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Abstract

In this paper, the existence and multiplicity results for semilinear ellip-
tic equations at resonance are obtained by the minimax methods and Morse
theory.

1 Introduction and main results

Consider the semilinear elliptic boundary value problem:

{

−∆u = λku + g(x, u) in Ω,
u = 0 on ∂Ω,

(1)

where Ω ⊂ R
N is a bounded domain with smooth boundary ∂Ω, 0 < λ1 <

λ2 < λ3 < · · · < λj < · · · are the distinct eigenvalues of −∆ in H1
0(Ω) and

g ∈ C1(Ω × R, R) satisfies the subcritical growth condition

|g(x, t)| ≤ C(1 + |t|p−1), a.e. x ∈ Ω, 1 < p < 2∗, (2)

where

2∗ =

{

2N
N−2 , N ≥ 3,
∞, N = 1, 2.
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Under the condition that

0 ≤ lim inf
|t|→∞

g(x, t)

t
≤ lim sup

|t|→∞

g(x, t)

t
≤ λk+1 − λk,

uniformly for a.e. x ∈ Ω, problem (1.1) is called the double resonant problem. The
solvability of this problem has been studied by many authors. There are some
well-known sufficient conditions, such as the Landesman-Lazer-type condition
(see [1, 2]) and the nonquadratic condition at infinity (see [3, 4]). The following
theorems were obtained in [3, 4].

Theorem A (see [3]) Suppose that (1.2) holds and that g satisfies

0 ≤ lim inf
|t|→∞

g(x, t)

t
≤ lim sup

|t|→∞

g(x, t)

t
� λk+1 − λk, (3)

and
2G(x, t)− g(x, t)t → +∞ (4)

as |t| → ∞ for a.e. x ∈ Ω. Then problem (1.1) has a solution.

Here and then, G(x, t) =
∫ t

0 g(x, s)ds and we write a(x) � b(x) to indicate that
a(x)≤b(x) on Ω, with strict inequality holding on a subset of positive measure.

Theorem B (see [4]) Suppose that (1.2), (1.3), (1.4), k ≥ 2 and g(x, 0) ≡ 0 for x ∈ Ω

hold. Assume that there exists a function α ∈ L1(Ω) such that

2G(x, t)− g(x, t)t ≥ α(x) (5)

for all t ∈ R and a.e. x ∈ Ω and

g′(x, 0) � λ1 − λk. (6)

Then problem (1.1) has at least three nontrivial solutions in which one is positive
and one is negative.

In this paper, we consider the existence and multiplicity of solutions of prob-
lem (1.1) under double resonant and a condition weaker than the nonquadratic
condition. Our main results are the following theorems. First we consider the
existence of solutions.

Theorem 1.1 Suppose that (1.2), (1.3) and (1.5) hold. Assume that there exists a
positive measure subset Ω1 of Ω such that

2G(x, t)− g(x, t)t → +∞ (7)

as |t| → ∞ for a.e. x ∈ Ω1. Then problem (1.1) has at least one solution.
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Remark 1.1 Theorem 1.1 generalizes Theorem A, because conditions (1.5) and (1.7)
are weaker than (1.4). Indeed there are functionals satisfying (1.3), (1.5) and (1.7)
but not satisfying (1.4). For example, let ρ(x) : Ω → [0, π

2 ] be continuous with
ρ(x) = 0 on Ω1, ρ(x) = π

2 on Ω2, where Ω1 and Ω2 are two subsets of Ω with
positive measures. Define

g(x, t) =
3

2
|t|−

1
2 t sin ρ(x).

Then it is easy to check that g(x, t) satisfies all the assumptions of Theorem 1.1,
but it does not satisfy (1.4) and does not satisfy the conditions in [5].

Now, we assume that g(x, 0) ≡ 0 for x ∈ Ω and k ≥ 2. Hence problem (1.1)
admits a trivial solution u = 0. Then we have the following two theorems.

Theorem 1.2 Suppose that (1.2), (1.3), (1.5), (1.6) and (1.7) hold. Then problem
(1.1) has at least three nontrivial solutions in which one is positive and one is
negative.

