
On Doi-Hopf modules and Yetter-Drinfeld

modules in symmetric monoidal categories

Daniel Bulacu
∗

Blas Torrecillas

Abstract

We study entwining structures on a monoidal category C and their cor-
responding categories of entwined modules. Examples can be constructed
from lax Doi-Koppinen and lax Yetter-Drinfeld structures in C. If C is sym-
metric then lax Yetter-Drinfeld structures appear as special cases of lax Doi-
Koppinen structures, at least if we work over a so-called lax Hopf algebra. In
this case the corresponding categories of entwined modules are isomorphic,
and this generalizes a well-known result of Caenepeel, Militaru and Zhu [15].
In particular, our theory applies to Doi-Koppinen and Yetter-Drinfeld struc-
tures in symmetric monoidal categories. We present some examples of en-
twining structures in monoidal categories coming from actions and coactions
of a weak Hopf algebra.

1 Introduction

Various notions of modules appear in Hopf algebra theory. Doi-Hopf modules
and Yetter-Drinfeld modules are defined as vector spaces with an action and a
coaction, with a compatibility relation that is different in both cases. In [15], it
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was shown that Yetter-Drinfeld modules are special cases of Doi-Hopf modules.
This allows to transport properties of Doi-Hopf modules to Yetter-Drinfeld mod-
ules, and, in particular, it leads to generalizations of the Drinfeld double construc-
tion. Similar results have been applied for Hopf-group coalgebras [8], weak Hopf
algebras [16], quasi-Hopf algebras in [10] and weak π-coalgebras in [20].

The aim of this paper is two-fold. First, we will generalize this result to Hopf
algebras in braided monoidal categories. Some of the results mentioned above
appear as special cases. It also leads to new results, if we apply it to Hopf-group
coalgebras and monoidal Hom-Hopf algebras, as these are Hopf algebras in a
suitable symmetric monoidal category, see [14, 13]. On the other hand, we want
to construct non-trivial examples of entwining structures in monoidal categories
or, equivalently, of monoidal wreath structures, see [9].

In Section 2, we recall the diagrammatic notations for the structure of a braided
Hopf algebra and for the (co)action of a (co)algebra on an object in a module
category. In Section 3 we introduce the notion of (right) entwining structure in
a monoidal category and show that giving an entwining structure is equivalent
to giving a (co)algebra structure in a suitable monoidal category of transfer mor-
phisms through a (co)algebra (Proposition 3.2). Then we show that particular
examples of entwining structures can be obtained from lax Doi-Koppinen struc-
tures, abbreviated as DK-structures. These are triples (B, A, C) consisting of an
algebra A, a coalgebra C and an object B which is at the same time an algebra and
a coalgebra and that acts on C and coacts on A in such a way that the structure
morphisms are respectively coalgebra and algebra morphisms in C. In the situ-
ation where B is a bialgebra, C is a B-module coalgebra and A is a B-comodule
algebra, we recover the classical notion of DK structure. Furthermore, particular
examples of lax DK structures can be obtained from lax Yetter-Drinfeld structures
(abbreviated YD structures) over a lax Hopf algebra. A lax Hopf algebra is an
object B admitting an algebra and a coalgebra structure in C such that IdB has an
inverse SB in the convolution algebra Hom(B, B) that is an anti-algebra and an
anti-coalgebra endomorphism of B. Actually, a simple inspection shows that this
condition is not needed in the proof of the fact that any lax YD structure induces
a lax DK structure (Proposition 3.9). In turn, we need this extra condition in the
proof of our main result, namely Theorem 4.6.

We point out that our definition of an entwined module is given in the frame-
work of module categories. This new approach will be used in Section 5, where
we will show that the category of Doi-Hopf modules over a DK (monoidal) struc-
ture can be identified with the category of weak Doi-Hopf modules introduced in
[2]. Unfortunately, in the weak case Theorem 4.6 does not apply since we don’t
know whether a weak Hopf algebra is a lax Hopf algebra in a suitable symmetric
monoidal category. Nevertheless, Theorem 4.6 can be used as a source of inspi-
ration for the definition of a weak Yetter-Drinfeld module over a weak bialgebra
and then, moving backwards, we can prove a weak version of Theorem 4.6. Fi-
nally, note that the theory performed in the weak case gives particular non-trivial
examples of entwining structures in monoidal categories of bimodules, and this
achieves our second aim.
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2 Preliminaries

2.1 Hopf algebras in braided monoidal categories

A monoidal category is a category C together with a functor ⊗ : C × C → C,
called the tensor product, an object 1 ∈ C called the unit object, and natural
isomorphisms a : ⊗ ◦ (⊗ × Id) → ⊗ ◦ (Id × ⊗) (the associativity constraint),
l : ⊗◦ (1× Id) → Id (the left unit constraint) and r : ⊗ ◦ (Id× 1) → Id (the right
unit constraint). In addition, a has to satisfy the pentagon axiom, and l and r have
to satisfy the triangle axiom. We refer to [19, XI.2] for a detailed discussion. In
the sequel, for any object X ∈ C we will identify 1 ⊗ X ∼= X ∼= X ⊗ 1 using lX

and rX. In addition, all the results will be proved for strict monoidal categories
(i.e., for monoidal categories for which all a, l are r are the identity morphisms).
Then the results remain valid in the case of an arbitrary monoidal category, since
every monoidal category is equivalent to a strict one, see [19] for more detail.
Also

X

X

,
X
❤f

Y

, µ =
X Y

✍ ✌
Z

and ν =
X✎ ☞

Y Z

will be the diagrammatic notation for the following morphisms in C: IdX : X →
X, f : X → Y, µ : X ⊗ Y → Z and ν : X → Y ⊗ Z.

In a monoidal category C we can define algebras and coalgebras. An algebra
in C is an object A of C endowed with a multiplication mA : A ⊗ A → A and
unit morphism η

A
: 1 → A such that mA is associative up to the associativity

constraint a of C and mA ◦ (η
A
⊗ IdA) = mA ◦ (IdA ⊗ η

A
) = IdA. We will write

mA =
A A

✡✠
A

and η
A
=

1
r

A

.

Similarly, a coalgebra in C is an object C of C together with a comultiplication
∆C : C → C ⊗ C and a counit εC : C → 1 such that ∆C is coassociative up to the
coassociativity constraint a and (εC ⊗ IdC) ◦ ∆C = IdC = (IdC ⊗ εC) ◦ ∆C. We use

the diagrammatic notation ∆C =
C☛✟

C C

and εC =
C
r

1

.

The switch functor τ : C × C → C × C is defined by τ(X, Y) = (Y, X). A
prebraiding on a monoidal category C is a natural transformation c : ⊗ → ⊗ ◦ τ,
satisfying the conditions

(a) cX,Y⊗Z =

X Y Z

Y Z X

and (b) cX⊗Y,Z =

X Y Z

Z X Y

(2.1)

(see [19, XIII.1]), where cX,Y :=
X Y

Y X

, for any two objects X and Y of C.

A prebraiding c is called a braiding if it is a natural isomorphism. In this case

we denote c−1
X,Y :=

Y X

X Y

and call C a braided monoidal category. One of the main
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properties of a braiding c on a monoidal category C is given by the equality

X Y Z

Z Y X

=

X Y Z

Z Y X

(2.2)

which holds for any objects X, Y and Z of C. It is considered as the categorical
version of the Yang-Baxter equation.

The naturality of c means that (g ⊗ f )cM,N = cU,V( f ⊗ g), for any f : M → U,

g : N → V in C. In particular, for T ∈ C and
X Y

✍ ✌
Z

: X ⊗ Y → Z in C, we have

T X Y

✍ ✌

Z T

=

T X Y

✍ ✌
Z T

and

X Y T

✍ ✌

T Z

=

X Y T

✍ ✌
T Z

. (2.3)

In a similar way, for a morphism
X✎ ☞

Y Z

between X and Y ⊗ Z, we have that

X T

✎ ☞

T Y Z

=

X T✎ ☞

T Y Z

and

T X

✎ ☞

Y Z T

=

T X✎ ☞

Y Z T

. (2.4)

For a braided monoidal category C, let C in be equal to C as a monoidal cat-

egory, with the mirror-reversed braiding cX,Y = c−1
Y,X. It is well known that C in

is also a braided monoidal category. We call C symmetric if C = C in, as braided

monoidal categories. When C is symmetric we denote := = .

