The sign of wreath product representations of finite groups

Jan-Christoph Schlage-Puchta

Abstract

Let *G*, *H* be finite groups. We asymptotically compute $|\text{Hom}(G, H \wr A_n)|$, thereby establishing a conjecture of T. Müller.

Let *G*, *H* be finite groups. T. Müller[2] developed an enumerative theory of homomorphisms $\varphi : G \to H \wr S_n$, as $n \to \infty$, and asked to generalize this theory to other sequences of groups. In particular, he conjectured the following.

Conjecture 1. *Let G*, *H be a finite groups. Then we have for* $n \to \infty$

$$|\operatorname{Hom}(G, H \wr A_n)| = \left(\frac{1}{1 + s_2(G)} + \mathcal{O}(e^{-cn^{1/|G|}})\right) |\operatorname{Hom}(G, H \wr S_n)|,$$

where $s_2(G)$ is the number of subgroups of index 2 in G.

It is the aim of this note to proof this conjecture.

Theorem 1. Conjecture 1 holds true for all finite groups G and H.

One of the applications of wreath product representations is the recognition of finite index subgroups of infinite groups. Let Γ be an infinite group, Δ a subgroup of index n. The action of Γ on the cosets Γ/Δ by shift defines a homomorphism $\varphi : \Gamma \to S_n$. If in addition we know the number of lifts of φ to homomorphisms $\psi : \Gamma \to H \wr S_n$, we can compute $|\text{Hom}(\Delta, H)|$. Doing so for different choices of H one can in certain situations gather sufficient information to reconstruct Δ . For Γ being a free product of cyclic groups of prime order this reconstruction was completed in [3], for free products of arbitrary finite groups in [5].

Bull. Belg. Math. Soc. Simon Stevin 21 (2014), 379-383

Received by the editors in November 2012 - In revised form in January 2014. Communicated by M. Van den Bergh.

²⁰¹⁰ Mathematics Subject Classification : 20E22, 20D60.

Comparing homomorphisms into $H \wr A_n$ with homomorphisms into $H \wr S_n$ gives information on the embedding of finite index subgroups in large groups. More precisely define for a subgroup Δ of a group Γ the core Δ^c as the normal subgroup $\bigcup_{\gamma \in \Gamma} \Delta^{\gamma}$. Then the case H = 1 of Theorem 1 implies that the probability that a random subgroup Δ of index n of a free product $\Gamma = G_1 * \ldots G_r$ of finite groups satisfies $\Gamma/\Delta^c \cong A_n$ converges to $\prod_{i=1}^r \frac{1}{1+s_2(G_i)}$. The case of general H yields that the property $\Gamma/\Delta^c \cong A_n$ and the isomorphism type of Δ are asymptotically independent. It would be interesting to generalize such considerations to arbitrary virtually free groups.

We now turn to the proof of the Theorem. We denote by π the canonical projection $H \wr S_n \to S_n$, and by ϵ the sign homomorphism $S_n \to C_2$. We view C_2 as $\{\pm 1\} \subseteq \mathbb{Z}$, that is, we write the group operation of C_2 multiplicatively, but allow for the addition of values as in \mathbb{Z} . Let $\varphi : G \to H \wr S_n$ be a homomorphism. Then $\epsilon \circ \pi \circ \varphi : G \to C_2$ has a kernel containing G^2G' . We denote the induced homomorphism $V = G/G^2G' \to C_2$ by $\overline{\varphi}$. To prove our theorem it is therefore sufficient to show that if $\varphi \in \text{Hom}(G, H \wr S_n)$ is chosen at random, then the distribution of $\overline{\varphi}$ converges to a uniform distribution. This is certainly true if $s_2(G) = 0$, because then $G = G^2G'$. We shall therefore from now on assume that $s_2(G) > 0$, that is, V is a non-trivial elementary abelian 2-group. Then our claim is equivalent to the statement that for every non-trivial $v \in V$ we have

$$h_n^{\upsilon}(G,H) := \frac{1}{|\operatorname{Hom}(G,H \wr S_n)|} \sum_{\varphi \in \operatorname{Hom}(G,H \wr S_n)} \overline{\varphi}(v) \ll e^{-cn^{-1/|G|}},$$

where we identified C_2 with $\{\pm 1\} \subseteq \mathbb{Z}$.

We first compute the dependence of $h_n^v(G, H)$ on H.