Remark 1.2 Theorem 1.2 generalizes Theorem B, because that condition (1.7) is
weaker than (1.4). In [1, 6, 7], some theorems of three solutions are obtained.
There are functionals G(x, t) satisfying our Theorem 1.2 and not satisfying the
conditions in [1, 6, 7]. For example, let

G(x, t) =

{

− 1
2 t2
(

d +
∫ t

1 sε−3ds
)

sin ρ(x) |t| > δ,
1
2 t2(λ1 − λm − ε) |t| ≤ δ,

where ε ∈ (0, 1). And d ∈ R is such that d +
∫ t

1 sε−3ds → 1 as t → +∞.

Then, we consider the case g′(x, 0) = λm − λk. We need a local sign condition:
there exists δ > 0, such that

G(x, t) +
1

2
λkt2 ≥

1

2
λmt2 (8)

or

G(x, t) +
1

2
λkt2 ≤

1

2
λmt2 (9)

for |t| ≤ δ.

Theorem 1.3 Suppose that (1.2), (1.3), (1.5), (1.7), k ≥ 2 and g′(x, 0) = λm −λk hold.
Assume that there exist t1 < 0, t2 > 0 such that λkt1 + g(x, t1) = λkt2 + g(x, t2) =
0 for x ∈ Ω. If g satisfies (1.8), m ≥ 2 and k 6= m or (1.9), m > 2 and k 6= m − 1.
Then problem (1.1) has at least five nontrivial solutions.

There are conjugate results of Theorems 1.1-1.3.
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Theorem 1.4 Suppose that (1.2) holds and that g satisfies that

0 � lim inf
|t|→∞

g(x, t)

t
≤ lim sup

|t|→∞

g(x, t)

t
≤ λk+1 − λk, (10)

uniformly for a.e. x ∈ Ω. Assume that there exist a positive measure subset Ω1 of
Ω and a function β ∈ L1(Ω) such that

2G(x, t)− g(x, t)t → −∞ (11)

as |t| → ∞ for a.e. x ∈ Ω1, and

2G(x, t)− g(x, t)t ≤ β(x) (12)

for all t ∈ R and a.e. x ∈ Ω. Then problem (1.1) has at least one solution.

Theorem 1.5 Suppose that (1.2), (1.6), (1.10), (1.11), (1.12) and k ≥ 2 hold. Then
problem (1.1) has at least three nontrivial solutions in which one is positive and
one is negative.

Theorem 1.6 Suppose that (1.2), (1.10), (1.11), (1.12), k > 2 and g′(x, 0) = λm − λk

hold. Assume that there exist t1 < 0, t2 > 0 such that λkt1 + g(x, t1) = λkt2 +
g(x, t2) = 0 for x ∈ Ω. If g satisfies (1.8), m ≥ 2 and k 6= m or (1.9), m > 2 and
k 6= m − 1. Then problem (1.1) has at least five nontrivial solutions.

2 Proofs of main results

As it is known that u ∈ H1
0(Ω) is a solution of problem (1.1) if and only if u is a

critical point of the functional J : H1
0(Ω) → R as

J(u) =
1

2

∫

Ω

|∇u|2dx −
1

2
λk

∫

Ω

|u|2dx −
∫

Ω

G(x, u)dx. (1)

Then J is a C2 functional with derivatives given by

〈J′(u), v〉 =
∫

Ω

∇u · ∇vdx − λk

∫

Ω

uvdx −
∫

Ω

g(x, u)vdx, for u, v ∈ H1
0(Ω), (2)

〈J′′(u)v, w〉 =
∫

Ω

∇v ·∇wdx−λk

∫

Ω

vwdx−
∫

Ω

g′(x, u)vwdx, for u, v, w ∈ H1
0(Ω).

Denote

E−
k =

⊕

j<k

ker(−∆ − λj), Ek = ker(−∆ − λk), E+
k =

⊕

j>k

ker(−∆ − λj).

Then H1
0(Ω) has the following decomposition:

H1
0(Ω) = E−

k ⊕ Ek ⊕ E+
k .
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In order to prove Theorems 1.1-1.3 we require the following lemmas. Then we
can prove Theorems 1.4-1.6 in a similar way.

