curvature of the n-plane section TpM in the
ambient manifold M̄. Thus, we can say that ρ(p) and ρ̄(TpM) are the “intrinsic”
and “extrinsic” scalar curvature of the submanifold at p, respectively.

We denote the set of unit vectors in TpM by T1
p M, thus:

T1
p M = {X ∈ TpM : g(X, X) = 1}.

Now, we recall the following result from [12].
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Theorem 5.1. Let M be an n-dimensional submanifold of a Riemannian manifold M̄.
Then the following statements are true:

(i). For X ∈ T1
p M, we have:

Ric(X) ≤
1

4
n2 ‖ µ ‖2 +R̄ic(Tp M)(X), (5.5)

where R̄ic(Tp M)(X) is the n-Ricci curvature of TpM at X ∈ T1
p M with respect to the

ambient manifold M̄.
(ii). The equality case of (5.5) is satisfied by X ∈ T1

p M if and only if:

h(X, X) =
n

2
µ(p) and h(X, Y) = 0, (5.6)

for all Y ∈ TpM such that g(X, Y) = 0.

(iii). The equality case of (5.5) holds for all X ∈ T1
p M if and only if either p is a totally

geodesic point or n = 2 and p is a totally umbilical point.

From Theorem 5.1, we immediately have the following:

Corollary 5.2. Let M be an n-dimensional submanifold of a Riemannian manifold M̄.
For X ∈ T1

p M any two of the following three statements imply the remaining one:

(i) The mean curvature vector µ(p) vanishes.
(ii) The unit vector X belongs to the relative null space Np.
(iii) The unit vector X satisfies the equality case of (5.5), namely:

Ric(X) =
1

4
n2 ‖ µ ‖2 +R̄ic(Tp M)(X). (5.7)

From now on, let M̄ be a generalized f .p.k.-space form. A submanifold M of
M̄ is an integral submanifold if ηα(X) = 0, α = 1, . . . , s, for every tangent vector
X. A submanifold M of M̄ is an anti-invariant submanifold if ϕ(TM) ⊆ T⊥M.
An integral submanifold is identical with an anti-invariant submanifold normal
to the structure vector fields ξ1, . . . , ξs. In particular case of s = 1, an integral
submanifold M of a Sasakian manifold is a C-totally real submanifold [23]. It is
known that [5] an n-dimensional integral submanifold M, of an S-manifold M̄ of
dimension (2n+s), is of constant curvature s if and only if the normal connection
is flat.

First, we give the following Lemma.

Lemma 5.3. Let M be an n-dimensional integral submanifold of an f .p.k.-space form
M̄2m+s(c). Let {e1, . . . , en} be an orthonormal basis of the tangent space TpM. Then:

K̄ij = F1, (5.8)

R̄icTp M(ei) = (n − 1)F1, (5.9)

ρ̄(TpM) =
1

2
n(n − 1)F1. (5.10)

Proof. Equation (5.8) follows from (2.8). Using: R̄ic(Tp M)(ei) =
n

∑
j 6=i

K̄ij in (5.8), we

get (5.9). Next, using: 2ρ̄(Tp M) =
n

∑
i=1

R̄ic(TpM)(ei), from (5.9) we get (5.10).

Now, we have the following Theorem.
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Theorem 5.4. If M is an n-dimensional integral submanifold of an f .p.k.-space form
M̄2m+s(c), then the following statements are true:

(i). For X ∈ T1
p M, it follows that:

Ric(X) ≤
1

4
{n2 ‖ µ ‖2 +4(n − 1)F1}. (5.11)

(ii). The equality case of (5.11) is satisfied by X ∈ T1
p M if and only if (5.6) is true. If

µ(p) = 0, X ∈ T1
p M satisfies equality in (5.11) if and only if X ∈ Np.

(iii). The equality case of (5.4) holds for all X ∈ T1
p M if and only if either p is a totally

geodesic point or n = 2 and p is a totally umbilical point.

Proof. Using (5.9) in (5.5), we find the inequality (5.11). Rest of the proof is
straightforward.

