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Abstract

We have recently shown that a nilpotent Lie algebra L of dimension n ≥ 1
satisfies the inequality dim H2(L, Z) ≤ 1

2 (n + m − 2)(n − m − 1) + 1, where
dim L2 = m ≥ 1 and H2(L, Z) is the 2-nd integral homology Lie algebra
of L. Our first main result correlates this bound with the i-th Betti number
dim Hi(L, C×) of L, where Hi(L, C×) denotes the i-th complex cohomology
Lie algebra of L. Our second main result describes a more general restriction,
which follows an idea of Ellis in [G. Ellis, The Schur multiplier of a pair of
groups, Appl. Categ. Structures 6 (1998), 355–371].

1 Statement of the results

Given a nilpotent Lie algebra L of dimension dim L = n, it is well–known that
the second homology Lie algebra H2(L, Z) of L with coefficients in Z is again a
finite dimensional Lie algebra. Usually, H2(L, Z) is called Schur multiplier of L
(and denoted by M(L)), following the terminology of Schur (see [4, 5, 6, 7, 18, 19,
20, 21, 22, 25]). Now dim H2(L, Z) is upper bounded by a function depending
only on n, due to Batten and others [4, 5]:

dim M(L) ≤
1

2
n(n − 1), (1.1)

where the bound is exact if and only if L is abelian. On the other hand, the notion
of Schur multiplier may be reformulated from the perspective of the cohomology,
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since there exists the isomorphism of Lie algebras

H2(L, C
×) ≃ H2(L, Z) (1.2)

which follows from the Poincaré duality [16, Theorem 6.10] (note that this happens
for groups in [22, Theorem 10.31]). Now (1.2) is very useful not only for compu-
tational aspects, but also for studying the numerical restrictions on dim M(L) in
a more appropriate context of the literature. In fact some authors [8, 10, 15, 16]
call dim Hi(L, C×) the i-th Betti number of L, and, by means of (1.2), if we have
bounds on the second Betti number of a nilpotent Lie algebra, then we have
bounds on its Schur multiplier, and viceversa. This means that most of the re-
sults in [1, 2, 3, 18, 19, 20, 21, 25] are connected with [8, 10, 24], and viceversa, but
we will give more details in the rest of the paper. For the moment, we note that
[8, 10, 15, 16] mention that the behaviour of the Betti numbers is still unknown
and several problems remain unsolved. However the following three bounds are
true for a nilpotent Lie algebra L of dim L = n (see [8, 10, 15, 16, 24]):

2 ≤ dim Hi(L, C
×) ≤

n!

(n − i)!i!
−

(n − 2)!

(n − i − 1)!(i − 1)!
,

∀i = 1, . . . , n − 1 with n ≥ 3, (1.3)

1 ≤
i

∑
k=0

(−1)k+idim Hk(L, C
×), (1.4)

dim H1(L, C
×) · dim H1(L, C

×) ≤ 4 · dim H2(L, C
×), (1.5)

while the following is a conjecture of Halperin [15]:

2dim Z(L) ≤
n

∑
i=0

dim Hi(L, C
×), (1.6)

where Z(L) denotes the center of L. Originally, (1.3) is due to Cairns and others
[8], (1.4) is an isoperimetric type inequality of homological nature (see [14, 15, 16,
22]) and (1.5) is of type Golod-Shafarevich (see [16, 22]). Finally, (1.6) is known as
the toral rank conjecture (see [15, 24]).
In order to understand the motivation of our investigations, we note that the
idea of classifying nilpotent Lie algebras of finite dimension by restrictions on
their Schur multipliers goes back to [4, 5] and continued in [2, 6, 7, 11] under
different perspectives. These authors proved inequalities on dim M(L), involving
invariants related with the presentation of L. We know that L ≃ F/R by the short
exact sequence 0 → R  F ։ L → 0, where F is the free Lie algebra F on n
generators, R an ideal of F and the Witt’s Formula (see [2, 14, 16, 22]) shows