Lemma 1. Let G, H be finite groups, $\varphi : G \to S_n$ a transitive permutation representation, $\pi : H \wr S_n \to S_n$ the canonical projection. Then the number of homomorphisms $\psi : G \to H \wr S_n$ satisfying $\pi \circ \psi = \varphi$ equals $|H|^{n-1}$.

Proof. This follows form the proof of [3, Proposition 1], more precisely the equality between [3, (8)] and [3, (9)].

Next we compute the generating series of $h_n^v(G, H)$.

Lemma 2. We have

$$\sum_{v\geq 0} \frac{h_n^v(G,H)}{n!} x^n = \exp\left(\sum_{k=1}^{|G|} \sum_{\psi:G\to S_k transitive} \overline{\psi}(v) \frac{|H|^{k-1} x^k}{k!}\right).$$

Proof. This is a weighted version of the exponential principle, see e.g. [6, Theorem 5.1.4]. We only have to show that if $\pi \circ \varphi$ decomposes as $\pi \circ \varphi = \bigoplus a_i \psi_i$, where the ψ_i are transitive permutation representations, then $\overline{\varphi}(v) = \prod \overline{\psi}(v)^{a_i}$. However, this follows immediately from the fact that ϵ is a homomorphism.

To deal with the generating series we need a stability result similar to [4], note however, that here we do not require P_2 to be Hayman admissible. In fact it is easy to see that $\sum_{\nu \ge 0} \frac{h_n^{\nu}(G,H)}{n!} x^n$ is Hayman admissible if and only if $s_2(G) = 0$, which is precisely the case we are not interested in.

Lemma 3. Let $P_1(x) = \sum_{\nu=1}^d a_{\nu}^{(1)} x^{\nu}$ be a polynomial with non-negative real coefficients, $a_d^{(1)} \neq 0$, and let $P_2 = \sum_{n=1}^d a_{\nu}^{(2)} x^{\nu}$ be a polynomial with complex coefficients satisfying $|a_{\nu}^{(2)}| \leq a_{\nu}^{(1)}$ for all $\nu \leq d$. Define the sequences $b_{\nu}^{(1)}$, $b_{\nu}^{(2)}$ by the relation $\sum_{\nu=0}^{\infty} \frac{b_{\nu}^{(i)}}{\nu!} x^{\nu} = e^{P_i(x)}$. Then either there exists some complex number ζ with $|\zeta| = 1$, such that $P_1(x) = P_2(\zeta x)$, or there is some c > 0 such that $|b_{\nu}^{(2)}| < e^{-c\nu^{1/d}} |b_{\nu}^{(1)}|$ for all ν sufficiently large.

Proof. Let ρ_n be the unique real solution of the equation $\rho P'(\rho) = n$. It then follows from Hayman's theorem [1, Theorem I] that

$$b_n^{(1)} \sim rac{\exp(P_1(
ho_n))}{
ho_n^n \sqrt{2\pi(
ho_n P_1'(
ho_n) +
ho_n^2 P''(
ho_n))}}.$$

We now express $b_n^{(2)}$ using Cauchy's integral formula as

$$b_n^{(2)} = rac{1}{2\pi i} \int\limits_{\partial B_{
ho_n}(0)} rac{\exp(P_2(z))}{z^{n+1}} \, dz$$

to obtain

$$\begin{aligned} |b_n^{(2)}| &\leq \frac{\max_{|z|=\rho_n} |\exp(P_2(z)|}{\rho_n^n} \\ &\leq (\sqrt{2\pi}d + o(1))\rho_n^{d/2} \frac{\max_{|z|=\rho_n} |\exp(P_2(z)|}{\exp(P_1(\rho_n))} b_n^{(1)} \\ &\ll n^{1/2} \frac{\max_{|z|=\rho_n} |\exp(P_2(z)|}{\exp(P_1(\rho_n))} b_n^{(1)} \end{aligned}$$

where we used the fact that for $n \to \infty$ we have $\rho_n \sim cn^{1/d}$. Hence it suffices to show that either there is some ζ with $P_1(x) = P_2(\zeta x)$, or

$$\max_{|z|=\rho_n} \Re P_2(z) < P_1(\rho_n) - cn^{1/d}$$

for some c > 0. If there exists some ν with $|a_{\nu}^{(2)}| < a_{\nu}^{(1)}$, then this follows immediately from the triangle inequality. Define the function $f : [0, 2\pi] \to [0, \infty)$ by