By polarization, from Theorem 5.4, we drive:

Theorem 5.5. Let M be an n-dimensional integral submanifold of an f .p.k.-space form
M̄2m+s(c). Then the Ricci tensor Ric satisfies:

Ric ≤
1

4
{n2 ‖ µ ‖2 +4(n − 1)F1}g. (5.12)

where g is the induced Riemannian metric on M. The equality case of (5.12) is true if and
only if either M is totally geodesic submanifold or M is a totally umbilical surface.

When s = 0, we have the following two results:

Theorem 5.6. If M is an n-dimensional totally real submanifold of an 2m-dimensional
generalized complex space form M̄2m( f1, f2), then the following statements are true:

(i). For X ∈ T1
p M, it follows that:

Ric(X) ≤
1

4
{n2 ‖ µ ‖2 +4(n − 1) f1}. (5.13)

(ii). The equality case of (5.13) is satisfied by X ∈ T1
p M if and only if (5.6) is true. If

µ(p) = 0, X ∈ T1
p M satisfies equality in (5.13) if and only if X ∈ Np.

(iii). The equality case of (5.13) holds for all X ∈ T1
p M if and only if either p is a

totally geodesic point or n = 2 and p is a totally umbilical point.

It is known that (Theorem 4, [21]) if M is an n-dimensional compact minimal
C-totally real submanifold of a Sasakian space form M̄2m+1(c); c > −3, such that
M has positive sectional curvature, then M is totally geodesic. Therefore, we have
the following:

Theorem 5.7. An n-dimensional compact minimal C-totally real submanifold of a
Sasakian space form M̄2m+1(c); c > −3 with positive sectional curvature is Einstein
manifold and satisfies:

4Ric = (n − 1)(c + 3)g.
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6 Minimality of integral submanifolds of maximum dimension

We already know the following result ([5]). If M is an n-dimensional minimal
integral submanifold of any (2m + s)-dimensional S-space form M̄(c), then the
following four statements are equivalent:

(i). M is totally geodesic.
(ii). M is of constant curvature 1

4(c + 3s).

(iii). The Ricci tensor is 1
4(n − 1)(c + 3s)g.

(iv). The scalar curvature is 1
4n(n − 1)(c + 3s).

Lemma 6.1. Let Mm be an integral submanifold of a generalized f .p.k.-space form
M̄2n+s(c). Then, we have:

(i). g(ϕ(∇̄X ϕ)Y, Z) + g((∇̄X ϕ)ϕY, Z) = 0, for any X ∈ TM̄ and Y, Z ∈ TM.
(ii). ∇̄Xξi ∈ T⊥M, for any X ∈ TM̄.
(iii). Aξα

= 0 for any α = 1, . . . , s.
(iv). AϕXY = AϕYX, for any X, Y ∈ TM.

Proof. Covariantly differentiating ϕ2 = −I + ∑
s
i=1 ηiξi with respect to any

X ∈ TM̄, we get:

ϕo(∇̄X ϕ) + (∇̄X ϕ)oϕ =
s

∑
i=1

(∇̄Xηi)ξi +
s

∑
i=1

ηi∇̄Xξi,

which implies for an integral submanifold M:
g(ϕ(∇̄X ϕ)Y, Z) + g((∇̄X ϕ)ϕY, Z) = 0,

for any X ∈ TM̄ and Y, Z ∈ TM. This proves (i). Using Y = ξi in above men-
tioned equation we get for any Z ∈ TM:

g(ϕ2(∇̄Xξi), Z) = 0,

which implies:

g(∇̄Xξi, Z) =
s

∑
α=1

ηα(∇̄Xξi)g(ξα , Z),

for any X ∈ TM̄ and Z ∈ TM. Since, M is integral submanifold, we get:
g(∇̄Xξi, Z) = 0,

for any X ∈ TM̄ and Z ∈ TM. Namely, ∇̄Xξi ∈ T⊥M, which proves (ii). Now,
we have:

∇̄Xξi = −Aξi
X +∇⊥

X ξi,

for any X ∈ TM̄. That is, Aξi
= 0, which proves our assertion in (iii). Finally, we

have:
g(AϕXY, X) = g(h(X, Y), ϕX) = −g(X, ϕh(X, Y)),

and:
g(AϕYX, Y) = g(h(X, Y), ϕY) = −g(Y, ϕh(X, Y)),

for any X, Y ∈ TM. Then, we get:
AϕXY = −ϕh(X, Y) = AϕYX,

which completes our proof for (iv).