dim Fd/Fd+1 =
1

d ∑
r|d

µ(r) n
d
r ≡ ln(d), (1.7)

where

µ(r) =







1, if r = 1,
0, if r is divisible by a square,
(−1)s, if r = p1 . . . ps for distinct primes p1, . . . , ps
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is the celebrated Möbius function. Now [2, Theorem 2.5] and similar results of
[2, 6, 7, 11] provide inequalities of the same nature of (1.1), but based on (1.7)
and the main problem is to give an explicit expression for ln(d). For instance, if c
denotes the class of nilpotence of L, then [7, Theorem 4.1] shows

dim M(L) ≤
c

∑
j=1

ln(j + 1) =
c

∑
j=1




1

j + 1 ∑
i|j+1

µ(i) n
j+1

i



 (1.8)

and [7, Examples 4.3, 4.4] provide explicit values for µ(i) in order to evaluate
numerically (1.8) and then to compare with (1.1). It is in fact hard to describe
the behaviour of the Möbius function from a general point of view and so (1.7)
is not very helpful, when we do not evaluate the coefficients µ(i). It is still more
interesting to observe that the exactness of certain upper bounds on dim M(L)
implies theorems of splitting in the sense of [18, Theorem 3.1] and [19, Theorems
2.2, 3.1, 3.5, 3.6, 4.2], but these happen when the dimensions are small enough and
we are far from controlling the general cases. Notice that Chao [9] and Seeley [23]
proved that there exist uncountably many non–isomorphic nilpotent Lie algebras
of finite dimension, beginning already from dimension 10, and this illustrates the
complexity of the problem. Now we may understand the importance of being as
much concrete as possible in the study of the upper bounds for dim M(L).
Denoting by Li = [L, L, . . . , L]

︸ ︷︷ ︸

i−times

the i-th term of the lower central series of L,

Yankosky [25] sharpened (1.1) by

dim M(L) ≤
1

2
(n2 − n − m2 − m), (1.9)

where the role of dim L2 = m is significant, but we showed [18] that

dim M(L) ≤
1

2
(n + m − 2)(n − m − 1) + 1 (1.10)

is better than (1.1) and (1.9) for all n ≥ 4 (see [19, Corollary 3.4]). More re-
cently, Degrijse presents a different argument for proving (1.9) and uses spec-
tral sequences for bounding dim H2(L, C×) (hence dim M(L)) in [10, Theorem
4.6]. In order to state one of his results, we recall that the type of a finite dimen-
sional nilpotent Lie algebra L of class c is defined as the c-tuple (m1, m2, . . . , mc)
where m1 = dim L/L2, m2 = dim L2/L3, ..., mi = dim Li/Li+1, ..., mc =
dim Lc/Lc+1 = dim Lc. Modifying slightly [10, Definition 1.4], a free c-step
nilpotent extension of a finite dimensional Lie algebra L is a short exact sequence
0 → N  Fm1,c ։ L → 0 such that N ⊆ F2

m1,c, where Fm1 ,c is the free nilpo-
tent Lie algebra of class c on m1 generators. We say that L has depth d, if d is the
largest integer such that N ⊆ Fd

m1 ,c. With the present notations, [10, Theorem 4.6]
becomes

dim M(Fm1 ,d−1)− md ≤ dim M(L) ≤
1

2
(n2 − n − m2 − m) (1.11)

and, in virtue of (1.10), this may be improved as

dim M(Fm1 ,d−1)− md ≤ dim M(L) ≤
1

2
(n + m − 2)(n − m − 1) + 1. (1.12)
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An important inequality of the same nature of (1.9) and (1.10) is given by

dim M(L) ≤ dim M(L/L2) + dim L2(dim L/Z(L) − 1) (1.13)

and can be found in [2, Corollary 3.3], where it is shown that it is better than (1.1).
At this point, we may state the first main result.

