The sign of wreath product representations of finite groups

Jan-Christoph Schlage-Puchta

Abstract

Let G, H be finite groups. We asymptotically compute $\left|\operatorname{Hom}\left(G, H / A_{n}\right)\right|$, thereby establishing a conjecture of T. Müller.

Let G, H be finite groups. T. Müller[2] developed an enumerative theory of homomorphisms $\varphi: G \rightarrow H\left\{S_{n}\right.$, as $n \rightarrow \infty$, and asked to generalize this theory to other sequences of groups. In particular, he conjectured the following.
Conjecture 1. Let G, H be a finite groups. Then we have for $n \rightarrow \infty$

$$
\left|\operatorname{Hom}\left(G, H \succ A_{n}\right)\right|=\left(\frac{1}{1+s_{2}(G)}+\mathcal{O}\left(e^{-c n^{1 /|G|}}\right)\right)\left|\operatorname{Hom}\left(G, H \imath S_{n}\right)\right|
$$

where $s_{2}(G)$ is the number of subgroups of index 2 in G.
It is the aim of this note to proof this conjecture.
Theorem 1. Conjecture 1 holds true for all finite groups G and H.
One of the applications of wreath product representations is the recognition of finite index subgroups of infinite groups. Let Γ be an infinite group, Δ a subgroup of index n. The action of Γ on the cosets Γ / Δ by shift defines a homomorphism $\varphi: \Gamma \rightarrow S_{n}$. If in addition we know the number of lifts of φ to homomorphisms $\psi: \Gamma \rightarrow H$ < S_{n}, we can compute $|\operatorname{Hom}(\Delta, H)|$. Doing so for different choices of H one can in certain situations gather sufficient information to reconstruct Δ. For Γ being a free product of cyclic groups of prime order this reconstruction was completed in [3], for free products of arbitrary finite groups in [5].

[^0]Comparing homomorphisms into H l A_{n} with homomorphisms into H l S_{n} gives information on the embedding of finite index subgroups in large groups. More precisely define for a subgroup Δ of a group Γ the core Δ^{c} as the normal subgroup $\bigcup_{\gamma \in \Gamma} \Delta^{\gamma}$. Then the case $H=1$ of Theorem 1 implies that the probability that a random subgroup Δ of index n of a free product $\Gamma=G_{1} * \ldots G_{r}$ of finite groups satisfies $\Gamma / \Delta^{c} \cong A_{n}$ converges to $\prod_{i=1}^{r} \frac{1}{1+s_{2}\left(G_{i}\right)}$. The case of general H yields that the property $\Gamma / \Delta^{c} \cong A_{n}$ and the isomorphism type of Δ are asymptotically independent. It would be interesting to generalize such considerations to arbitrary virtually free groups.

We now turn to the proof of the Theorem. We denote by π the canonical projection H l $S_{n} \rightarrow S_{n}$, and by ϵ the sign homomorphism $S_{n} \rightarrow C_{2}$. We view C_{2} as $\{ \pm 1\} \subseteq \mathbb{Z}$, that is, we write the group operation of C_{2} multiplicatively, but allow for the addition of values as in \mathbb{Z}. Let $\varphi: G \rightarrow H \backslash S_{n}$ be a homomorphism. Then $\epsilon \circ \pi \circ \varphi: G \rightarrow C_{2}$ has a kernel containing $G^{2} G^{\prime}$. We denote the induced homomorphism $V=G / G^{2} G^{\prime} \rightarrow C_{2}$ by $\bar{\varphi}$. To prove our theorem it is therefore sufficient to show that if $\varphi \in \operatorname{Hom}\left(G, H \succ S_{n}\right)$ is chosen at random, then the distribution of $\bar{\varphi}$ converges to a uniform distribution. This is certainly true if $s_{2}(G)=0$, because then $G=G^{2} G^{\prime}$. We shall therefore from now on assume that $s_{2}(G)>0$, that is, V is a non-trivial elementary abelian 2-group. Then our claim is equivalent to the statement that for every non-trivial $v \in V$ we have

$$
h_{n}^{v}(G, H):=\frac{1}{\left|\operatorname{Hom}\left(G, H \succ S_{n}\right)\right|} \sum_{\varphi \in \operatorname{Hom}\left(G, H \imath S_{n}\right)} \bar{\varphi}(v) \ll e^{-c n^{-1 /|G|}},
$$

where we identified C_{2} with $\{ \pm 1\} \subseteq \mathbb{Z}$.
We first compute the dependence of $h_{n}^{v}(G, H)$ on H.
Lemma 1. Let G, H be finite groups, $\varphi: G \rightarrow S_{n}$ a transitive permutation representation, $\pi: H \backslash S_{n} \rightarrow S_{n}$ the canonical projection. Then the number of homomorphisms $\psi: G \rightarrow H \imath S_{n}$ satisfying $\pi \circ \psi=\varphi$ equals $|H|^{n-1}$.