Following the same arguments as in [5], we get:
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Theorem 6.2. If M is an n-dimensional minimal integral submanifold of (2m + s)-
dimensional f .p.k.-space form M̄2m+s(c), then the following four statements are equiva-
lent:

(i). M is totally geodesic.
(ii). M is of constant curvature F1.
(iii). The Ricci tensor is (n − 1)F1g.
(iv). The scalar curvature is n(n − 1)F1.

Theorem 6.3. Let M be an n-dimensional integral submanifold of (2n + s)-dimensional
f .p.k.-space form M̄2n+s(c). If a unit vector of Tp(M) satisfies the equality case of (5.11),
then µ(p) = 0.

Proof. (see [15]) Choosing an orthonormal basis {e1, . . . , en} of TpM such that e1

satisfies the equality case of (5.11), we find {en+1 = ϕe1, . . . , e2n = ϕen, e2n+1 =
ξ1, . . . , e2n+s = ξs} as an orthonormal basis of T⊥

p M. From Lemma 6.1, Aξi
= 0

for all i ∈ {1, . . . , s} and AϕXY = AϕYX for X, Y ∈ TM. Then, by straightforward

calculation and using (5.6), we have: g(h(e1, e1), Z) = 0 where Z ∈ T⊥
p M and

Z = ∑
n
j=1 ajen+j + ∑

s
α=1 aαξα. Using (5.6) results µ(p) = 0.

The maximum Ricci curvature function ([8]) on a Riemannian manifold M,
denoted R̄ic(p), is defined as:

R̄ic(p) = max{Ric(X) : X ∈ T1
p M}.

Now, in view of Theorem (6.3), we immediately have the following:

Theorem 6.4. Let M be an n-dimensional integral submanifold of (2n + s)-dimensional
f .p.k.-space form M̄2n+s(c). Then:

R̄ic ≤
1

4
{n2 ‖ µ ‖2 +4(n − 1)F1}. (6.1)

If M satisfies the equality case of (6.1) identically, then M is a minimal submanifold and:
R̄ic = (n − 1)F1. (6.2)

Theorem 6.5. Let Mn be a Lagrangian submanifold of a 2n-dimensional generalized
complex space form M̄2n(c). Then:

R̄ic ≤
1

4
{n2 ‖ µ ‖2 +4(n − 1) f1}. (6.3)

If M satisfies the equality case of (6.3) identically, then M is a minimal submanifold and:
R̄ic = (n − 1) f1. (6.4)

From Theorem 6.4 we can state similar results for the cases of complex space
form, generalized Sasakian space form, S-space form, Sasakian space form, Ken-
motsu space form, cosymplectic space form and almost C(α)-manifold, easily.

Following the arguments as in [8], we can prove:

Theorem 6.6. Let M be an n-dimensional minimal integral submanifold of a (2n + s)-
dimensional f .p.k.-space form M̄2n+s(c). Then the following statements are true:

(i). The submanifold M satisfies the equality case of (6.1) if and only if dim(Np) ≥ 1.
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(ii). If dim(Np) is a positive constant d, then Np is completely integral distribution
and M is d-ruled, that is, for each p ∈ M, M contains a d-dimensional totally geodesic
submanifold M′ of M̄(c) passing through p.

(iii). If the submanifold M is also ruled, then it satisfies the equality case of (6.1)
identically if and only if, for each ruling M′ in M, the normal bundle T⊥M restricted to
M′ is a parallel normal subbundle of the normal bundle T⊥M′ along M′.

Acknowledgment. The author is thankful to the referee for the helpful sug-
gestions.
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