Lemma 2.1 Suppose that (1.3), (1.5) and (1.7) hold, then the functional J satisfies
the (C) condition.

Proof. Let {un} ⊂ H1
0(Ω) be such that

|J(un)| ≤ c and 〈J′(un), un〉 → 0, as n → +∞. (3)

Here and then, we use c to denote various positive constants. We only need to
show that {‖un‖} is bounded since g has subcritical growth. Suppose, by the way
of contradiction, that {un(x)} possesses a subsequence, still denoted by {un(x)},
satisfies ‖un‖ → ∞ as n → ∞. We claim that {un(x)} possesses a subsequence,
denoted by {un(x)}, satisfies |un(x)| → ∞ as n → ∞ for a.e x ∈ Ω. By (1.4),

2G(x, t)− tg(x, t) → +∞, as |t| → +∞,

on a positive measure subset Ω1. Therefore by Ω1 ⊂ Ω,

2G(x, un)− g(x, un)un → +∞, as n → +∞, uniformly for a.e. x ∈ Ω1.

Fatou’s lemma gives

lim inf
n→∞

∫

Ω

[2G(x, un)− g(x, un)un]dx

≥
∫

Ω

lim inf
n→+∞

[2G(x, un)− g(x, un)un]dx

≥
∫

Ω1

lim inf
n→+∞

[2G(x, un)− g(x, un)un]dx +
∫

Ω\Ω1

α(x)dx = +∞.

Thus,
∫

Ω

[2G(x, un)− g(x, un)un]dx → +∞, as n → ∞. (4)

From (2.3), we have J′(un)un − 2J(un) is bounded. It follows from (2.1), (2.2) that

lim
n→∞

∫

Ω

[2G(x, un)− g(x, un)un] = lim
n→∞

[〈J′(un), un〉 − 2J(un)],

which contradicts (2.4).

It remains to prove the claim.

Denote zn = un
‖un‖

, then ‖zn‖ = 1. Passing to a subsequence if necessary, we

may assume that there exists z ∈ H1
0(Ω) such that

zn ⇀ z in H1
0(Ω),

zn → z in L2(Ω),

zn(x) → z(x) a.e. x ∈ Ω.
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By (1.3), for every ε > 0, there exists M1 > 0 such that

−ε ≤
g(x, t)

t
≤ λk+1 − λk + ε

for all |t| ≥ M1. Choose η ∈ C(R, R) such that 0 ≤ η ≤ 1 and

η(t) =

{

1, |t| ≤ M1,
0, |t| ≥ 2M1.

Set

pn(x) =

{

(1−η(un(x)))g(x,un(x))
un(x)

, un(x) 6= 0,

0, un(x) = 0.

Then we have −ε ≤ pn(x) ≤ λk+1 − λk + ε for a.e. x ∈ Ω. Thus without loss of
generality we may also assume that

pn ⇁ p weakly∗ in L∞(Ω)

as n → ∞. Note the fact that

−ε ≤ p(x) ≤ λk+1 − λk + ε

for a.e. x ∈ Ω, follows from the weak closedness of convex subset K of L2(Ω)
given by

K = {s ∈ L2(Ω)| − ε ≤ s(x) ≤ λk+1 − λk + ε for a.e. x ∈ Ω}.

By Mazur’s Theorem, we only need to prove that the convex set K is closed, which
follows from Theorem 3.1.2 in [8]. By

(1 − η(un))g(x, un)

‖un‖
= pnzn ⇀ pz in L2(Ω)

and
η(un)g(x, un)

‖un‖
→ 0 in L2(Ω),

we have
g(x, un)

‖un‖
⇀ pz in L2(Ω),

where 0 ≤ p ≤ λk+1 − λk for arbitrariness of ε. By (1.3), there exists a constant
M2 > 0, such that

G(x, t) +
1

2
(λk − λk+1)t

2 ≤ 0 (5)

for all |t| > M2 and a.e. x ∈ Ω. When |t| ≤ M2, by G(x, t) continuous there exists
a constant C such that

G(x, t) +
1

2
(λk − λk+1)t

2 ≤ C (6)
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It follows from (2.5) and (2.6) that