If A and A′ are two algebras in a braided monoidal category then there are
two algebra structures in C on A ⊗ A′. Namely, we denote by A ⊗+ A′ the object
A ⊗ A′ of C endowed with the multiplication (mA ⊗ mA′) ◦ (IdA ⊗ cA′,A ⊗ IdA′)
and tensor product unit morphism. Then, with this structure, A ⊗+ A′ becomes
an algebra in C (see, for instance, [21, Lemma 2.1]). The second algebra structure
in C on A ⊗ A′, denoted in what follows by A ⊗− A′, is obtained by considering
A and A′ algebras in C in. Since C in = C as a monoidal category we obtain that

A ⊗− A′ is an algebra in C with the multiplication (mA ⊗ mA′) ◦ (IdA ⊗ c−1
A,A′ ⊗

IdA′) and tensor product unit morphism.
There is a notion of opposite algebra in a braided monoidal category. More

precisely, if A is an algebra in a braided monoidal category C then Aop+ is the
object A endowed with the new multiplication mA ◦ cA,A and original unit mor-
phism. Then one can easily see that Aop+ is an algebra in C, called the c-opposite
algebra associated to A. Replacing C by C in we obtain Aop−, the object A en-

dowed with the multiplication mA ◦ c−1
A,A and the same unit morphism as that of
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A, and we call it the c−1-opposite algebra associated to A. For further use, we
denote

mAop+ = mA ◦ cA,A =

A A

✡✠

❤+
A

and mAop− = mA ◦ c−1
A,A =

A A

✡✠

❤−
A

. (2.5)

Likewise, if C and C′ are two coalgebras in a braided monoidal category then
C ⊗ C′ has two coalgebra structures in C. We denote by C ⊗+ C′ the coalgebra in
C having the comultiplication given by (IdC ⊗ cC,C′ ⊗ IdC′) ◦ (∆C ⊗ ∆C′) and the
tensor product counit morphism. Analogously, C ⊗− C′ is the coalgebra in C with

comultiplication (IdC ⊗ c−1
C′,C ⊗ IdC′) ◦ (∆C ⊗ ∆C′) and the tensor product counit

morphism as counit.
Next, we recall the notions of a bialgebra and Hopf algebra in a braided

monoidal category. A bialgebra in C is a fivetuple (B, mB, η
B

, ∆B, εB), such that

(B, mB, η
B
) is an algebra and (B, ∆B, εB) is a coalgebra such that ∆B : B → B ⊗ B

and εB : B → 1 are algebra morphisms. B ⊗ B has the tensor product algebra
structure (using the braiding on C), and 1 is considered as an algebra in C with the
multiplication and unit map both equal to the identity morphism of 1. For later
reference, we give explicit formulas for the axioms of a bialgebra B: εBη

B
= Id1,

and

B B B

✡✠

✡✠
B

=

B B B

✡✠

✡✠
B

,

B
r

✡✠
B

=
B

B

=

B
r
✡✠
B

,

B☛✟

☛✟

B B B

=

B☛✟

☛✟

B B B

,

(2.6)

B☛✟
r

B

=
B

B

=

B☛✟
r

B

,

B B

✡✠

r
1

=
B B
r r
1

,

1
r

☛✟

B B

=
1
r r

B B

,

B B

✡✠☛✟

B B

=

B B☛✟☛✟

✡✠✡✠
B B

.

A Hopf algebra in a braided monoidal category C is a bialgebra B in C together
with a morphism S : B → B in C (the antipode) satisfying the axioms

B☛✟
❤S
✡✠
B

=

B
r
r

B

=

B☛✟
❤S

✡✠
B

. (2.7)

It is well-known, see [21, Lemma 2.3], that the antipode S of a Hopf algebra B in
a braided monoidal category C is an anti-algebra and anti-coalgebra morphism,
in the sense that

(a)

B B

✡✠

❤S
B

=

B B

❤S ❤S
✡✠
B

,

1
r
❤S

B

=
1
r

B

and (b)

B
❤S
☛✟

B B

=

B☛✟
❤S ❤S

B B

,

B
❤S
r

1

=
B
r

1

. (2.8)
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2.2 Modules and comodules in module categories

Let C be a monoidal category. A right C-category (also known as a module cate-
gory over C) is a quadruple (D, ⋄, Ψ, r), where D is a category, ⋄ : D × C → D
is a functor, and Ψ : ⋄ ◦ (⋄ × Id) → ⋄ ◦ (Id × ⊗) and r : ⋄ ◦ (Id × 1) → Id are
natural isomorphisms such that the diagrams

((M ⋄ X) ⋄Y) ⋄ Z

ΨM,X,Y⋄IdZ

��

ΨM⋄X,Y,Z// (M ⋄ X) ⋄ (Y ⊗ Z)

(M ⋄ (X ⊗Y)) ⋄ Z
ΨM,X⊗Y,Z// M ⋄ ((X ⊗ Y)⊗ Z)

IdM⋄aX,Y,Z

OO
, (M ⋄ 1) ⋄ X

ΨM,1,X //

rM⋄IdX ''PP
P

P

P

P

P

P

P

P

P

P

P

M ⋄ (1 ⊗ X)

IdM⋄lX

��
X

commute, for all M ∈ D and X, Y, Z ∈ C. Obviously C is itself a right C-category,
with ⋄ = ⊗, and Ψ and r the natural identities (recall that we assumed that C
is strict). In fact, the above mentioned coherence theorem can be extended to
C-categories, and this enables us to assume, without loss of generality, that Ψ and
r are natural identities.

Let D be a right C-category, and consider an algebra A in C. A right module
in D over A is an object M ∈ D together with a morphism νM : M ⋄ A → M such
that νM ◦ (IdM ⋄ η

A
) = rM and such that the diagram

(M ⋄ A) ⋄ A
νM⋄IdA //

ψM,A,A

��

M ⋄ A

νM

��
M ⋄ (A ⊗ A)

IdM⋄mA

// M ⋄ A νM
// M

commutes. Let DA be the category of right modules and right linear maps in D
over A. The right module structure on M ∈ DA will be written symbolically as

νM =
M A
✏✏

M

. When D = C,
M A

✍ ✌
M

will be a shorter notation for the right A-module

structure morphism of M in C. Furthermore, in this case one can define left

A-modules, too. For simplicity, we denote by
A N

✍ ✌
N

the morphism that defines

on an object N of C a left A-module structure in C.
We can also define the dual notion of right comodule in a right C-category D

over a coalgebra C in C. The category of right comodules and right colinear maps
in D over C will be denoted as DC. The right comodule structure on M ∈ DC will

be written as ρM =
M

PP

M C

. When C = D we denote the morphism ρM by
M✎ ☞

M C

.

Likewise, we can define left C-comodules in a monoidal category C. In this case

we will denote by
N✎☞

C N

the morphism that defines on an object N of C a a left

C-comodule structure in C.
Finally, if A, B are algebras in a monoidal category C (respectively if C, D

are coalgebras in C) then we can define (A, B)-bimodules (respectively (C, D)-
comodules) in C. They are left A and right B-modules (respectively, left C and
right D-comodules) such that
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(a)

A M B

✍ ✌

✍ ✌
M

=

A M B

✍ ✌
✍ ✌
M

, resp. (b)

N✎ ☞
✎☞

C N D

=

N✎☞

✎ ☞

C N D

. (2.9)

3 Entwining structures defined by lax Doi-Koppinen and lax

Yetter-Drinfeld structures

Throughout this section, C is a monoidal or a braided monoidal category. As we
have seen, we can assume that C is strict, without loss of generality. Entwined
structures over a field were introduced by Brzeziński in [5]; in [18], this notion
was generalized to symmetric monoidal categories. In fact the assumption that C
has a symmetry is not needed.

