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Abstract

We study positive solutions to singular boundary value problems of the

form
—u"(t) = An(H L) (0,1)
u(0) =0=u(1),

where A > 0 is a parameter, B € (0,1), f : [0,00) — (0,00) is a C! function,
% is decreasing for s > 1,h : (0,1) — (0,00) is a continuous function
and there exist C; > 0,a; € (0,1),i = 1,2 such that h(t) < tca—}; t ~ 0 and
h(t) < “Eﬁ ; t = 1. We establish the uniqueness of positive solutions for
A>1,whena; +8<1,i=1,2.

1 Introduction

Study of positive solutions to reaction diffusion process and their analysis have
great importance in understanding physical and biological phenomena. In par-
ticular, the steady states define the long term dynamics of these processes. Hence
an analysis when a steady state reaction diffusion equation has a unique solution
is a very significant question.

*This author was supported by Basic Science Research Program through the National Re-
search Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technol-
ogy(2012R1A1A1011225)

Received by the editors in November 2012.
Communicated by ]. Mahwin.
2010 Mathematics Subject Classification : 34B16, 34B18.

Bull. Belg. Math. Soc. Simon Stevin 21 (2014), 179-184



180 E. Ko -E. K. Lee — R. Shivaji — B. Son

In this paper, we consider C?(0,1) N C![0, 1] positive solutions to steady state
singular boundary value problems of the form

{u”(t) — an(pPUD) g )

u(t)p (P)

(0) =0=u(1),

where A > 0,8 € (0,1) and /& : (0,1) — (0,00) is a continuous function and
there exist C; > 0,a; € (0,1),i = 1,2 such that h(t) < St ~ 0 and h(t) <

tle 4

t ~ 1. Here f : [0,00) — (0,00) is a C! function with [énf)f( s)=:A>0
f(s)

and Sh_)m s = 0. In [5], it has been established that (P) has a positive solution
g

for each A > 0. Further under additional assumptions on the behavior of the

[(=Dk t)"‘Z’

function j,ﬁ(—:;, a multiplicity result for a certain finite range of A also has been

established.
Such singular two point boundary value problems arise in the study of radial
solutions to nonlinear eigenvalue problems on an exterior domain such as:

—Av(x) = /\K(|x|)% in QF,

v(x) =0 if |x| = ro, (Pr)
v(x) =0 if |x| — oo,

where QO := {x € RN : |x| > ro, N > 2},Av = div(Vv) is the Laplacian and
K : [rg,00) — (0,00) is a continuous function such that lim K(s) = 0. The trans-

S— 00
formation r = |x|,t = (%)2_N and v(r) = u(t) reduces (Pg) to (P) (see [5] for
2
details) where h(t) = N o N-27 e K(rotTN N) Note that when K(r) < rN%P for
r>1with0 < p < N — 2, h(t) is singular at 0 and there exists C; > 0 such that

h(t) < m't ~ 0 with a; = (NN—E)z—P

The main purpose of this paper is to establish the uniqueness of the positive
solution for the problem (P) when A > 1. In particular, we assume

(H) There exists ¢ > 0 such that % is decreasing for s > 0.
We establish:

Theorem 1.1. Assume (H) and a; + p < 1,i = 1,2. Then there exists A* > 0 such
that (P) has a unique positive solution for all A > A*.

See [1] where such a uniqueness result was recently discussed for the nonsin-
gular eigenvalue problem
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where Q is a bounded domain in RN, N > 1 with smooth boundary. Our result
here extends this result to the exterior domain problem (Pg). Also, in the case
when B = 0, uniqueness results for the large value of a parameter have been
established by many authors ( see [2],[3] and [6]). A simple example of f satisfies

all our hypothses is f(s) = e%, v > 0 which arises in the theory of combustion.

We will establish some preliminaries in Section 2 and prove Theorem 1.1 in
Section 3.

2 Preliminaries

1+ A
A = A

Lemma 2.1. If u, is a positive solution of (P), then uy > e in QQ, where d el
e

B
and e is the solution of —e” (t) = h(t); (0,1) and e(0) = 0 = ¢(1).

Proof. Let u, be a positive solution of (P) for arbitrary fixed A > 0. Assuming that
Oy, ={t€(0,1):uy(t) <dre(t)} # D, wehave

C(un(t) — Sne(0))” = AL ey

up(t)P
> A= st
—OA
2>"§e(x)/8
A
Sy llelle
=0
in Q) and u), — e = 0 on 92y, which contradicts the maximum principle.
Hence, (), = @, which proves Lemma 2.1.
3 Proof of Theorem 1.1
f(w)

Let u) and v, be positive solutions of (P). Let g(u) = ~5*. Then we have

[ == ) =i = 2 [ h0)g00) — glu)) o - w)dt. @D

Next, since uy, v, € C'[0,1] (see [4]), integrating by parts and using the boundary
condition, we get

1 1
/ —(vp —up)"(vp —uyp)dt = / [(op — up)'|* dt.
0 0
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Further, by the fundamental theorem of calculus, we have
A/lh £)(g(vr) — g(up))(vr — uy)dt
—/\/ </ (ur +s(v A—uA))(UA—uA)dS) (vr — up)dt
= [ HOE0) 01—l

where ((t) fo (up + s(vy — uy))ds. Hence from (3.1) we obtain
1
[ M@= w2 dt = [ W0z (or — et 62
0 0
Let QO = [0,1] and I > 0 be such that e(t) > 1d(t,0Q) for all t € [0,1], where

d(t,000) = min{t,1 — t}. Now for A > 1 with 6, > 7,if t € [7,1— 55] = O,

then by Lemma 2.1 u, () > dpe(t) > 6,1d(t,0Q0) > 0. Let Q1 := [0,1] — () =

B
(0,ap) U (1 —ay,1) where ay = 55 = CA~ F and C = Z(HJ )1+ﬁ Now we

rewrite (3.2) as

1
| 1@ =) Par = & [ B 01 — )
0 h (3.3)

+ AL ()T (8) (on — up)?dt.

Since uy +s(vy —uy) = (1 —s)uy +svy > (1 —s)dre+sdée = e > o for
s > 0in Qz, using (H), we know that ¢'(up+ s(vy —uy)) < 0 which gives

fo t) +s(vp(t) —up(t)))ds < 0in Q. Since B € (0,1) and £(0) > 0,
11mu_>o+g( ) = —o0. Also by (H), ¢’(u) < 0 for u > o. Hence ¢’ is bounded
above; let then M > 0 be such that g'(u) < M for all u > 0. Hence we obtain

1
) 1 =) Pae < & [ m(OE(E) (o
0
< AM/ )(ox — uy)2dt. (3.4)
Now for t € (0,a,) we have

[oA(t) —ua(t)| =

AN
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Similarly, if t € (1 — a), 1) then we obtain

o) =] < ([ (@) - 607 )

VAN
(@)

NI

>

|

E
=

VR

Hence, it follows that
/ 1) (05 — uy)2dt <

; CA™ T </01[(UA—uA)’]2ds) (/Omh(t) TR dt). (3.5)

1—ﬂ/\

If fol [(vr — uy)]?ds # 0, then from (3.4) and (3.5) we get

a 1
1 < AMCA T (/Ah(t) dt+ [ h(p) dt)
0

~ P -
— C/\W_Hﬁ _|_C/\1+ﬁ 1+ﬁ,

which is a contradiction for A > 1 since a; +f < 1,i = 1,2. Hence

fol[(v;l —uy)']?ds = 0. It follows that vy — u), = constant. But v, —u, = 0 on
0Q). Hence v) = u, on Q.
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