G(x, t) +
1

2
(λk − λk+1)t

2 ≤ C

for all t ∈ R and a.e. x ∈ Ω. Thus, we obtain

∫

Ω

G(x, un) +
1
2(λk − λk+1)u

2
n

‖un‖2
dx ≤

C

‖un‖2
|Ω|

Therefore, one has

lim sup
‖un‖→∞

∫

Ω

G(x, un) +
1
2(λk − λk+1)u

2
n

‖un‖2
dx ≤ lim sup

‖un‖→∞

C

‖un‖2
|Ω| = 0 (7)

By (2.1), we have

J(un)

‖un‖2
=

1

2
(1 − λk+1‖zn‖

2
L2)−

∫

Ω

G(x, un) +
1
2(λk − λk+1)u

2
n

‖un‖2
dx.

Let n → ∞, from |J(un)| ≤ c and (2.7), we have

1

2
(1 − λk‖z‖2

L2) ≤ 0.

Thus, z 6= 0. For every v ∈ H1
0(Ω)

〈J′(un), v〉

‖un‖
=
∫

Ω

(

∇zn · ∇v − λkznv −
g(x, un)

‖un‖
v

)

dx.

Let n → ∞, then
∫

Ω

(∇z · ∇v − λkzv − pzv)dx = 0.

In other words, we verify that z, satisfies

{

−∆z = (λk + p)z in Ω,
z = 0 on ∂Ω.

(8)

Hence 1 is an eigenvalue of problem (2.8). If 0 � p � λk+1 − λk, by strict mono-
tonicity we have

λk(λk + p) < λk(λk) = 1 and 1 = λk+1(λk+1) < λk+1(λk + p)

Where λk(λk + p) is the eigenvalue of (2.8). This contradicts that 1 is an eigen-
value of problem (2.8). So either p ≡ λk or p ≡ λk+1. By the unique continua-
tion property, z(x) 6= 0 a.e. x ∈ Ω. And then |un(x)| = |zn(x)|‖un‖ → ∞ a.e.
x ∈ Ω.
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Lemma 2.2 Let g satisfy (1.3), then J is coercive on E+
k , i.e., J(u) → +∞, as ‖u‖ →

∞, u ∈ E+
k .

Proof Following from Proposition 2 in [9] and (1.3), there exists δ > 0 such that

‖u‖2 −
∫

Ω

(u2 lim sup
|t|→∞

2G(x, t)

t2
+ λku2)dx ≥ δ‖u‖2

for all u ∈ E+
k . From (1.3), we obtain that for any ε > 0, there exists M > 0 such

that

G(x, t) ≤ t2 lim sup
|t|→∞

G(x, t)

t2
+

1

2
εt2, for |t| ≥ M,

G(x, t) ≤ C, for |t| < M.

Thus, we have

G(x, t) ≤ t2 lim sup
|t|→∞

G(x, t)

t2
+

1

2
εt2 + C.

Therefore, we obtain

J(u) =
1

2
‖u‖2 −

1

2
λk

∫

Ω

u2dx −
∫

Ω

G(x, u)dx

≥
1

2
‖u‖2 −

1

2
λk

∫

Ω

u2dx −
∫

Ω

(

u2 lim sup
|u|→∞

G(x, u)

u2
+

1

2
εu2 + C

)

dx

=
1

2
‖u‖2 −

∫

Ω

(

u2 lim sup
|u|→∞

G(x, u)

u2
+

1

2
λku2

)

dx −
ε

2
‖u‖2

L2 + C|Ω|

≥
1

2
(δ −

ε

λk+1
)‖u‖2 + C|Ω| → +∞.

Then J is coercive on E+
k .

Lemma 2.3 Assume that g satisfies (1.3), (1.5) and (1.7), then J is anti-coercive on
E−

k ⊕ Ek, i.e. J(u) → −∞, as ‖u‖ → ∞, u ∈ E−
k ⊕ Ek.