Definition 3.1. A right entwining structure in C is a triple (A, C, ψ), where A is
an algebra in C, C is a coalgebra in C, and ψ : C ⊗ A → A ⊗ C is a morphism in

C, which we denote by ψ =
C A
❡

A C

, such that the following equalities hold:

(a)

C A A
❡

❡
✡✠
A C

=

C A A

✡✠

❡
A C

, (b)

C
r

❡
A C

=
C

r
A C

,

(c)

C A
❡

☛✟

A C C

=

C A☛✟
❡

❡
A C C

and (d)

C A
❡
r

A

=

C A
r

A

. (3.1)

We call an entwining structure (A, C, ψ) in C trivial if A = 1 and ψ = IdC, or
if C = 1 and ψ = IdA.

Next, we show that any entwining structure in C can be viewed as a trivial
entwining structure in a different monoidal category. The next result is essentially
due to Schauenburg [22] and has its roots in a paper of Tambara [23]. Also, our
result is slightly more general than in [22] because we do not assume that the
entwining map ψ is an isomorphism in C.

Let us start by presenting some concepts and constructions. Similar to
[22, Definition 4.2] we define the category of transfer morphisms through an al-
gebra (or a coalgebra) as follows.

For an algebra A in C, we consider the category TA of right transfer mor-
phisms through A. The objects are pairs (X, ψX,A) with X ∈ C and ψX,A :
X ⊗ A → A ⊗ X a morphism in C such that (3.1.a) and (3.1.b) are fulfilled (with
C replaced by X). A morphism in TA between (X, ψX,A) and (Y, ψY,A) is a mor-
phism µ : X → Y in C such that (IdA ⊗ µ) ◦ ψX,A = ψY,A ◦ (µ ⊗ IdA). TA is a
strict monoidal category, with unit object (1, IdA) and tensor product
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(X, ψX,A)⊗(Y, ψY,A) = (X ⊗ Y, ψX⊗Y,A),

with ψX⊗Y,A := (ψX,A ⊗ IdY)(IdX ⊗ ψY,A). (3.2)

We leave it to the reader to introduce the monoidal category TC of right trans-
fer morphisms through the coalgebra C in C.

Proposition 3.2. Let C be a monoidal category.

i) If A is an algebra in C then (C, ψC,A) is a coalgebra inTA if and only if (A, C, ψC,A)
is a right entwining structure in C.

ii) If C is a coalgebra in C then (A, ψC,A) is an algebra inTC if and only if (A, C, ψC,A)
is a right entwining structure in C.

Consequently, (A, C, ψ) is a right entwining structure in C if and only if
((1, IdA), (C, ψ), Id) is a trivial entwining structure in TA or, equivalently, ((A, ψ),
(1, IdC), Id) is a trivial entwining structure in T C.

Proof. Straightforward. The verification of all these details is left to the reader.

For C = kM, the category of vector spaces, we obtain the classical definition
of an entwining structure [5]. In this case, it is well known that a class of exam-
ples is given by the Doi-Koppinen structures (DK for short) over k. This can be
generalized to entwining structures in braided monoidal categories.

Assume that C is a braided monoidal category, and that B is an object in C
which is both an algebra and a coalgebra (but not necessarily a bialgebra) in C.
A right c±1-module coalgebra over B is a coalgebra C in C which is also a right
B-module such that the structure map C ⊗ B → C is a coalgebra morphism from
C ⊗± B to C. Similarly, a right c±1-comodule algebra over C is an algebra A in C
which is also a right B-comodule such that the structure morphism A → A ⊗ B
is an algebra morphism from A to A ⊗± B. For example, in the c-case, C is a
coalgebra and a right B-module in C, respectively A is an algebra and a right

B-comodule in C, such that

C B

✍ ✌
r

1

=
C B
r r
1

, respectively

1
r

✎ ☞

A B

=
1
r r

A B

, and the

following equalities hold:

(a)

C B

✍ ✌
☛✟

C C

=

C B☛✟☛✟

✍ ✌✍ ✌
C C

, resp. (b)

A A✎ ☞✎ ☞

✡✠✡✠
A B

=

A A

✡✠
✎ ☞

A B

. (3.3)

Note that for the c−1-case we have to replace in the above equalities the braiding
with its inverse .

In a similar way, we can define the notions of left c±1-module coalgebra and
left c±1-left comodule algebra over B.
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Definition 3.3. Let C be a braided monoidal category and B an object of C which
has both an algebra and a coalgebra structure in C. If A is a right c±1-comodule
algebra over B and C is a right c±1-module coalgebra over B, respectively, then
we call the triple (B, A, C) a lax c±1-right Doi-Koppinen (DK for short)-structure
in C. If B is a bialgebra in C then we simply say that (B, A, C) is a c±1-right
DK-structure in C.

Proposition 3.4. Let C be a braided monoidal category, B an object of C which has both
an algebra and a coalgebra structure in C, and A ∈ CB and C ∈ CB. Define

ψ+ :=

C A✎ ☞

✍ ✌
A C

, and ψ− :=

C A✎ ☞

✍ ✌
A C

. (3.4)

Then the following assertions hold:

(i) If (B, A, C) is a lax c-right DK-structure in C then (A, C, ψ+) is a right entwining
structure in C.

(ii) If (B, A, C) is a lax c−1-right DK-structure in C then (A, C, ψ−) is a right
entwining structure in C.

Proof. It suffices to prove (i), as (ii) is (i) applied to C in. The computation

C A A✎ ☞
✎ ☞

✍ ✌

✡✠ ✍ ✌
A C

(2.3)×2
=

C A A✎ ☞✎ ☞

✍ ✌✡✠

✍ ✌
A C

(2.3)
=

C A A✎ ☞✎ ☞

✡✠

✍ ✌

✍ ✌
A C

(2.3)
=

C A A✎ ☞✎ ☞

✡✠

✍ ✌
✍ ✌

A C

C∈CB=

C A A✎ ☞✎ ☞

✡✠

✡✠

✍ ✌

A C

(2.3)
=

C A A✎ ☞✎ ☞

✡✠ ✡✠

✍ ✌

A C

(2.3)
=

C A A✎ ☞✎ ☞

✡✠ ✡✠

✍ ✌
A C

(3.3.b)
=

C A A

✡✠
✎ ☞

✍ ✌
A C

,
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shows that (3.1.a) is satisfied. In a similar way, we have that

C A☛✟ ✎ ☞

✍ ✌✎ ☞

✍ ✌
A C C

(2.3)
=

C A☛✟ ✎ ☞

✍ ✌
✎ ☞

✍ ✌
A C C

(2.4)×2
=

C A☛✟ ✎ ☞
✎ ☞

✍ ✌

✍ ✌
A C C

A∈CB

=

C A☛✟ ✎ ☞

☛✟

✍ ✌

✍ ✌
A C C

(2.3)×2
=

C A☛✟✎ ☞

☛✟

✍ ✌
✍ ✌

A C C

(2.4)
=

C A✎ ☞

☛✟

☛✟

✍ ✌✍ ✌
A C C

(3.3.a)
=

C A✎ ☞

✍ ✌
☛✟

A C C

,

and this shows that (3.1.c) is satisfied. It is easy to see that (A, C, ψ+) satisfies
(3.1.b,d), and this completes the proof.

If C is symmetric then lax DK-structures in C can be obtained from lax Yetter-
Drinfeld structures (abbreviated as YD-structures) in C defined over lax Hopf
algebras.

Definition 3.5. Let C be a braided monoidal category. A lax Hopf algebra in
C is a sextuple (B, mB, η

B
, ∆B, η

B
, SB) consisting in an algebra (B, mB, η

B
) and a

coalgebra (B, ∆B, εB) structure on an object B of C, and an anti-algebra and anti-
coalgebra endomorphism SB of B satisfying (2.7).

It is clear that a braided Hopf algebra is a lax Hopf algebra. Let C be a braided
monoidal category and B an object of C which is both an algebra and coalge-
bra in C. A (c, c)-bimodule coalgebra over B is a coalgebra C in C which has a
B-bimodule structure such that C is both a left and right c-module coalgebra over
B. Similarly, we can define (c, c−1), (c−1, c) and (c−1, c−1)-bimodule coalgebras
over B in C, respectively. Likewise, a (c, c)-bicomodule algebra in C is an algebra
A of C endowed with a B-bicomodule structure such that A is simultaneously
a left and right c-comodule algebra over B. In a similar manner one can define
(c, c−1), (c−1, c) and (c−1, c−1)-bicomodule algebras over B in C, respectively.