Theorem 1.1. Let L be a nilpotent Lie algebra of dim L = n, dim L2 = m and
dim Z(L) = z. If L is nonabelian, then

(i) (1.10) is better than (1.13) for all n ≥ 3 and m ≤
⌊

n−2
z+1

⌋

.

(ii) (1.10) is better than (1.3) for all n ≥ 3 and m ≥ 1 (when in (1.3) i = 2).

(iii) (1.12) is better than (1.11) for all n ≥ 4.

(iv) 1
4(n − m)2 ≤ dim M(L) ≤ 1

2(n + m − 2)(n − m − 1) + 1 for all n, m ≥ 1.

Some notions of homological algebra should be recalled from [3, 13], in order to
formulate the next result. The Schur multiplier of the pair (L, N), where L is a Lie
algebra with ideal N, is the abelian Lie algebra M(L, N) which appears in the
following natural exact sequence of Mayer–Vietoris type

H3(L, Z) −→ H3(L/N, Z) −→ M(L, N) −→ M(L) −→ M(L/N) −→ (1.14)

−→
L

[L, N]
−→

L

L2
−→

L

L2 + N
−→ 0.

We also recall that Φ(L) denotes the Frattini subalgebra of L, that is, the intersec-
tion of all maximal subalgebras of L (see [17, 21]). It is easy to see that Φ(L) is
an ideal of L, when L is finite dimensional and nilpotent. To convenience of the
reader, given an ideal I of a finite dimensional Lie algebra L and a subalgebra J of
L, we recall that I is said to be a complement of J in L if L = I + J and I ∩ J = 0.

Theorem 1.2. Let L be a finite dimensional nilpotent Lie algebra and N an ideal of L of
dim N = k and dim L/N = u. Then

dim M(L, N) + dim [L, N] ≤
1

2
k(2u + k − 1).

Conversely, if dim L/N + Φ(L) = s and dim N/N ∩ Φ(L) = t, then

1

2
t(2s + t − 1) ≤ dim M(L, N) + dim [L, N].

Furthermore, if N has a complement in L and both L and L/N are nonabelian, then

1

4
((n − m)2 − (u − v)2) ≤ dim M(L, N) ≤

1

2
((n + m − 2)(n − m − 1)− (u + v − 2)(u − v − 1)),

where m = dim L2, dim L = n and v = dim L2 + N/N.

When N = L in Theorem 1.2, we get u = 0 and find again (1.1) so that Theorem
1.2 is a generalization of (1.1). On the other hand, Theorem 1.2 improves most of
the bounds in [11, Theorem B], where L is assumed to be factorized.
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2 Proofs of the results

We recall that A(n) denotes the abelian Lie algebra of dimension n and the main
results of [2, 5, 6, 7, 11, 18, 19] illustrate that many inequalities on dim M(L)
become equalities if and only if L splits in the sums of A(n) and of a Heisenberg
algebra H(m) (here m ≥ 1 is a given integer). Most of the proofs of these results
are based on the following property, which we will use largely.

Lemma 2.1 (See [22], Theorem 11.31, Künneth Formula). Two finite dimensional Lie
algebras H and K satisfy the condition

M(H ⊕ K) = M(H)⊕ M(K)⊕ (H/H2 ⊗ K/K2).

In particular,

dim M(H ⊕ K) = dim M(H) + dim M(K) + dim H/H2 ⊗ K/K2.

The dimension of the Schur multiplier of abelian Lie algebras is a classic.

Lemma 2.2 (See [5], Lemma 3). L ≃ A(n) if and only if dim M(L) = 1
2 n(n − 1).

Now we may specify (1.13).

Lemma 2.3. If a nilpotent Lie algebra L of dim L = n has dim L2 = m and dim Z(L) =
z, then (1.13) becomes

dim M(L) ≤
1

2
(n − m)(n − m − 1) + m(n − z − 1).

Proof. This is an application of Lemma 2.2, noting that dim L/L2 = dim L −
dim L2 = dim A(n − m) = n − m and dim L/Z(L) = dim L − dim Z(L) =
m − z.

