Module Maps and Invariant Subsets of Banach
Modules of Locally Compact Groups

Hawa Alsanousi Hamouda

Abstract
For alocally compact group G, Lau [6] and Ghaffari [3] provided many re-
sults about G-invariant subsets of G-modules, and the relationship between
G-module maps, L!(G)-module maps and M(G)- module maps. In both pa-
pers their results were specified for one module action. In this paper we
extend many of their results to arbitrary Banach G-modules and G-module
maps.

1 Introduction

Let G always denote a locally compact group with a Haar measure A and mod-
ular function A. Let LP(G), 1 < p < oo, be the Banach space of A-measurable
functions f : G — C, such that ||f||, < oo and when s € G, we let J; denote the
Dirac measure at s. In addition, we let Cy(G) denote the set of all continuous func-
tions f : X — C vanishing at co and denote the set of all complex regular Borel
measures on G by M(G) =2 Cy(G)*. Define the convolution product between two
measures i, v in M(G) by

wev,f) = [[ fenan@aviy)  (f € Co(G)).

The group algebra (L'(G), ), where for f, g € L1(G),

(F+8)(x) = [ F)gly iAW),
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is a closed ideal of the measure algebra via f — i where (us, ¢) = [ ¢(s)f(s)ds
whenever ¢ € Cy(G).

Our definitions of a Banach G-module and of a Banach A-module for a Banach
algebra A, follow [5]; also see [7]. Definitions of dual modules and the relation-
ship between Banach G-modules, Banach M(G)-modules and Banach
L'(G)-modules are found in [5] and [7].

The main purpose of this paper is to generalize many of the results from Lau
and Ghaffari’s papers [6] and [3] respectively. Both Lau and Ghaffari’s results
were about G-invariant subsets of G-modules and the relation between G-module
maps, L!(G)-module maps and M(G)-module maps. Lau’s results were specified
for the G-module action s - f = Js * f wheres € G, f € LP(G),1 < p < oo, and
Ghaffari’s results were specified for the G-module action s - f(t) = s x f(t) =
A(s)lﬁf(s_lts) whenever s € G,f € LP(G),1 < p < oco. In this paper we will
obtain many of the results proved for specific actions in [6] and [3] for arbitrary
Banach G-modules and dual G-modules. We also correct an inaccurate statement
found in [3]. The ideas of our proofs combine those of Lau, Ghaffari and our own.

This paper will be a part of the author’s M.Sc. thesis, written under the super-
vision of Ross Stokke. The author would like to express her deep gratitude to Dr.
Stokke for his support, encouragement and helpful academic advice.

2 G-Module Maps Between Left Banach G-Modules

Let X be a left Banach G-module. Recall that X is a unital left Banach M(G)-
module and a neo-unital left Banach L!(G)-module with respect to the weak in-
tegral

y-x:/(;s-xdy(s) (x € X, u € M(G)).

Definition 2.1. Let X and Y be left Banach G-modules, and let T : X — Y be a
(bounded, linear) operator. Then we will say that T is a G-module map if

T(s-x)=s-Tx (s e G,x e X).

Similarly, we can define right G-module maps, (right) M(G)-module maps and (right)
LY(G)-module maps.

The following two theorems generalize [3, Theorem 2.1].

Theorem 2.2. Let X and Y be left Banach G-modules and T : X — Y a bounded linear
map. Then the following statements are equivalent:

(i) T is a G-module map.
(ii) T is an M(G)-module map.

(iii) T is an L'(G)-module map.
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Proof. (i) = (ii) Let X and Y be left Banach G-modules and suppose that T : X —
Y is a bounded linear G-module map and T* : Y* — X* is its adjoint operator.
For y € M(G),x € Xand ¢ € Y*,

(T(u-x),9) = [ (52, T*@)du(s) = [(T(s-x),9)dn(s) =
[{s- Tx,9)dn(s) = (u-Tx,9).
Since Y* separates points of Y, T(y - x) = - Tx.
(ii) = (iii) This is obvious since L'(G) € M(G).

(iii) = (i) Suppose that T : X — Y is a bounded linear L!(G)-module map.
Lets € G,x € X, and let (e4), be a bounded approximate identity (BAI) for
LY(G). Then (e,), is a BAI for both the neo-unital L!(G)-modules X and Y, so

s-Tx=0s-Tx =lm (ds xey) -Tx =UmT((ds xey) - x) =T(6s-x) =T(s-x). m
1(G)
eL

Note that because X* and Y* are not necessarily right Banach G-modules (e.g.
LY G)* = L*(G),s - f = 6 * f), the next result is not immediately contained in
the right module version of Theorem 2.2.