Definition 3.6. Let C be a braided monoidal category and B ∈ C such that B
is both an algebra and a coalgebra in C. If C is a (c, c)-bimodule coalgebra and
A is a (c, c)-bicomodule algebra over B in C, then we call the triple (B, C, A) a

lax

(
c c
c c

)
YD-structure in C (the first row of the matrix refers to the bicomodule

algebra structure, while the second row refers to the bimodule coalgebra structure
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over B). In a similar way we define lax

(
c c

c−1 c

)
, · · · ,

(
c−1 c−1

c−1 c−1

)
YD-structures

in C. If B is a bialgebra in C then the word lax will be omitted. Also, in the
particular case when C is symmetric monoidal we simply say that (B, C, A) is a
(lax) YD-structure in C.

First, we show that any (c−1, c)-bimodule coalgebra can be viewed as a c-right
module coalgebra.

Lemma 3.7. Let C be a braided monoidal category, B an object of C which has both an
algebra and a coalgebra structure in C, and C a (c−1, c)-bimodule coalgebra over B in C.
Then C with structure defined by

C Bop+ ⊗ B

✍ ✌
C

:=

C Bop+ B

✍ ✌
✍ ✌
C

(3.5)

is a c-right module coalgebra over Bop+ ⊗+
+ B in C.

Proof. C is a right Bop+ ⊗+ B-module since

C Bop+ B Bop+ B

✍ ✌
✍ ✌

✍ ✌
✍ ✌
C

(2.3)
=

C∈BCB

C Bop+ B Bop+ B

✍ ✌
✍ ✌

✍ ✌

✍ ✌
C

C∈CB=

C Bop+ B Bop+ B

✡✠

✍ ✌
✍ ✌

✍ ✌
C

C∈BCB=
(2.3)

C Bop+ B Bop+ B

✡✠
✍ ✌

✍ ✌

✍ ✌
C

(2.3)×2
=

C Bop+ B Bop+ B

✡✠

✍ ✌

✍ ✌
✍ ✌
C

C∈BCB=
C∈BC

C Bop+ B Bop+ B

✡✠

✍ ✌
✡✠

✍ ✌
C

(∗)
=
(2.3)

C Bop+ B Bop+ B

✡✠✡✠

❤+

✍ ✌
✍ ✌
C

.

In the equality (∗), we used the definition of mop+. We also have that

C
r r

✍ ✌
✍ ✌
C

=

C
r

✍ ✌
C

=

C
r
✍ ✌
C

=
C

C

,

since C ∈ BCB and cX,1 = c1,X = IdX, for any object X of C (see [19, Prop. XIII.1.2]).
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Next, we prove that the structure map C ⊗+ (B ⊗+ B) → C defined above is
a coalgebra morphism in C. This follows from our next computation. At the very
beginning we use (2.1) (a), and in (∗), we use the fact that C is a c−1-left module
coalgebra over B.

C B B☛✟☛✟
☛✟

✍ ✌ ✍ ✌
✍ ✌ ✍ ✌
C C

(2.4)
=

C∈BCB

C B B☛✟☛✟

☛✟
✍ ✌

✍ ✌
✍ ✌

✍ ✌
C C

(2.4)
=
(2.2)

C B B

☛✟
☛✟

☛✟

✍ ✌
✍ ✌

✍ ✌✍ ✌
C C

(2.4)
=
(2.3)

C B B

☛✟☛✟ ☛✟

✍ ✌ ✍ ✌

✍ ✌

✍ ✌
C C

(2.3)
=

C B B

☛✟☛✟ ☛✟

✍ ✌
✍ ✌✍ ✌

✍ ✌
C C

C∈BCB=

C B B

☛✟☛✟ ☛✟

✍ ✌✍ ✌

✍ ✌

✍ ✌
C C

(2.3)
=

C B B

☛✟☛✟ ☛✟

✍ ✌✍ ✌

✍ ✌✍ ✌
C C

(∗)
=

C B B

✍ ✌☛✟
☛✟

✍ ✌✍ ✌
C C

(3.3.a)
=

C B B

✍ ✌

✍ ✌
☛✟

C C

C∈BCB=

C B B

✍ ✌
✍ ✌

☛✟

C C

.

In a similar way, we have

C B B

✍ ✌
✍ ✌

r
1

=

C B B

r ✍ ✌
r

1

=

C B B
r

r r
1

=
C B B
r r r

1

.
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Here we used successively that C is a left c−1-module coalgebra, C is a right
c-module coalgebra, and cC,1 = IdC.

Our next aim is to show that a bicomodule algebra over a lax Hopf algebra
gives rise to a right comodule algebra.

Lemma 3.8. Let C be a braided monoidal category, B a lax Hopf algebra in C and
A a (c−1, c)-bicomodule algebra over B. Then A is a c-right comodule algebra over
Bop+ ⊗+

− B in C via the structure morphism ρ
A

: A → A ⊗ Bop+ ⊗ B given by

ρ
A

:=

A✎☞

✎ ☞

❤S
A B B

. (3.6)

Proof. We first check that A is a right B ⊗+ B-comodule.

A✎☞

✎ ☞

✎☞
✎ ☞

❤S
❤S

A B B B B

(2.4)
=

A∈BCB

A✎☞
✎☞
✎ ☞

✎ ☞
❤S

❤S
A B B B B

A∈BC
=
(2.4)

A✎☞
✎ ☞

☛✟

✎ ☞
❤S

❤S
A B B B B

(2.4)×2
=

A✎☞
✎ ☞

✎ ☞

☛✟

❤S ❤S
A B B B B

A∈CB

=

A✎☞
✎ ☞

☛✟

☛✟

❤S ❤S
A B B B B

(2.4)
=

A✎☞
✎ ☞

☛✟

☛✟

❤S ❤S
A B B B B

(∗)
=

A✎☞
✎ ☞

☛✟

☛✟
❤S ❤S

A B B B B

(2.8.b)
=

A✎☞
✎ ☞

❤S
☛✟☛✟

A B B B B

,

and this is exactly what we need. Note that in (∗) we used the naturality of the
braiding c twice.
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We show next that ρ
A

is an algebra map from A to A ⊗+ (Bop+ ⊗− B). It is

easy to check that ρ
A

respects the unit morphisms. We also have that

A A

✡✠
✎☞
✎ ☞

❤S
A Bop+ B

=

A A✎☞✎☞

✡✠✡✠
✎ ☞

❤S
A Bop+ B

=

A A✎☞✎☞

✎ ☞✎ ☞
✡✠

✡✠✡✠
❤S

A Bop+ B

=

A A✎☞✎☞

✎ ☞✎ ☞
❤S ❤S
✡✠ ✡✠✡✠

❤+

A Bop+ B

=

A A✎☞✎☞

✎ ☞✎ ☞

✡✠✡✠

❤S ❤S
✡✠

❤+
A Bop+ B

=

A A✎☞✎☞

✎ ☞✎ ☞

✡✠

✡✠

❤S ❤S
✡✠

❤+
A Bop+ B

=

A A✎☞✎☞

✎ ☞✎ ☞

✡✠

✡✠❤S ❤S
✡✠

❤+
A Bop+ B

=

A A✎☞ ✎☞
✎ ☞ ✎ ☞

✡✠

✡✠❤S ❤S
✡✠

❤+
A Bop+ B

=

A A✎☞ ✎☞
✎ ☞ ✎ ☞

✡✠

✡✠❤S ❤S
✡✠

❤+
A Bop+ B

=

A A✎☞ ✎☞
✎ ☞ ✎ ☞

❤S

✡✠
❤S

✡✠✡✠

❤+
A Bop+ B

.