Proof of Theorem 1.1. (i). From Lemma 2.3, (1.13) becomes

dim M(L) ≤
1

2
(n − m)(n − m − 1) + m(n − z − 1)

=
1

2
(n2 −nm−n−nm+m2 +m)+mn− zm−m =

1

2
(n2 +m2 +m−n)− zm−m

=
1

2
(n2 + m2) +

1

2
m − m − zm −

1

2
n =

1

2
(n2 + m2)−

1

2
m − zm −

1

2
n

=
1

2
(n2 + m2)−

(

z +
1

2

)

m −
1

2
n.

On the other hand, (1.10) becomes

dim M(L) ≤
1

2
(n + m − 2)(n − m − 1) + 1

=
1

2
(n2 −nm−n+nm−m2 −m− 2n+ 2m+ 2)+ 1 =

1

2
(n2 −m2)+

1

2
m−

3

2
n+ 2.
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Of course, the first terms satisfy 1
2(n

2 − m2) ≤ 1
2(n

2 + m2) for all m, n ≥ 1, but the
remaining terms satisfy

1

2
m −

3

2
n + 2 ≤ −

(

z +
1

2

)

m −
1

2
n ⇔ 0 ≤ −(z + 1)m + n − 2

⇔ 0 ≥ (z + 1)m − n + 2 ⇔ m ≤
⌊n − 2

z + 1

⌋

.

It follows that (1.10) is better than (1.13) for these values of m.
(ii). When i = 2 the upper bound of (1.3) becomes 1

2(n
2 − 3n + 4) and (1.2) allows

us to compare it with (1.10). We discover that

0 ≥ +m − m2 ⇒ n2 − 3n + 4 ≥ n2 − 3n + m − m2 + 4 − nm + nm

⇒ n2 − 3n + 4 ≥ (n + m − 2)(n − m − 1) + 2 ⇒
1

2
(n2 − 3n + 4) ≥

1

2
(n + m − 2)(n − m − 1) + 1.

(iii). This is straightforward from [19, Corollary 3.4].
(iv). The upper bound is (1.10). In order to derive the lower bound, we need to
observe from [16, Theorem 6.10] and [16, Example (2), p. 168] that even a stronger
form of (1.2) is true, that is, the Poincaré duality allows us to conclude that there
exists an isomorphism of finite dimensional Lie algebras H1(L, C×) ≃ (L/L2)∗,
where ∗ denotes the dual Lie algebra with respect to L/L2 (see again [16, Chapter
6] for the definition of ∗) and so

dim H1(L, C
×) = dim (L/L2)∗ = dim L/L2 = n − m, (2.1)

where the equality dim L/L2 = dim (L/L2)∗ is true by the fact that the dimension
is invariant under ∗. Now the lower bound follows from (1.5).

In order to prove Theorem 1.2, we recall an important construction of algebraic
topology called nonabelian tensor product (see for instance [12, 19]). Let L and
K be two arbitrary Lie algebras (on the same field F). By an action of L on K,

we mean and F-bilinear map (l, k) ∈ L × K 7−→ lk ∈ K satisfying [l,l ′]k =
l(l ′k)− l ′(lk) and l[k, k′] = [ lk, k′] + [k, lk′] for all l, l′ ∈ L and k, k′ ∈ K. Clearly,

if L is a subalgebra of some Lie algebra P and K is an ideal in P, then the Lie mul-
tiplication in P induces and action of L on K. In fact, L acts on K via lk = [l, k].
Now let L and K be two Lie algebras acting on each other, and on themselves by

Lie multiplications. The actions are said to be compatible if
klk′ = k′( lk) and

lkl′ = l ′( kl) for all l, l′ ∈ L and k, k′ ∈ K. It is obvious that if L and K are both ide-
als of a bigger Lie algebra M, then the Lie multiplication gives rise to compatible
actions inside M. The nonabelian tensor product L ⊗ K of L and K is the Lie algebra
generated by the symbols l ⊗ k with defining relations c(l ⊗ k) = cl ⊗ k = l ⊗ ck,