Theorem 2.3. Let X and Y be left Banach G-modules and suppose that T : Y* — X* is
linear, bounded and w* — w* continuous. Then the following statements are equivalent:

(i) T isaright G-module map.
(ii) T is a right M(G)-module map.
(iii) T is a right L'(G)-module map.

Proof. AsT : Y* — X* is linear, bounded and w* — w* continuous, T is the adjoint
operator of some L : X — Y.
(i) = (ii) Suppose that T is a right G-module map. Then for s € G,x € X and
P Y,

(@, L(s-x)) = (T(¢-5),x) = (¢5- (Lx)),
So L is a G-module map. Hence by Theorem 2.2, L is an M(G)-module map and
therefore, forx € X, ¢ € Y*, and u € M(G),

(0, T(¢- ) = (L(p-x),¢) = (x, T - ).

Hence, T is M(G)-module map. This proves (i) = (ii) and (ii) = (iii) is obvious.
That (iii) = (i) follows the argument used to prove (i) = (ii). u

The following corollary [4, Theorem 35.5] is an immediate consequence of
Theorem 2.2 applied to the Banach G-module action s - i = &5 x h of G on L!(G).
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Corollary 2.4. Let G be a locally compact group and let T : L'(G) — LY(G) be a
bounded linear operator. Then the following are equivalent:

(i) T(8s*h) = 6 * Th whenevers € G,and h € L(G).
(i) T(u*h) = u* Th whenever u € M(G), and h € L'(G).
(iii) T(f *h) = f * Th whenever f,h € L(G).
Let X be a left Banach G-module and define UC(X*) by the following:
UCX"):={¢peX :s—¢-5:G— (X%, ] -]) is continuous }.

It is easy to see that UC(X™) is a closed linear subspace of X*. The next obser-
vation can be found in a forthcoming paper by Y. Choi, E. Samei and R. Stokke.
Related results are found in the author’s thesis.

Lemma 2.5. Let X be a left Banach G-module. Then UC(X*) is a right Banach
G-submodule of X*. Moreover, as we already noted, X* itself is not necessarily a right
Banach G-module. If we let ¢ ® y and ¢ - y respectively denote the corresponding M(G)-
module action on UC(X*), and dual M(G)-module action on X* restricted to UC(X*),
then ¢ @ u = ¢ - p. Hence the notation ¢ - y is unambiguous and UC(X*) = X* - L1(G).

Now by the above Lemma, we can obtain the following corollary, which in-
cludes [3, Theorem 2.4], as an immediate corollary to the right module version of
Theorem 2.2.

Corollary 2.6. Let X and Y be left Banach G-modules, and let T : UC(X*) — UC(Y™)
be a bounded linear operator. Then the following statements are equivalent:

(i) T(¢p-s)=T¢-swherep € UC(X*),s € G.
(it) T(p-pu) =T¢ - pwherep € UC(X*), u € M(G).
(iii) T(¢p- f) = T¢p - f where p € UC(X*), f € L(G).
3 Closed Convex G-Invariant Subsets of Left
Banach G-modules
Definition 3.1. Let X be a left Banach G-module. If C is a convex subset of X, then

C is called G-invariant if s - x € C whenever s € G,x € C. Similarly, we can define
LY(G)-invariant, and M(G)-invariant convex sets.

We denote the probability measures in M(G) by M(G){" and let L'(G){ =
M(G){ NLY(G). The following theorem includes [6, Theorem 4.1(a)]. Note that
by [1, V. Corollary 1.5], a convex subset of a Banach space is closed if and only if
it is weakly closed.
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Theorem 3.2. Let X be a left Banach G-module and C a closed convex subset of X. Then
the following are equivalent:
(i) Cis G-invariant.
(ii) Cis M(G){ -invariant.
(iii) Cis L}(G){ -invariant.
Proof. (i) = (ii) Let u € M(G){,x € C and suppose that C is G-invariant.

Suppose - x ¢ C. Then by the Hahn-Banach Separation Theorem, there is
x* € X*,v € R,and € > 0, such that

Re(x*,c) <y <y+e<Re(x*, u-x) (ceC),
so
Re(x*,s-x) <y <7y+e<Re(x*,u-x) (s € G).

But

Re{x™,u-x) = Re/(x*,s -x)du(s) = /Re(x*,s - x)du(s)

a contradiction. Hence, y - x € C.