In the first equality we used the fact that A is a c−1-left comodule algebra over B;
in the second equality we used the naturality of the braiding c and the fact that
A is a c-right comodule algebra over B; in the third equality we used (2.8.a), the
naturality of the braiding c and the definition of the multiplication of Bop+ in (2.5);
in the fourth, fifth and sixth equality we used (2.3); in the seventh equality we
used (2.4); in the eight equality we used (2.2); in the final equality th naturality of
c was used twice. Finally, using (2.8.b), the naturality of the braiding c, c1,A = IdA
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and the fact that A is a B-bicomodule, we compute

A✎☞
✎ ☞

❤S r
r

A

=

A✎☞
✎ ☞

r r
A

=

A✎☞
✎ ☞

r r
A

=

A✎☞

r
A

=
A

A

,

and this finishes the proof.

Applying Lemmas 3.7, 3.8 and Proposition 3.4 we obtain the following result.

Proposition 3.9. Let B be a lax Hopf algebra in a symmetric monoidal category C. To
any right lax YD-structure (B, C, A) in C we can associate a right lax DK-structure
in C, namely (Bop ⊗ B, C, A). Consequently, any lax YD-structure (B, C, A) over a
lax Hopf algebra B produces a right entwining structure (A, C, ψ) in C, where ψ can be
explicitly computed using (3.4), (3.5) and (3.6).

4 Entwined modules - a module categorical approach

Let A be an algebra in a monoidal category C. To A we have associated the
monoidal category TA, called the category of transfer morphisms through A.
Then it came out that there is a bijective correspondence between right entwin-
ing structures in C and coalgebras in TA. On the other hand, to a right entwin-
ing structure (A, C, ψ) in C, we can associate the category of entwined modules
C(ψ)C

A. The objects are right A-modules and right C-comodules in C for which the
right C-comodule morphism structure is right A-linear or, equivalently, for which
the right A-module morphism structure is right C-colinear. The morphisms in
C(ψ)C

A are the morphisms in C which are right A-linear and right C-colinear.
Based on these observations and with the help of the notion of C-category we

will see that entwined modules can be viewed as comodules over a coalgebra in
the category of transfer morphisms through an algebra in C. First we generalize
the classical notion of entwined module.

Definition 4.1. Let C be a monoidal category, let D be a right C-category and let

(A, C, ψ =
C A
❡

A C

) be a right entwining structure in C. An object M ∈ D is called

a right entwined module with entwining map ψ if M is a right module in D over
A, a right comodule in D over C and the following compatibility relation holds:

M A
✏✏

PP

M C

=

M A
PP

❡
✏✏

M C

. (4.1)

D(ψ)C
A will be the category of right entwined modules with entwining map ψ

and right A-module and right C-colinear morphisms.
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Remark 4.2. Observe that Definition 4.1 does not cover all categories of Hopf mod-
ules defined over Hopf algebras and their generalization. For example, the cate-
gory of Doi-Hopf modules over a quasi-Hopf algebra H (see [7]) has not such a
description. This is because in the quasi-Hopf case a right DK-structure consists
of a right H-comodule algebra A (in the sense of Hausser and Nill [17]) which is
associative and a right H-module coalgebra C (in the sense of [12]) which is coas-
sociative up to the reassociator of H which is, in general, not trivial. Therefore
(H,A, C) does not produce a right entwining structure in a certain monoidal cat-
egory. Nevertheless, in the forthcoming paper [11] we will see that the notion of
entwining structure in a monoidal category can be generalized. Then, using the
point of view suggested by the result below we will define a more general cat-
egory of entwined modules, unifying in this way most of the Doi-Hopf module
categories known so far.

Proposition 4.3. Let C be a monoidal category, (A, C, ψ) a right entwining structure in
C and D a right C-category.

(i) If M ∈ DA and (X, ψX,A) ∈ TA then M ⋄ X ∈ DA with the structure

νM⋄X :

(
(M ⋄ X) ⋄ A

ΨM,X,A// M ⋄ (X ⊗ A)
Id⋄ψX,A// M ⋄ (A ⊗ X)

Ψ−1
M,A,X// (M ⋄ A) ⋄ X

νM⋄Id// M ⋄ X

)
.

The associated functor from DA × TA to DA turns DA into a right TA-category.

(ii) The category of entwined modules D(ψ)C
A coincides with the category of right co-

modules in DA over the coalgebra (C, ψ) in TA.

Proof. In diagrammatic notation, we have that νM⋄X =

M X A
❡

✏✏

M X

, hence

M X
r

❡
✏✏

M X

=

M X
r

✏✏

M X

=
M X

M X

and

M X A A
❡

✏✏

❡
✏✏

M X

=

M X A A
❡

❡
✡✠

✏✏

M X

=

M X A A

✡✠

❡
✏✏

M X

,

by (3.1.a). All other details are left to the reader.

Example 4.4. Let (B, A, C) be a lax c-right DK-structure in a braided monoidal
category C, and let D be a right C-category. The category Dlax(B)

C
A of entwined

modules in D corresponding to the right entwining structure in C defined by (3.4)
is called the category of lax right Doi-Hopf modules in D over B.

Now we introduce the braided version of the category of Yetter-Drinfeld mod-
ules.
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Definition 4.5. Let (B, A, C) be a lax

(
c c
c c

)
YD-structure in a braided monoidal

category C, and let D be a right C-category. An object M of D is called a lax right
Yetter-Drinfeld module if M ∈ DA, M ∈ DC and the following compatibility
relation between these structures holds:

M A
PP

✎ ☞

✏✏ ✍ ✌
M C

=

M A✎☞

✏✏

PP

✍ ✌
M C

. (4.2)

Then YDlax(B)
C
A will be the notation for the category of lax right Yetter-Drinfeld

modules in D over B, and right A-linear and right C-colinear morphisms.

Theorem 4.6 is the braided version of the main result in [15], and tells us that
YDlax(B)

C
A is a category of entwined modules, at least if we work over a symmet-

ric monoidal category C.

Theorem 4.6. Let D be a right C-category with C symmetric monoidal. If B is a
lax Hopf algebra in C and (B, A, C) is a lax YD-structure in C then YDlax(B)

C
A =

Dlax(B
op ⊗ B)C

A.

Proof. By Example 4.4 and Proposition 3.9 an object M of Dlax(B
op ⊗ B)C

A is a right
module in D over A and a right comodule in D over C such that

M A
✏✏

PP

M C

=

M A
PP

✎☞
✎ ☞

❤S
✏✏

✍ ✌
✍ ✌

M C

. (4.3)

Therefore it suffices to show that (4.2) and (4.3) are equivalent. The following
computation shows that (4.2) implies (4.3). Observe that (∗) follows from the
naturality of the braiding c and the fact that c1,X = cX,1 = IdX, and that the last
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equality follows from the unit and counit axioms.

M A
PP

✎☞
✎ ☞

❤S
✏✏

✍ ✌
✍ ✌

M C

(2.4)
=
(2.3)

M A✎☞

❤S
✎ ☞

PP

✏✏ ✍ ✌

✍ ✌
M C

(4.2)
=

M A✎☞

❤S
✎☞

✏✏

PP

✍ ✌

✍ ✌
M C

(2.3)
=
(2.4)

M A✎☞
✎☞

❤S

✏✏

PP

✍ ✌

✍ ✌
M C

A∈BC
=

C∈BC

M A✎☞

☛✟
❤S

✏✏

PP

✡✠

✍ ✌
M C

(2.3)
=
(2.4)

M A✎☞

☛✟
❤S

✏✏

PP

✡✠

✍ ✌
M C

(2.4)
=
(2.3)

M A✎☞

☛✟
❤S

✏✏ ✡✠
PP

✍ ✌
M C

(2.7)
=

M A✎☞

r
✏✏

PP
r

✍ ✌
M C

(∗)
=

M A✎☞

r

✏✏

PP

r
✍ ✌

M C

=

M A
✏✏

PP

M C

.