$$f(heta) = \max_{\substack{1 \leq
u \leq d \\ a_{
u}
eq 0}} |
u heta + rg a_{
u}^{(2)} \mod 2\pi|,$$

where we normalize mod in such a way that it takes values in $[-\pi, \pi)$. Being continuous, this function either has a zero ξ , or it is uniformly bounded from below by some positive constant δ . In the first case we obtain $P_2(x) = P_1(e^{i\xi}x)$,

while in the second we have

$$egin{aligned} P_1(
ho_n) &= \sum_{
u=1}^d ig(1-\Re e^{i(
u heta+rg a_
u^{(2)})}ig)a_
u^{(1)}
ho_n^
u \ &\geq ig(1-\Re e^{i\delta})\min_{\substack{1\leq
u\leq d\ a_
u
eq 0}} a_
u
ho_n^
u \ &\geq ig((1-\cos\delta)\min_{\substack{1\leq
u\leq d\ a_
u
eq 0}} a_
uig)n^{1/d}. \end{aligned}$$

Hence in either case our claim follows.

We can now finish the proof of the theorem. We have to show that for $v \neq 0$ we have $h_n^v(G, H) \ll e^{-cn^{1/d}} h_n^0(G, H)$. We have

$$\left| \sum_{\psi: G \to S_k \text{transitive}} \overline{\psi}(v) \frac{|H|^{k-1}}{k!} \right| \le \sum_{\psi: G \to S_k \text{transitive}} \frac{|H|^{k-1}}{k!}$$

for every *k*, hence we can apply Lemma 3 to find that either our claim holds true, or there exists some ζ with $|\zeta| = 1$, such that

$$\sum_{k=1}^{|G|} \sum_{\psi: G \to S_k \text{transitive}} \overline{\psi}(v) \frac{|H|^{k-1} x^k}{k!} = \sum_{k=1}^{|G|} \sum_{\psi: G \to S_k \text{transitive}} \frac{|H|^{k-1} (\zeta x)^k}{k!}.$$

Consider first the coefficient of *x* in these polynomials. There is only the trivial representation $G \rightarrow S_1 = 1$, hence the coefficient of *x* on both sides equals 1, and we conclude $\zeta = 1$.

Next we consider the coefficient of x^2 . Let $\overline{U} < G/G^2G'$ be a subspace of codimension 1, which does not contain v, and U be the preimage of \overline{U} under the canonical map $G \to G/G^2G'$. Then $\psi_0 : G \to G/U \cong S_2$ is a homomorphism, for which $\overline{\psi_0}(v) = -1$, and we conclude that

$$\Sigma_1 = \sum_{\psi: G \to S_2 \text{transitive}} \overline{\psi}(v) \frac{|H|}{2} < \sum_{\psi: G \to S_2 \text{transitive}} \frac{|H|}{2} = \Sigma_2,$$

say, while the equality $P_1(x) = P_2(\zeta x)$ implies that $\Sigma_1 = \zeta^2 \Sigma_2$. Clearly both Σ_1 and Σ_2 are real, and we conclude that $\zeta^2 = -1$. However, this contradicts the condition $\zeta = 1$ obtained from the coefficient of *x*, and our claim follows.

References

- [1] W. K. Hayman, A generalization of Stirling's formula, *J. Reine Angew. Math.* **196** (1956), 67–95.
- [2] T. Müller, Enumerating representations in finite wreath products, *Adv. in Math.* **153** (2000), 118–154.

- [3] T. Müller, J.-C. Schlage-Puchta, Classification and statistics of finite index subgroups in free products, *Adv. Math.* **188** (2004), 1–50.
- [4] T. Müller, J.-C. Schlage-Puchta, Asymptotic stability for sets of polynomials, *Arch. Math. (Brno)* **41** (2005), 151–155.
- [5] T. Müller, J.-C. Schlage-Puchta, Statistics of isomorphism types in free products, *Adv. Math.* **224** (2010), 707–730.
- [6] R. P. Stanley, *Enumerative combinatorics*, Vol. 2., Cambridge Studies in Advanced Mathematics, 62. Cambridge University Press, Cambridge, 1999.

Institut fuer Mathematik Ulmenstr. 69, Haus 3 18057 Rostock Germany email : jan-christoph.schlage-puchta@uni-rostock.de