Proof Set u ∈ E−
k ⊕ Ek, write u = u− + u0, where u− ∈ E−

k , u0 ∈ Ek,

J(u) =
1

2
‖u‖2 −

1

2
λk‖u‖2

L2 −
∫

Ω

G(x, u)dx

≤
1

2

(

1 −
λk

λk−1

)

‖u−‖2 −
∫

Ω

G(x, u)dx. (9)

We claim that there exist a positive measure subset Ω0 of Ω and a function C(x) ∈
L1(Ω) such that

G(x, t) → +∞

as |t| → ∞ for a.e. x ∈ Ω0, and

G(x, t) ≥ C(x) (10)
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for all t ∈ R and a.e. x ∈ Ω.
By ‖u‖ → ∞, we have two situations: (a) ‖u−‖ → ∞; or (b) ‖u−‖ is bounded,

‖u0‖ → ∞.
(a) If ‖u−‖ → ∞, by (2.9), (2.10) we have

J(u) ≤
1

2

(

1 −
λk

λk−1

)

‖u−‖2 − C → −∞.

(b) If ‖u−‖ is bounded, then ‖u0‖ → ∞, we have

J(u) ≤
1

2
C −

∫

Ω

G(x, u)dx. (11)

Then we only need to show that
∫

Ω
G(x, u)dx → +∞.

Setting u0 = u0
‖u‖

, u− = u−

‖u‖
, u = u− + u0, then ‖u−‖ → 0, ‖u0‖ → 1 and there

exists û ∈ E−
k ⊕ Ek, such that

u ⇀ û, in H1
0(Ω),

u → û, in L2(Ω).

Therefore ‖û‖ = 1, û ∈ Ek. Thus |û| is a normalized λk eigenfunction. By the
unique continuation property, we have

û(x) 6= 0, a.e. x ∈ Ω,

so
|u(x)| = ‖u‖|û(x)| → ∞, a.e. x ∈ Ω.

By Fatou’s lemma, we have

∫

Ω0

G(x, u)dx → +∞, ‖u‖ → ∞. (12)

Then
∫

Ω

G(x, u)dx =
∫

Ω\Ω0

G(x, u)dx +
∫

Ω0

G(x, u)dx → +∞, ‖u‖ → ∞.

From (2.11) and (2.12), we have J(u) → −∞.

It remains to prove the claim.

By (1.7), for any given M3 > 0, there exists δ > 0 such that

2G(x, t)− g(x, t)t ≥ M3, |t| ≥ δ, a.e. x ∈ Ω0.

Setting [t, T] ⊂ [δ,+∞], by

d

dt

[

G(x, t)

t2

]

=
g(x, t)t − 2G(x, t)

t3
,
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we have

G(x, T)

T2
−

G(x, t)

t2
=
∫ T

t

g(x, s)s − 2G(x, s)

s3
ds

≤ −M3

∫ T

t

1

s3
ds

=
M3

2

(

1

T2
−

1

t2

)

.

From

lim inf
T→∞

G(x, T)

T2
≥ 0,

we obtain

−
G(x, t)

t2
≤ −

M3

2t2
.

Therefore

G(x, t) ≥
M3

2
, |t| ≥ δ, a.e. x ∈ Ω0.

Since M3 > 0 is arbitrary, we have

G(x, t) → +∞, |t| → ∞, a.e. x ∈ Ω0.

From (1.5), we can prove that there exists a function C(x) ∈ L1(Ω) such that

G(x, t) ≥
C(x)

2
, t ∈ R, a.e. x ∈ Ω

in a similar way.

Lemma 2.4 (See [6]) Assume that g satisfies (1.8) (or (1.9)), then J has the local link-
ing at u = 0 with respect to H1

0(Ω) = H−⊕ H+, where H− = E−
m ⊕ Em, H+ = E+

m

(or H− = E−
m , H+ = Em ⊕ E+

m).

Lemma 2.5 (See [2]) Let function p ∈ C(Ω̄ × R) satisfy p(x, t) = 0 for t < 0 and all
x ∈ Ω. Assume that

λk ≤ lim inf
t→+∞

p(x, t)

t
≤ lim sup

t→+∞

p(x, t)

t
≤ λk+1, uniformly for x ∈ Ω,

for k ≥ 2. Then the functional

Ĵ(u) =
1

2

∫

Ω

|∇u|2dx −
∫

Ω

P(x, u)dx,

satisfies the (PS) condition, where P(t) =
∫ t

0 p(x, s)ds.