Conversely, assume that (4.3) holds. We then compute:

M A✎☞

✏✏

PP

✍ ✌
M C

(4.3)
=

M A✎☞

PP
✎☞
✎ ☞

❤S
✏✏

✍ ✌
✍ ✌

✍ ✌
M C

A∈BC
=

C∈BC

M A✎☞
☛✟

✎ ☞
PP

❤S
✏✏

✍ ✌
✡✠

✍ ✌
M C

(2.4)
=
(2.3)

M A
PP

✎☞

☛✟✎ ☞

❤S

✏✏ ✡✠✍ ✌

✍ ✌
M C
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(2.2)
=

M A
PP

✎☞

☛✟✎ ☞
❤S

✍ ✌
✏✏ ✡✠

✍ ✌
M C

(2.3)×2
=

M A
PP

✎☞
☛✟

❤S ✎ ☞
✡✠

✍ ✌
✏✏ ✍ ✌

M C

(2.7)
=
(2.3)

M A
PP

✎ ☞

✏✏ ✍ ✌
M C

,

and this ends the proof. In the last equality we also used the fact that c1,X =
cX,1 = IdX, for all X ∈ C.

5 Monoidal entwining structures defined by weak Hopf algebra

actions and coactions

The aim of this Section is to present examples of entwining structures in monoidal
categories obtained from actions and coactions of a weak bialgebra. Then we re-
late our results to some existing results on Doi-Hopf modules and Yetter-Drinfeld
modules over a weak Hopf algebra.

Let k be a field. Recall from [4] that a weak bialgebra is a k-module H together
with a k-algebra structure (H, m, u) and a k-coalgebra structure (H, ∆, ε) such that
∆ is multiplicative and the following relations hold

11 ⊗ 12 ⊗ 13 = 11 ⊗ 1211′ ⊗ 12′ = 11 ⊗ 11′12 ⊗ 12′ , (5.1)

ε(ghl) = ε(gh1)ε(h2 l) = ε(gh2)ε(h1 l), ∀ g, h, l ∈ H. (5.2)

11′ ⊗ 12′ is a second copy of ∆(1), 1 is the unit of H and ∆(h) = h1 ⊗ h2, h ∈ H.
It is known that the category of right H-(co)representations is monoidal; this can
be explained easily using the following arguments, as presented in [3].

The endomorphisms εs, εt : H → H, εs(h) = ε(h12)11, εt(h) = ε(11h)12 are
idempotent. Their images

Ht := {h ∈ H | ∆(h) = 11h ⊗ 12} and Hs := {h ∈ H | ∆(h) = 11 ⊗ h12},

called the target and source subspace of H, are subalgebras of H.
If H a weak k-bialgebra then so is Hop, and it can be easily seen that

ε
op
s (h) = ε(12h)11 := εs(h) and ε

op
t (h) = ε(h11)12 := εt(h),

for all h ∈ H. Note that the map εt restricts to an anti-algebra isomorphism from
Hs to Ht with inverse εs, while εs restricts to an anti-algebra isomorphism from
Ht to Hs with inverse εt.

Now, if M is a right H-module then M becomes an Hs-bimodule via r ·m · r′ =
mεt(r)r′ = mr′εt(r), for all m ∈ M and r, r′ ∈ Hs. Furthermore, Hs is a right
H-module via r ⊳ h = εs(rh), for all r ∈ Hs and h ∈ H. Then (MH ,⊗Hs , Hs) is
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monoidal in such a way that the forgetful functor from MH to HsMHs turns into
a monoidal functor.

We call a coalgebra C in MH a right H-module coalgebra. The next result
says that this notion is equivalent to the notion of weak H-module coalgebra, as
introduced in [2].

Proposition 5.1. If H is a weak k-bialgebra then C is a right H-module coalgebra if and
only if C has a right H-module structure and a coalgebra structure (C, ∆C, εC) in kM
that are compatible in the following sense,

∆C(c · h) = c1 · h1 ⊗ c2 · h2, and (5.3)

εC(c · εt(h)) = εC(c · h), ∀ c ∈ C, h ∈ H. (5.4)

Proof. First let (C, ∆, ε) be a coalgebra in MH. We have a well-defined map
∆C : C → C ⊗ C given by

∆(c) = c1 · εs(12)⊗ 11 · c2 = c1 · εs(12)⊗ c2 · εt(11) = c1 · 11 ⊗ c2 · 12,

for all c ∈ C. Moreover, (C, ∆C, εC := εε) is a k-coalgebra, a right H-module and
the conditions in the statement are satisfied.

Conversely, if (C, ∆C, εC) is a k-coalgebra and a right H-module obeying (5.3)
and (5.4) then C becomes a right H-module coalgebra via the comultiplication

∆ : C
∆C // C ⊗ C // C ⊗Hs C and the counit ε : C → Hs given by ε(c) =

εC(c · 12)11, for all c ∈ C.

The monoidal structure on the category MH is defined in a similar manner.
In this case the key observation is the fact that H is an Hs-coring. Indeed, it is
well-known that

∆̃ : H ∆ // H ⊗ H // H ⊗Hs H

together with ε̃ := εs defines a coalgebra structure on H within the monoidal
category HsMHs . This fact allows us to define a right corepresentation over a
weak bialgebra:

Definition 5.2. A right comodule over a weak k-bialgebra H consists in a right
comodule over the Hs-coring H. Otherwise stated, a right comodule over H is a
right Hs-module M together with a right Hs-module map ρM : M → M ⊗Hs H
such that, via the canonical identifications in HsMHs , we have

(ρM ⊗Hs IdH)ρ
M = (IdM ⊗Hs ∆̃)ρM and (IdM ⊗Hs εs)ρ

M = IdM.

A morphism f : M → N between two right comodules over H is a right
Hs-module map satisfying ( f ⊗Hs IdH)ρ

N = ρM f . The category of right comod-
ules over H and right H-comodule maps is denoted by MH.

Although a right comodule M over H is not necessarily a left Hs-module,
one can easily see that M ⊗Hs H is a left Hs-module by defining r · (m ⊗Hs h) =
m ⊗Hs rh, for all r ∈ Hs, m ∈ M and h ∈ H. Observe that this action is well-
defined because of the Hs-bimodule structure of H. Using this observation and
specializing [1, Proposition 1.1] for a weak bialgebra we obtain the following re-
sult.
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Proposition 5.3. Let H be a weak bialgebra and M a right comodule over H via the
structure morphism ρ : M → M ⊗Hs H, ρM(m) := m(0) ⊗Hs m(1), for all m ∈ M.

Then there is a unique left Hs-module structure on M making ρM a left Hs-module mor-
phism. Namely, r · m = m(0) · εs(rm(1)), for all r ∈ Hs and m ∈ M.

Furthermore, with this additional structure,
(1) M becomes an Hs-bimodule;
(2) ρM becomes an Hs-bimodule map;

(3) Im(ρM) ⊆

{
∑
i

xi ⊗Hs yi ∈ M ⊗Hs H | ∑
i

r · xi ⊗Hs yi = ∑
i

xi ⊗Hs εt(r)yi ,

∀ r ∈ Hs};
(4) any morphism in MH becomes an Hs-bimodule map.

We are now able to describe the monoidal structure of MH, when H is a weak
k-bialgebra.

For X, Y ∈ MH we have seen that X, Y are Hs-bimodules, and so we can
define their tensor product as being X ⊗Hs Y, the tensor product in the monoidal
category of Hs-bimodules. If we endow X ⊗Hs Y with the right H-coaction ρX⊗Hs Y

given by

X ⊗Hs Y ∋ x ⊗Hs y 7→ (x(0) ⊗Hs y(0))⊗Hs x(1)y(1) ∈ (X ⊗Hs Y)⊗Hs H

then this coaction is well-defined and determines on X ⊗Hs Y a right comod-
ule structure over H. Furthermore, in this way we have a monoidal category
(MH ,⊗Hs , Hs), where the unit object Hs is a right comodule over H via the triv-
ial coaction Hs ∋ r 7→ r ⊗Hs 1 ∈ Hs ⊗Hs H. This monoidal structure is designed
in such a way that the forgetful functor from MH to HsMHs becomes a monoidal
functor.

An algebra in the monoidal category MH will be called a right H-comodule
algebra. As the reader might expect, this notion is equivalent to the notion of
right weak comodule algebra over H, in the sense of [2]. The next result is the
(improved) right version of [6, Proposition 3.9].