(ii) = (iii) This is obvious.

(iii) = (i) Lets € G,x € C and suppose that C is L!(G){ -invariant. Let (e)s C

L'(G){ be a BAI for L'(G). Then e, (s-x) = ey (s -x) = (ex*d5)-x € C.
——

el (G)f
Since s - x € X, and X is a neo-unital Banach L'(G)-module, e, - (s - x) — s - x, so
s-x € Cbecause C is closed. u

The following theorem includes [3, Theorem 2.5] and [6, Theorem 4.1(b)]. The
proof is similar to that of Theorem 3.2.

Theorem 3.3. Let X be a left Banach G-module, L a w*-closed convex subset of X*.
Then the following are equivalent:

(i) L is G-invariant.
(ii) Lis M(G){ -invariant.
(iii) Lis L(G){ -invariant.

If A is a subset of X, co(A) denotes the convex hull of A. The next corollary
includes [6, Corollary 4.2].
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Corollary 3.4. Let X be a left Banach G-module, x € X and ¢ € X*. Then the following
statements hold:

(i) co{s-x:s€ G} ={f-x: fe LY G){}={p-x:pe M)}

*

(i) @ {p-s:s€Gh={p-f: f€LI(G)} ={p n:neMG)}
Proof. We establish (i); the proof of (ii) is similar. Letx € X, C; = co{s- x :
s€ G}, C={pu-x:peM(G)} and C3 = {f-x: f € LI(G){ }. Obviously
co{s-x :s € G} is G-invariant, so continuity of y — s-y: X — X (s € G) gives
G-invariance of C;. Hence by Theorem 3.2, C; is M(G){ -invariant and L(G); -
invariant. Since x = e-x € Cy, {p-x : p € M(G){} C C1. As Cy is closed,
Co = {p-x:p€M(G)]} C Cy, and clearly C3 C C,. Now let (ex)s C L1(G){
be a BAI for L'(G). Then e, -x — x,s0 x € C3. But Cj3 is closed, convex and
L (G){ -invariant so by Theorem 3.2, C3 is G-invariant. Hence C; C Cs. [

4 G-Module Maps Between Closed Convex
G-Invariant Subsets of Left Banach G-Modules

Let X, Y be normed spaces, and C, D convex subsets of X, Y respectively. Recall
thatamap f : C — D is called affine if for all x,y € Cand « € [0, 1],

flax + (1 —a)y) = af(x) + (1 —a)f(y).

Definition 4.1. Let T be the locally convex topology on M(G) generated by the collection
of seminorms { Py : f € CB(G)}, such that

P = I )l = | [ faul  (n e M(G)).

So e —  means that whenever f € CB(G), [ fdua, — [ fdu.
The following theorem contains [6, Theorem 5.1].

Theorem 4.2. Let X, Y be left Banach G-modules, and B, C be closed G-invariant convex
subsets of X and Y respectively. If T : B — C is continuous and affine, then the following
are equivalent:

(i) T(s-x)=s-Tx whenevers € G,x € B.
(ii) T(p - x) = p - Tx whenever p € M(G){,x € B.
(iii) T(f - x) = f - Tx whenever f € L'(G){,x € B.

Proof. Note that by Theorem 3.2, B and C are M(G){-invariant and
LY(G){ -invariant.
(i) = (ii) Let x € B and suppose T(s-x) = s-Tx (s € G). Let u € M(G){,

Ny
(Ma) = () Aidse) C co{ds : s € G} be a net converging to y in T—topology; see
i=1
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[6, Lemma 3.1]. Let ¢ € X*. Then noting that f € CB(G) where f(s) = (¢,s - x)
(s € G), we obtain

@oa-x) = [(@,5 duals) = [(@,5-2)n(s) = (@),

Therefore, pi, - x — p - x weakly in X; also py - Tx — p - Tx weakly in Y. By [2,
Remark 2], T is continuous when A and B have their respective weak topologies.
This, and our assumption(i), give

T(p-x)=w—UmT(py-x) = w—limT(ﬁ/\f‘(Sf‘-x))
|
= w—1lim()_ Af(sf - Tx))
= w—lim;:;l-Tx=y-Tx.
(ii) = (iii) This is obvious.