(l + l′)⊗ k = l ⊗ k + l′ ⊗ k, l ⊗ (k + k′) = l ⊗ k + l ⊗ k′, ll′ ⊗ k = l ⊗ l ′k − l′ ⊗ lk,

l ⊗ kk′ = k′ l ⊗ k − kl ⊗ k′, [l ⊗ k, l′ ⊗ k′] = − kl ⊗ l ′k′, where c ∈ F, l, l′ ∈ L and
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k, k′ ∈ K. In case L = K and all actions are given by Lie multiplication, L ⊗ L is
called nonabelian tensor square of L. One notes that the nonabelian tensor product
always exists (see [12, Proposition 1.2 (iii)]) and, in particular, we find the usual
abelian tensor product L ⊗Z K, when L and K are abelian and the actions are
compatible and trivial.
When K is an ideal of the Lie algebra L, there are compatible actions such that
we may form L ⊗ K and L ∧ K and (see for instance, [12, 19]) the following is an
epimorphism of Lie algebras

κL,K : l ⊗ k ∈ L ⊗ K 7−→ κL,K(l ⊗ k) = [l, k] ∈ [L, K]

such that ker κL,K is a central ideal of L ⊗ K. Now L�K = 〈l ⊗ l | l ∈ L ∩ K〉
is an ideal of L ⊗ K contained in Z(L ⊗ K) and we have automatically a natural
epimorphism ε : l ⊗ k ∈ L ⊗ K 7→ (l ⊗ k) + L�K ∈ L ⊗ K/L�K which allows us
to form the Lie algebra quotient

L ∧ K =
L ⊗ K

L�K
= 〈l ⊗ k + (L�K) | l ∈ L, k ∈ K〉 = 〈l ∧ k | l ∈ L, k ∈ K〉,

called nonabelian exterior product of L and K. Here we have the following epimor-
phism of Lie algebras

κ
′
L,K : l ∧ k ∈ L ∧ K 7−→ κ

′
L,K(l ∧ k) = [l, k] ∈ [L, K]

such that ker κ′L,K is a central ideal of L ∧ K. It is easy to see that kerL,K = L�K

and that ker′L,K = M(L, K) and that the following diagram is exact and formed
by central extension of Lie algebras:

0 −−−→ L�K −−−→ L ⊗ K
κL,K

−−−→ [L, K] −−−→ 0


y ε



y

∥
∥
∥

0 −−−→ M(L, K) −−−→ L ∧ K
κ′L,K

−−−→ [L, K] −−−→ 0 .

(2.2)

Now we may prove Theorem 1.2.

Proof of Theorem 1.2. We begin to prove the lower bound. We claim that

dim M

(
L

Φ(L)
,

N

N ∩ Φ(L)

)

≤ dim M(L, N) + dim [L, N]. (2.3)

Note from [17, Corollary 2, p.420] that Φ(L) = L2 is always true for nilpotent
Lie algebras. Then L/Φ(L) and N/N ∩ Φ(L) ≃ N + Φ(L)/Φ(L) ⊆ L/Φ(L) are
abelian. In our situation,

M

(
L

Φ(L)
,

N

N ∩ Φ(L)

)

≃
L

Φ(L)
∧

N

N ∩ Φ(L)
≃

L

L2
∧

N

N ∩ L2
.

We form the nonabelian exterior product L ∧ N and deduce from the the diagram
(2.2) that

dim L ∧ N = dim M(L, N) + dim [L, N].
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On the other hand,

x ∧ y ∈ L ∧ N 7−→ x + L2 ∧ y + (N ∩ L2) ∈
L

L2
∧

N

N ∩ L2

is also an epimorphism of Lie algebras and it implies

dim L ∧ N ≥ dim
L

L2
∧

N

N ∩ L2

so that

dim M

(
L

Φ(L)
,

N

N ∩ Φ(L)

)

= dim
L

L2
∧

N

N ∩ L2
≤ dim L ∧ N.