Proposition 5.4. Let H be a weak k-bialgebra. Then to give a right H-comodule algebra
is equivalent to give a k-algebra A with unit 1 such that A is a right H-comodule in kM,
the comodule structure morphism ρ : A → A ⊗ H is multiplicative and ρ(1) ∈ A⊗ Ht.

Proof. We sketch the proof, leaving further detail to the reader.
If A is a right comodule algebra over H then H is a k-algebra with multiplica-

tion

A ⊗ A // A ⊗Hs A
mA // A

and unit 1, where (A, mA, 1) stands for the algebra structure of A in MH. In
addition, if A ∋ a 7→ ρA(a) = a〈0〉 ⊗Hs a〈1〉 ∈ A ⊗Hs H denotes the right coaction

of the Hs-coring H on A then A ∋ a 7→ ρA(a) := a〈0〉 · 11 ⊗ a〈1〉 · 12 ∈ A ⊗ H is

well-defined and satisfies the requirements in the statement.
Conversely, let A be a k-algebra and A ∋ a 7→ ρA(a) = a〈0〉 ⊗ a〈1〉 ∈ A ⊗ H

a multiplicative map that endows A with a right H-comodule structure in kM
such that ρA(1) ∈ A ⊗ Ht. Then A is a right Hs-module via a · r = ε(a〈1〉r)a〈0〉 ,
for a ∈ A and r ∈ Hs, and a right H-comodule via the structure morphism
A ∋ a 7→ ρA(a) := a〈0〉 ⊗Hs a〈1〉 ∈ A ⊗Hs H.
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Let H be a weak k-bialgebra, A a right H-comodule algebra H and C a right
H-module coalgebra. We call (H, A, C) a right Doi-Koppinen (DK for short) struc-
ture over H.

Proposition 5.5. If (H, A, C) is a right DK structure over a weak k-bialgebra H then
(A, C, ψ) with ψ : C ⊗Hs A → A ⊗Hs C defined by

ψ(c ⊗Hs a) = a〈0〉 ⊗Hs c · a〈1〉, ∀ a ∈ A, c ∈ C,

is a right entwining structure in HsMHs .

Proof. This follows after we specialize [9, Proposition 5.13] to a weak bialgebra.

It is immediate that the bifunctor ⊗Hs defines a right HsMHs-category struc-
ture on MHs . If we consider the associated category of entwined modules
MHs(ψ)

C
A as in Definition 4.1 then by the comments made after the proof of [9,

Prop. 5.13], see also [6, Theorem 3.11 & Prop. 4.1], we obtain that MHs(ψ)
C
A is

isomorphic to the category of weak Doi-Hopf modules M(H)C
A in the sense of [2]

and to the category of Doi-Koppinen modules over (H, A, C) in the sense of [6].
An alternative approach to Doi-Hopf modules over a weak bialgebra is the

following.

Proposition 5.6. Let H be a weak k-bialgebra and A a right H-comodule algebra. Then
MA, the category of right A-modules in kM is a right MH-category via the functor
⋄ : MA ×MH → MA defined as follows. If M ∈ MA and X ∈ MH then M ⋄ X :=
M ⊗Hs X, where M is a right Hs-module via m ∗ r = m · (1 · r), for all m ∈ M and
r ∈ Hs, and where X inherits the left Hs-module of H, i.e., r · x = x · εt(r), for all r ∈ Hs

and x ∈ X. M ⋄ X ∈ MA with the right A-action, m ∈ M, x ∈ X and a ∈ A,

(m ⊗Hs x) · a = m · a〈0〉 ⊗Hs x · a〈1〉,

where ρA(a) = a〈0〉 ⊗Hs a〈1〉. r is defined by the right unit constraint r of MH.

Furthermore, if C is a coalgebra in MH, that is, a right H-module coalgebra, then a
right comodule over C in MA is precisely a right Doi-Hopf module over H in the sense
of [6].

Proof. We only prove that ⋄ is well-defined. To this end we compute

(m ⊗Hs r · x) · a = (m ⊗Hs x · εt(r)) · a = m · a〈0〉 ⊗Hs x · εt(r)a〈1〉

= m · (r · a〈0〉)⊗Hs x · a〈1〉 = m · ((1A · r)a〈0〉)⊗Hs x · a〈1〉 =

(m ∗ r) · a〈0〉 ⊗Hs x · a〈1〉,

for all m ∈ M, x ∈ X and r ∈ Hs. Note that we used in the fourth equality the
fact that the multiplication of A is Hs-balanced.

It follows now that M ⋄ X is a right A-module and that for any f : M → M′ in
MA and g : X → X′ in MH the morphism f ⋄ g := f ⊗Hs g is in MA, as required.

Now let C be a coalgebra in MH. Then a right comodule over C in MA is a
k-vector space M equipped with the following structure:
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- M is a right A-module in kM inheriting the right Hs-module structure from
the right A-action, that is, m ∗ r = m · (1 · r), for all r ∈ Hs and m ∈ M;

- C coacts on M to the right in the sense that there exists ρM : M → M ⊗Hs C
in MHs such that the following relations hold,

(ρM ⊗Hs IdC)ρ
M = (IdM ⊗Hs ∆)ρM, (IdM ⊗Hs ε)ρM = IdM, and

ρM(m · a) = m(0) · a〈1〉 ⊗Hs m(1) · a〈1〉,

for all m ∈ M and a ∈ A, where we denoted ρM(m) = m(0) ⊗Hs m(1), for all

m ∈ M. But this is nothing else than a right (H, A, C) Hopf-module in the sense
of [6].

We will now show that particular examples of DK structures over a weak
bialgebra H can be constructed from YD structures over H, at least if H has an
antipode. This means that there is a k-linear map S : H → H such that

S(h1)h2 = εs(h) , h1S(h2) = εt(h) and S(h1)h2S(h3) = S(h),

for all h ∈ H. To this end we need the notions of bicomodule algebra and bimod-
ule coalgebra over a weak bialgebra. A left comodule algebra over a weak bialge-
bra H is an algebra in the monoidal category HM of left H-corepresentations.
But this time we have to deal with ⊗Ht rather than ⊗Hs . Therefore we have
to move to the category of vector spaces in order to unify the left and right
version. Proceeding as in Proposition 5.4, we can show that giving a left H-
comodule algebra A is equivalent to giving a k-algebra with unit 1 and a left
H-comodule structure on A in kM such that the comodule morphism struc-
ture A ∋ a 7→ λA(a) = a[−1] ⊗ a[0] ∈ H ⊗ A is multiplicative and satisfies

λA(1) ∈ Hs ⊗ A. Thus by an H-bicomodule algebra we mean a k-algebra A
with unit 1 which is an H-bicomodule via some morphisms λA : A → H ⊗ A
and ρA : A → A ⊗ H that are multiplicative and such that λA(1) ∈ Hs ⊗ A and
ρA(1) ∈ A ⊗ Ht.

Likewise, by an H-bimodule coalgebra C we mean a k-coalgebra C that is an
H-bimodule, and for which ∆ is an H-bilinear morphism and the counit satisfies
ε(h · c) = ε(εs(h) · c) and ε(c · h) = ε(c · εt(h)), for all c ∈ C and h ∈ H.

If H is a weak bialgebra, A an H-bicomodule algebra and C an H-bimodule
coalgebra then we call the triple (H, A, C) a right weak YD structure over H.

Proposition 5.7. Let H be a weak Hopf algebra and (H, A, C) a right weak YD structure
over H. Then A with A ∋ a 7→ ρ(a) := a(0) ⊗ (S(a(−1))⊗ a(1)) ∈ A ⊗ (Hop ⊗ H) is

a right weak Hop ⊗ H-comodule algebra and C with the action given by c · (h′ ⊗ h) =
h′ · c · h, for all c ∈ C and h, h′ ∈ H, is a right weak Hop ⊗ H-module coalgebra.
Consequently, a right weak (H, A, C) YD structure defines a right weak DK structure
(Hop ⊗ H, A, C), and therefore a right DK structure (Hop ⊗ H, A, C).