Proof. This follows form the proof of [3, Proposition 1], more precisely the equality between [3, (8)] and [3, (9)].

Next we compute the generating series of $h_{n}^{v}(G, H)$.
Lemma 2. We have

$$
\sum_{v \geq 0} \frac{h_{n}^{v}(G, H)}{n!} x^{n}=\exp \left(\sum_{k=1}^{|G|} \sum_{\psi: G \rightarrow S_{k} \text { transitive }} \bar{\psi}(v) \frac{|H|^{k-1} x^{k}}{k!}\right)
$$

Proof. This is a weighted version of the exponential principle, see e.g. [6, Theorem 5.1.4]. We only have to show that if $\pi \circ \varphi$ decomposes as $\pi \circ \varphi=\bigoplus a_{i} \psi_{i}$, where the ψ_{i} are transitive permutation representations, then $\bar{\varphi}(v)=\Pi \bar{\psi}(v)^{a_{i}}$. However, this follows immediately from the fact that ϵ is a homomorphism.

To deal with the generating series we need a stability result similar to [4], note however, that here we do not require P_{2} to be Hayman admissible. In fact it is easy to see that $\sum_{v \geq 0} \frac{h_{n}^{v}(G, H)}{n!} x^{n}$ is Hayman admissible if and only if $s_{2}(G)=0$, which is precisely the case we are not interested in.

Lemma 3. Let $P_{1}(x)=\sum_{v=1}^{d} a_{v}^{(1)} x^{v}$ be a polynomial with non-negative real coefficients, $a_{d}^{(1)} \neq 0$, and let $P_{2}=\sum_{n=1}^{d} a_{v}^{(2)} x^{v}$ be a polynomial with complex coefficients satisfying $\left|a_{v}^{(2)}\right| \leq a_{v}^{(1)}$ for all $v \leq d$. Define the sequences $b_{v}^{(1)}, b_{v}^{(2)}$ by the relation $\sum_{v=0}^{\infty} \frac{b_{v}^{(i)}}{v!} x^{v}=$ $e^{P_{i}(x)}$. Then either there exists some complex number ζ with $|\zeta|=1$, such that $P_{1}(x)=$ $P_{2}(\zeta x)$, or there is some $c>0$ such that $\left|b_{v}^{(2)}\right|<e^{-c v^{1 / d}}\left|b_{v}^{(1)}\right|$ for all v sufficiently large.

Proof. Let ρ_{n} be the unique real solution of the equation $\rho P^{\prime}(\rho)=n$. It then follows from Hayman's theorem [1, Theorem I] that

$$
b_{n}^{(1)} \sim \frac{\exp \left(P_{1}\left(\rho_{n}\right)\right)}{\rho_{n}^{n} \sqrt{2 \pi\left(\rho_{n} P_{1}^{\prime}\left(\rho_{n}\right)+\rho_{n}^{2} P^{\prime \prime}\left(\rho_{n}\right)\right)}} .
$$

We now express $b_{n}^{(2)}$ using Cauchy's integral formula as

$$
b_{n}^{(2)}=\frac{1}{2 \pi i} \int_{\partial B_{\rho_{n}}(0)} \frac{\exp \left(P_{2}(z)\right)}{z^{n+1}} d z
$$

to obtain

$$
\begin{aligned}
\left|b_{n}^{(2)}\right| & \leq \frac{\max _{|z|=\rho_{n}} \mid \exp \left(P_{2}(z) \mid\right.}{\rho_{n}^{n}} \\
& \leq(\sqrt{2 \pi} d+o(1)) \rho_{n}^{d / 2} \frac{\max _{|z|=\rho_{n}} \mid \exp \left(P_{2}(z) \mid\right.}{\exp \left(P_{1}\left(\rho_{n}\right)\right)} b_{n}^{(1)} \\
& \ll n^{1 / 2} \frac{\max _{|z|=\rho_{n}}^{\exp \left(P_{1}\left(\rho_{n}\right)\right)}}{\exp \left(P_{2}(z) \mid\right.} b_{n}^{(1)}
\end{aligned}
$$

where we used the fact that for $n \rightarrow \infty$ we have $\rho_{n} \sim c n^{1 / d}$. Hence it suffices to show that either there is some ζ with $P_{1}(x)=P_{2}(\zeta x)$, or

$$
\max _{|z|=\rho_{n}} \Re P_{2}(z)<P_{1}\left(\rho_{n}\right)-c n^{1 / d}
$$

for some $c>0$. If there exists some v with $\left|a_{v}^{(2)}\right|<a_{v}^{(1)}$, then this follows immediately from the triangle inequality. Define the function $f:[0,2 \pi] \rightarrow[0, \infty)$ by