The claim (2.3) follows. Consequently, it will be enough to prove

dim M

(
L

Φ(L)
,

N

N ∩ Φ(L)

)

=
1

2
t(2s + t − 1) (2.4)

in order to conclude

1

2
t(2s + t − 1) ≤ dim M(L, N) + dim [L, N].

Since N/N ∩ Φ(L) ≃ A(t) is a direct factor of the abelian Lie algebra L/Φ(L) ≃
A(s + t) ≃ A(s)⊕ A(t), Lemma 2.2 implies

dim M

(
L

Φ(L)

)

=
1

2
(s + t)(s + t − 1) and dim M

(
N

N ∩ Φ(L)

)

=
1

2
t(t − 1).

On the other hand, we are dealing with abelian Lie algebras and N/N ∩ Φ(L) ≃
N + Φ(L)/Φ(L) has a complement in L/Φ(L). As in [3, p.174, Line +15], we may
conclude that

M

(
L

Φ(L)

)

≃ M

(
L

Φ(L)
,

N

N ∩ Φ(L)

)

⊕ M

(
L/Φ(L)

N/N ∩ Φ(L)

)

,

hence

dim M

(
L

Φ(L)
,

N

N ∩ Φ(L)

)

= dim M

(
L

Φ(L)

)

− dim M

(
L/Φ(L)

N + Φ(L)/Φ(L)

)

= dim M

(
L

Φ(L)

)

− dim M

(
L/Φ(L)

N/N ∩ Φ(L)

)

=
1

2
(s + t)(s + t − 1)−

1

2
s(s − 1)

=
1

2
t(2s + t − 1),

and so (2.4) is proved.
Now we prove the upper bound

dim M(L, N) ≤
1

2
k(2u + k − 1).
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Proceed by induction on k. Of course, the above inequality is true when k = 0.
Suppose that it holds whenever N is of dimension strictly less than k, and suppose
that dim N = k . Let C be a Lie algebra of dimension one in the center of N. Again
we use the nonabelian exterior product L ∧ C in order to conclude that

dim L ∧ C = dim M(L, C) + dim [L, C].

Having in mind (2.2), we have

dim M(L, C) ≤ dim L ∧ C = dim L ⊗ C − dim L�C

= dim L · dim C − dim L�C = (u + k) · 1 − 1 = u + k − 1.

Now we observe that the Schur multiplier of a pair (L, N) induces the following
exact sequence (since C ⊆ Z(N)):

−→ M(L, C) −→ M(L, N) −→ M(L/C, N/C) −→ 0.

Therefore

dim M(L, N) ≤ dim M(L, C) + dim M

(
L

C
,

N

C

)

≤ (u + k − 1) +
1

2
(k − 1)(2u + k − 2) =

1

2
k(2u + k − 1),

as wished.
Finally, if N possesses a complement in L and both L and L/N are nonabelian,
[3, p.174, Line +15] implies

M(L) ≃ M(L, N)⊕ M(L/N), (2.5)

hence dim M(L, N) = dim M(L) − dim M(L/N) and the final bound is an ap-
plication of Theorem 1.1 (iv), since we substract member by member

1

4
(n − m)2 ≤ dim M(L) ≤

1

2
(n + m − 2)(n − m − 1)

1

4
(u − v)2 ≤ dim M(L/N) ≤

1

2
(u + v − 2)(u − v − 1)

and find the desired inequality.

We want to note that the source of inspiration for the bound of Theorem 1.2 was
an analogous condition for groups, proved by Ellis in [13, Proposition 7.2]. Un-
fortunately, it wasn’t possible to use the same methods which work for groups,
since the notion of exponent hasn’t a perfect analogy in the context of Lie alge-
bras and several techniques cannot be applied directly. This has motivated us to
involve the notion of nonabelian exterior product of Lie algebras, which has a
very general formulation and applies to wider contexts.
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