Proof of Theorem 1.1 When g satisfies (1.3), (1.5) and (1.7), we have that J is anti-
coercive on E−

k ⊕ Ek and coercive on E+
k . Letting BR = {u ∈ E−

k ⊕ Ek|‖u‖ ≤ R},

for R > 0, and ∂BR be its boundary on E−
k ⊕ Ek. So we have that

max
u∈∂BR

J(u) < inf
u∈E+

k

J(u).
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In view of Lemma 2.1 and the Saddle Point Theorem, we obtain that the func-
tional J has a critical value c ≥ infu∈E+

k
J(u). Therefore, problem (1.1) has a solu-

tion.

In order to prove Theorem 1.2, we need the following proposition.

Proposition 2.1 (See [10]) Assume that H = H− ⊕ H+, J is bounded from below
on H+ and J(u) → −∞ as ‖u‖ → ∞ with u ∈ H−. Then

Ck(J, ∞) ≇ 0, if k = dim H−
< ∞.

Proof of Theorem 1.2 By (1.3), (1.5), (1.7) and Lemma 2.1, the functional J satisfies
the (C) condition. Since J is weakly lower semi-continuous, and coercive on E+

k

by Lemma 2.2. Then J is bounded from below on E+
k . By Lemma 2.3, J is anti-

coercive on E−
k ⊕ Ek. Then by Proposition 2.1, we have

Cµ(J, ∞) ≇ 0, (13)

where µ = dim(E−
k ⊕ Ek). By g′(x, 0) � λ1 − λk, u = 0 is a local minimum of J,

hence
Cq(J, 0) ∼= δq,0Z. (14)

By (2.13), (2.14) and k > 2, Cµ(J, ∞) ≇ Cµ(J, 0). Thus J has a critical point u0 6= 0
with

Cµ(J, u0) ≇ 0. (15)

We define the following functional J± : H1
0(Ω) → R as

J±(u) =
1

2

∫

Ω

|∇u|2dx −
1

2
λk

∫

Ω

|u|2dx −
∫

Ω

G(x, u±)dx,

where u+ = max{u(x), 0}, u− = min{u(x), 0}. By Lemma 2.5 and k ≥ 2, J±
satisfies the (PS) condition. From (2.12) and k ≥ 2, we have

J±(tϕ1) → −∞, as t → ±∞,

where ϕ1 is the first eigenfunction of −∆. Then there exists t0 ∈ R such that
t0 > 0 and J±(±t0 ϕ1) ≤ 0. Then by the Mountain Pass Lemma and the Maximum
Principle, we can obtain a positive critical point u+ of J+ and a negative critical
point u− of J−. By Corollary 8.5 in [11] the critical group of J± at u± is

Cq(J±, u±) ∼= δq,1Z.

By the results in [12],

Cq(J, u±) ∼= Cq(J|C1
0(Ω), u±) ∼= Cq(J±|C1

0(Ω), u±) ∼= Cq(J±, u±) ∼= δq,1Z. (16)

From (2.15) and (2.16), we get u+ > 0, u− < 0 and u0 are three nontrivial critical
points of J.

So as to prove Theorem 1.3, we need another proposition.
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Proposition 2.2 (See [13, 14]) Let 0 be an isolated point of J ∈ C2(H, R). Assume
that J has a local linking at 0 with respect to a direct sum decomposition H =
H− ⊕ H+, k = dim H−

< ∞, i.e. there exists r > 0 small such that

J(u) > 0, for u ∈ H+, 0 < ‖u‖ ≤ r,

J(u) ≤ 0, for u ∈ H−, ‖u‖ ≤ r.

Then

Cq(J, 0) ∼= δq,kZ, for k = dim H−.

Proof of Theorem 1.3 From the proof of Theorem 1.2, we have Cµ(J, ∞) ≇ 0. By
Lemma 2.4 and (1.8), J has a local linking at 0 with respect to (E−

m ⊕ Em)⊕ E+
m .

Therefore by Proposition 2.2, we have

Cq(J, 0) ∼= δq,µ0Z,

where µ0 = dim(E−
m ⊕ Em). From m 6= k, we have Cq(J, ∞) ≇ Cq(J, 0), for q = µ.