(iii) = (i) Let s € G,x € B and suppose that T(f - x) = f - Tx for every

f € LY(G){ . Letting (ex)a € L'(G); be a BAIfor L!(G), (ex)s is a BAI for both X

and Y, so

s-Tx =0s-Tx =lm((ds xey) -Tx) =lUmT((ds *ey) - x) = T(ds-x) =T(s-x),
——

LY(G)y
as needed. n

The next theorem contains [3, Theorem 2.6] and [6, Theorem 5.2]. The proof is
similar to the proof of Theorem 4.2.

Theorem 4.3. Let X, Y be left Banach G-modules and let L, K be w*-closed G-invariant
convex subsets of X* and Y* respectively. If T : L — K is w* — w* continuous and
affine, then the following are equivalent:

(i) T(¢p-s) =T¢ -s whenevers € G,¢ € L.
(ii) T(¢p-pu) = T¢p - p whenever y € M(G){,¢ € L.
(iii) T(¢p- f) = T¢ - f whenever f € LY(G){,¢ € L.

In the next two theorems L!'(G) is viewed as a left Banach G-module via
s f = 6s x f. We first observe that [6, Theorem 5.3] can be generalized as fol-
lows:

Theorem 4.4. Let G be a locally compact non-compact group. Let B be a non-empty
closed convex left G-invariant subset of L'(G), and C a non-empty weakly compact closed
convex left G-invariant subset of a left Banach G-module X. If T : C — B is a continuous
affine G-module map, then T(f) = 0 for every f € C.
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Proof. By [2, Remark 2], T is affine continuous when C and B have their respective
weak topologies, so T(C) is a weakly compact convex left G-invariant subset of
L'(G). Hence by [6, Theorem 4.6], T(C) = {0}. ]

Also [6, Theorem 5.5], can be made more general:

Theorem 4.5. Let G be any locally compact group, let C be a weakly compact closed
bounded left G-invariant subset of a left Banach G-module X. Alsolet T : LY(G){ — C
be a continuous affine map. Then the following are equivalent:

(i) T is a G-module map.
(ii) Thereis x € C, such that T(u) = u - x whenever u € L'(G){.

Proof. (i) = (ii) Lets € G and suppose T(s - u) = s - Tu whenever u € L(G){ .
Observe that L1(G){ is a G-invariant weakly closed convex subset of L!(G), so
by Theorem 4.2, we have

T(fxu)=f-Tu (f,ueLlY(G)).

Suppose (ug)x C Ll(G)1 is a BAI for L'(G). Since T(u,) € C for each « and C is
weakly compact, there is an x € C such that by passing to a subnet if necessary,
T(uy) — x in the weak topology. Hence, for ¢ € X*,

(u-x,¢) = Um(Tuy, ¢-u) =lm(u - Tuy, ¢) = lim(T (u *Uy), p) = (Tu, ).
eLl(G)l+

(ii) = (i) Let s € G and suppose there is an x € C, such that T(u) = u - x for
allu € LY(G){. Then

T(s-u)=(s-u)-x=s-(u-x)=s-Tu. u

Ghaffari’s action of L'(G) on LP(G) (1 < p < o0) in his paper [3] is

Fxh(D) /A Vh(s Uts)f(s)ds  (f € LY(G),h € LP(G),s,t € G);

the corresponding G-module action is s x h(t) = A(s)lﬁh(s_lts). In that paper
it is stated that (L'(G),*) is a Banach algebra. Unfortunately x is not always
associative on L' (G).

Theorem 4.6. Let G be any non-abelian discrete group. Then x is not associative on
LY(G) = £1(G).

Proof. Observe that dx x §, = 0,,,-1 whenever x,y € G. Suppose G is a non-

abelian discrete group, and choose s, t,r € G, such that tr # rt. If x is associative
on /1(G), then

0 )1 = 5y* (55 *51}) = (5;0\'5 )*51} = 5(’,5’, 1)t (rsrfl)*l'

rst(rs

So rsts 1r=1 = rsr—1trs—1r=1 and hence t = r—1tr; therefore rt = tr, a contradic-

tion. Hence * is not associative. ]
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Proposition 4.7. Let G be a locally compact group. If G is abelian, then * is associative
on L' (G).

Proof. Let G be an abelian locally compact group, and let f, ¢ € L'(G). Then

fxgl(t) /A 1t‘s )f(s)ds = /g(t)f(s)ds = (/f(s)ds) q(t).

Now let i € L'(G). Then

() ht) = [ (Frg)e)as ) o

= ([ (J soir) stopas) et
= [ s [ stopashie)) = [ sirparts i)

= f*(g*xh)(t). ]

Corollary 4.8. Let G be a discrete group. Then « is associative on £'(G) if and only if G
is abelian.
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