$$
f(\theta)=\max _{\substack{1 \leq v \leq d \\ a_{v} \neq 0}}\left|v \theta+\arg a_{v}^{(2)} \bmod 2 \pi\right|,
$$

where we normalize mod in such a way that it takes values in $[-\pi, \pi)$. Being continuous, this function either has a zero ξ, or it is uniformly bounded from below by some positive constant δ. In the first case we obtain $P_{2}(x)=P_{1}\left(e^{i \xi} x\right)$,
while in the second we have

$$
\begin{aligned}
P_{1}\left(\rho_{n}\right)-\Re P_{2}\left(e^{i \theta} \rho_{n}\right) & =\sum_{v=1}^{d}\left(1-\Re e^{i\left(v \theta+\arg a_{v}^{(2)}\right)}\right) a_{v}^{(1)} \rho_{n}^{v} \\
& \geq\left(1-\Re e^{i \delta}\right) \min _{\substack{1 \leq v \leq d \\
a_{v} \neq 0}} a_{v} \rho_{n}^{v} \\
& \geq\left((1-\cos \delta) \min _{\substack{1 \leq v \leq d \\
a_{v} \neq 0}} a_{v}\right) n^{1 / d}
\end{aligned}
$$

Hence in either case our claim follows.
We can now finish the proof of the theorem. We have to show that for $v \neq 0$ we have $h_{n}^{v}(G, H) \ll e^{-c n^{1 / d}} h_{n}^{0}(G, H)$. We have

$$
\left|\sum_{\psi: G \rightarrow S_{k} \text { transitive }} \bar{\psi}(v) \frac{|H|^{k-1}}{k!}\right| \leq \sum_{\psi: G \rightarrow S_{k} \text { transitive }} \frac{|H|^{k-1}}{k!}
$$

for every k, hence we can apply Lemma 3 to find that either our claim holds true, or there exists some ζ with $|\zeta|=1$, such that

$$
\sum_{k=1}^{|G|} \sum_{\psi: G \rightarrow S_{k} \text { transitive }} \bar{\psi}(v) \frac{|H|^{k-1} x^{k}}{k!}=\sum_{k=1}^{|G|} \sum_{\psi: G \rightarrow S_{k} \text { transitive }} \frac{|H|^{k-1}(\zeta x)^{k}}{k!}
$$

Consider first the coefficient of x in these polynomials. There is only the trivial representation $G \rightarrow S_{1}=1$, hence the coefficient of x on both sides equals 1 , and we conclude $\zeta=1$.

Next we consider the coefficient of x^{2}. Let $\bar{U}<G / G^{2} G^{\prime}$ be a subspace of codimension 1, which does not contain v, and U be the preimage of \bar{U} under the canonical map $G \rightarrow G / G^{2} G^{\prime}$. Then $\psi_{0}: G \rightarrow G / U \cong S_{2}$ is a homomorphism, for which $\overline{\psi_{0}}(v)=-1$, and we conclude that

$$
\Sigma_{1}=\sum_{\psi: G \rightarrow S_{2} \text { transitive }} \bar{\psi}(v) \frac{|H|}{2}<\sum_{\psi: G \rightarrow S_{2} \text { transitive }} \frac{|H|}{2}=\Sigma_{2}
$$

say, while the equality $P_{1}(x)=P_{2}(\zeta x)$ implies that $\Sigma_{1}=\zeta^{2} \Sigma_{2}$. Clearly both Σ_{1} and Σ_{2} are real, and we conclude that $\zeta^{2}=-1$. However, this contradicts the condition $\zeta=1$ obtained from the coefficient of x, and our claim follows.

References

[1] W. K. Hayman, A generalization of Stirling's formula, J. Reine Angew. Math. 196 (1956), 67-95.
[2] T. Müller, Enumerating representations in finite wreath products, Adv. in Math. 153 (2000), 118-154.
[3] T. Müller, J.-C. Schlage-Puchta, Classification and statistics of finite index subgroups in free products, Adv. Math. 188 (2004), 1-50.
[4] T. Müller, J.-C. Schlage-Puchta, Asymptotic stability for sets of polynomials, Arch. Math. (Brno) 41 (2005), 151-155.
[5] T. Müller, J.-C. Schlage-Puchta, Statistics of isomorphism types in free products, Adv. Math. 224 (2010), 707-730.
[6] R. P. Stanley, Enumerative combinatorics, Vol. 2., Cambridge Studies in Advanced Mathematics, 62. Cambridge University Press, Cambridge, 1999.

Institut fuer Mathematik
Ulmenstr. 69, Haus 3
18057 Rostock
Germany
email : jan-christoph.schlage-puchta@uni-rostock.de

[^0]: Received by the editors in November 2012 - In revised form in January 2014.
 Communicated by M. Van den Bergh.
 2010 Mathematics Subject Classification : 20E22, 20D60.