Thus J has a critical point u0 6= 0 with

Cµ(J, u0) ≇ 0. (17)

Because f (x, t1) = 0 for t1 < 0, we can define cut-off functional Ĵ : H1
0(Ω) → R

as

Ĵ(u) =
1

2

∫

Ω

|∇u|2dx −
1

2
λk

∫

Ω

|u|2dx −
∫

Ω

Ĝ(x, u)dx,

where Ĝ(x, t) =
∫ t

0 ĝ(x, s)ds,

ĝ(x, t) =

{

g(x, t), t ∈ [t1, 0],
0, t /∈ [t1, 0].

It is obvious that Ĵ(u) is bounded below and satisfies the (PS) condition. Hence
there is a minimizer u1 of Ĵ(u). In the view of the Maximum Principle, u1 = 0 or

t1 < u1 < 0 for all x ∈ Ω and ∂u1
∂n |∂Ω< 0. By g′(x, 0) = λm − λk and m ≥ 2, 0

is not a minimizer. In addition, u1 is a local minimizer of Ĵ in the C1
0(Ω). And by

the result in [15], we have u1 is a local minimizer of J in H1
0(Ω) topology and

Cq(J, u1) ∼= δq,0Z. (18)

For λkt2 + g(x, t2) = 0, in a similar way J has local minimizer with 0 < u2 < t2

and

Cq(J, u2) ∼= δq,0Z. (19)

Starting with u1 to define the functionals

g̃(x, t) = g(x, t + u1)− g(x, u1), x ∈ Ω, t ∈ R.
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Now we consider the problem
{

−∆v = λkv + g̃(x, v) in Ω,
v = 0 on ∂Ω,

with energy functional

J̃(v) =
1

2

∫

Ω

|∇v|2dx −
1

2
λk

∫

Ω

|v|2dx −
∫

Ω

G̃(x, v)dx, v ∈ H1
0(Ω),

where G̃(x, t) =
∫ t

0 g̃(x, s)ds. By u1 is a solution of problem (1.1), we have
{

−∆(v + u1) = λk(v + u1) + g(x, v + u1) in Ω,
v + u1 = 0 on ∂Ω.

So if v is a critical point of J̃, v + u1 is a critical point of J. And

Cq( J̃, v) = Cq(J, v + u1)

Moreover, define

g̃+(x, t) =

{

g̃(x, t), t ≥ 0,
0, t < 0,

and consider the equation
{

−∆v = λkv + g̃+(x, v) in Ω,
v = 0 on ∂Ω.

The corresponding energy functional is

J̃+(v) =
1

2

∫

Ω

|∇v|2dx −
1

2
λk

∫

Ω

|v|2dx −
∫

Ω

G̃+(x, v)dx,

where G̃+(x, t) =
∫ t

0 g̃+(x, s)ds. By (1.3), we have that g̃+ satisfies

0 ≤ lim inf
t→+∞

g̃+(x, t)

t
≤ lim sup

t→+∞

g̃+(x, t)

t
≤ λk+1 − λk.

By Lemma 2.5, we have that J̃+ satisfies the (PS) condition. Since u1 < 0 is a local
minimizer of J. So v = 0 is a strictly local minimizer of J̃+. Moreover,

J̃+(tϕ1) → −∞, as t → +∞.

By the Mountain Pass Lemma and the Maximum Principle, J̃+ has a critical point
v+ > 0 and it is a critical points of J̃. In the same way, J̃ has a critical point v− < 0.
So u±

1 = u1 + v± are two critical point of J, and u−
1 < u1 < u+

1 . Thus applying
Corollary 8.5 in [11] and Theorem 1 in [12], the critical groups of J at u±

1 are

Cq(J, u±
1 )

∼= Cq( J̃±, u±
1 )

∼= δq,1Z. (20)

Starting with u2 we can show that J has two more critical points u±
2 such that

u−
2 ≤ u2 ≤ u+

2 and
Cq(J, u±

2 )
∼= δq,1Z. (21)

Comparing the critical groups (2.17)-(2.21), we have see that u0, u1, u2, u−
1 , u+

2
are five different nontrivial critical points of J.
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