Proof. It is well-known that the antipode of a weak Hopf algebra is an anti-algebra
and an anti-coalgebra endomorphism of H. From here it is immediate that ρ
defines a right Hop ⊗ H-comodule structure on A, and that ρ is multiplicative.
Since S(Hs) ⊆ Ht, (Hop ⊗ H)t = Ht ⊗ Ht and

ρ(1) = 1〈0〉[0] ⊗ (S(1〈0〉[−1]
)⊗ 1〈1〉) = 1[0]〈0〉 ⊗ (S(1[−1])⊗ 1[0]〈1〉),
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it follows that ρ(1) ∈ (Hop ⊗ H)t. Hence A is a right weak Hop ⊗ H-comodule
algebra.

It is easy to verify that C is a right Hop ⊗ H-module, and that ∆ is right Hop ⊗
H-linear. We have also that εt of Hop ⊗ H is εt ⊗ εt, and since

ε(c · (εt(h
′)⊗ εt(h))) = ε(εt(h

′) · c · εt(h)) =

ε(εs(εt(h
′)) · c · h) = ε(h′ · c · h) = ε(c · (h′ · h)),

we conclude that C is a right weak Hop ⊗ H-module coalgebra.

Definition 5.8. Let H be a weak Hopf algebra and (H, A, C) a right weak YD
structure over H. The category of entwined modules corresponding to the right
weak DK structure (Hop ⊗ H, A, C) will be denoted by YD(H)C

A and called the
category of right (A, C)-Yetter-Drinfeld modules over H.

For the sake of simplicity, we will describe the weak version of YD(H)C
A, see

the comments made after the proof of Proposition 5.4. A right weak (A, C)-Yetter-
Drinfeld module over H is a k-vector space M that is at the same time a right
A-module and a right C-comodule such that

(m · a){0} ⊗ (m · a){1} = m{0} · a(0)⊗S(a(−1)) ·m{1} · a(1) , ∀ m ∈ M , a ∈ A , (5.5)

where M ∋ m 7→ m{0} ⊗ m{1} ∈ M ⊗ C is the right coaction of C on M.

Proposition 5.9. For a vector space M that is at the same time a right A-module and a
right C-comodule, (5.5) is equivalent to the following two relations:

(m · a[0]){0} ⊗ a[−1] · (m · a[0]){1} = m{0} · a〈0〉 ⊗ m{1} · a〈1〉 , ∀ m ∈ M , a ∈ A;(5.6)

m{0} ⊗ m{1} = m{0} · 1〈0〉 ⊗ m{1} · 1〈1〉 , ∀ m ∈ M. (5.7)

Proof. In the definition of a weak left H-comodule algebra A the condition λA(1) ∈
Hs ⊗ A is equivalent to (IdH ⊗ λA)λA(1) = 11 ⊗ 1[−1]12 ⊗ 1[0] and to (IdH ⊗

λA)λA(1) = 11 ⊗ 121[−1] ⊗ 1[0]. We then have

a[0] ⊗ εs(a[−1]) = a[0] ⊗ ε(a[−1]12)11 = a[0]1[0] ⊗ ε(a[−1]1[−1]12)11

= a[0]1[0] ⊗ ε(a[−1]1[−1])1[−2] = (a1[0])[0] ⊗ ε((a1[0])[−1])1[−1] = a1[0] ⊗ 1[−1],

for all a ∈ A. In a similar way, a[0] ⊗ εs(a[−1]) = 1[0]a ⊗ 1[−1], for all a ∈ A.
Now assume that (5.5) holds. Using the identity S ◦ εs = εt, we compute that

(m · a[0]){0} ⊗ a[−1] · (m · a[0])〈1〉
(5.5)
= m{0} · a(0) ⊗ a(−2)S(a(−1)) · m{1} · a(1)

= m{0} · a{0} ⊗ εt(a(−1)) · m{1} · a(1) = m{0} · a{0} ⊗ S(εs(a(−1))) · m{1} · a(1)

= m{0} · 1(0)a〈0〉 ⊗ S(1(−1)) · m{1} · 1(1)a〈1〉
(5.5)
= m{0} · a〈0〉 ⊗ m{1} · a〈1〉,

for all m ∈ M and a ∈ A, as desired. With the help of this equality and of the fact
that λA(1) ∈ Hs ⊗ A we deduce that

m{0} ⊗ m{1} = (m · 1){0} ⊗ (m · 1){1}
(5.5)
= m{0} · 1[0]〈0〉 ⊗ S(1[−1]) · m{1} · 1[0]〈1〉
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= (m · 1[0]){0} ⊗ S(1[−2])1[−1] · (m · 1[0]){1}

= (m · 1[0]){0} ⊗ εs(1[−1]) · (m · 1[0]){1}

= (m · 1[0]){0} ⊗ 1[−1] · (m · 1[0]){1} = m{0} · 1〈0〉 ⊗ m{1} · 1〈1〉,

and this finishes the proof of the direct implication. The converse can be proved
as follows:

m{0} · a(0) ⊗ S(a(−1)) · m{1} · a(1) = (m · a[0]){0} ⊗ S(a[−2])a[−1] · (m · a[0]){1}

= (m · a[0]){0} ⊗ εs(a[−1]) · (m · a[0]){1} = (m · a1[0]){0} ⊗ 1[−1] · (m · a1[0]){1}

= (m · a){0} · 1〈0〉 ⊗ (m · a){1} · 1〈1〉 = (m · a){0} ⊗ (m · a){1}.

Remark 5.10. Theorem 4.6 was our source of inspiration for the definition of Yetter-
Drinfeld modules over a weak Hopf algebra. Moving backwards, by Proposi-
tion 5.9 it makes sense to define weak right Yetter-Drinfeld modules over a weak
bialgebra: all we have to do is to replace (5.5) with (5.6) and (5.7). If we do this
then in the case when H is a weak Hopf algebra we can identify the category
of right weak Yetter-Drinfeld modules with a category of weak right Doi-Hopf
modules. This identification can be regarded as the weak Hopf algebra version
of Theorem 4.6 and at the same time as a generalization of [16, Corollary 3.3].
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[6] T. Brzeziński, S. Caenepeel and G. Militaru, Doi-Koppinen modules for
quantum grupoids, J. Pure Appl. Alg. 175 (2002), 45–62.

[7] D. Bulacu and S. Caenepeel, Two-sided two-cosided Hopf modules and Doi-
Hopf modules for quasi-Hopf algebras, J. Algebra 270 (2003), 55–95.

[8] D. Bulacu and S. Caenepeel, Algebras Graded by Discrete Doi-Hopf Data
and the Drinfeld Double of a Hopf Group-Coalgebra, Algebras and Repre-
sentation Theory 16 (2013), 155-192.

[9] D. Bulacu and S. Caenepeel, Monoidal ring and coring structures obtained
from wreaths and cowreaths, preprint 2012, submitted.

[10] D. Bulacu, S. Caenepeel and B. Torrecillas, Doi-Hopf modules and Yetter-
Drinfeld modules for quasi-Hopf algebras, Comm. Algebra 34 (2006), no. 9,
3413–3449.

[11] D. Bulacu, S. Caenepeel and B. Torrecillas, Frobenius and separable functors
for the category of generalized entwined modules. Applications, work in
progress.

[12] D. Bulacu and E. Nauwelaerts, Relative Hopf modules for (dual) quasi-Hopf
algebras, J. Algebra 229 (2000), 632–659.

[13] S. Caenepeel and I. Goyvaerts, Monoidal Hom-Hopf algebras, Comm. Alg.
39 (2011), 2216–2240.

[14] S. Caenepeel and M. De Lombaerde, A categorical approach to Turaev’s
Hopf group-coalgebras, Comm. Algebra 34 (2006), 2631–2657.

[15] S. Caenepeel, G. Militaru and S. Zhu, Crossed modules and Doi-Hopf mod-
ules, Israel J. Math. 100 (1997), 221-247.

[16] S. Caenepeel, D. Wang and Y. Yin, Yetter-Drinfeld modules over weak bial-
gebras, Annali dell’Università di Ferrara 51 (2005), 69–98.
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