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Abstract

The main purpose of this correspondence is to establish two gradient
based iterative (GI) methods extending the Jacobi and Gauss-Seidel itera-
tions for solving the generalized Sylvester-conjugate matrix equation

A1XB1 + A2XB2 + C1YD1 + C2YD2 = E,

over reflexive and Hermitian reflexive matrices. It is shown that the iterative
methods, respectively, converge to the reflexive and Hermitian reflexive so-
lutions for any initial reflexive and Hermitian reflexive matrices. We report
numerical tests to show the effectiveness of the proposed approaches.

1 Introduction

In this paper, we denote the set of all m × n complex matrices by Cm×n and the
identity matrix with the appropriate size by I. The symbols AT, A, AH and tr(A)
mean the transpose, conjugate, conjugate transpose and trace of a matrix A, re-
spectively. Re(a) denotes the real part of number a. The inner product 〈., .〉r in
Cm×n over the field R is defined as follows:

〈A, B〉r = Re(tr(BH A)) for A, B ∈ Cm×n,
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that is 〈A, B〉r is the real part of the trace of BH A. It is can be shown that
(Cm×n,R, 〈., .〉r) is a Hilbert inner product space. The induced matrix norm is

||A|| =
√

〈A, A〉r =
√

Re(tr(AH A)), which is the Frobenius norm [1, 47, 48].
A matrix P ∈ Cn×n is called generalized reflection matrix if P = PH and PPH = I.
Throughout, we always suppose that P and Q are a given generalized reflection
matrices. If A = PAP (A = AH = PAP) then A is called a reflexive (Hermitian re-
flexive) matrix with respect to P. Cn×n

r (P) (HCn×n
r (P)) denotes the set of order n

reflexive (Hermitian reflexive) matrices with respect to P. Due to that I is a gener-
alized reflection matrix, any n × n complex (Hermitian) matrix is also a reflexive
(Hermitian reflexive) matrix with respect to I. The reflexive matrices (namely the
generalized centro-symmetric matrices) have practical applications in many ar-
eas such as the numerical solution of certain differential equations [2, 5], pattern
recognition [7], Markov processes [43], various physical and engineering prob-
lems [8, 6] and so on (e.g. [3, 27, 45, 46]). Chen [4] proposed three applications
of reflexive matrices obtained from the altitude estimation of a level network, an
electric network and structural analysis of trusses. The symmetric Toeplitz ma-
trices, an important subclass of the class of Hermitian reflexive matrices, appear
naturally in digital signal processing applications and other areas [18].
The problem of finding solutions of linear matrix equations arises in a variety of
engineering, mathematics and physics problems [9, 15, 30, 31, 32, 33, 35]. There-
fore, in recent years much attention has focused on studying the solutions of lin-
ear matrix equations. In [36, 37, 38, 39, 40, 42] several quaternion matrix equa-
tions were studied. In [19, 21, 23], by extending the well-known Jacobi and
Gauss-Seidel iterations, Ding and Chen presented some efficient iterative algo-
rithms based on the hierarchical identification principle [20, 22] for solving the
generalized Sylvester matrix equations and general coupled matrix equations.
In [44, 24], this efficient approach was also applied for other general matrix equa-
tions. In [49, 50], Zhou and Duan studied the solution of the generalized Sylvester
matrix equations. In [51], Zhou et al. analyzed the computational complexity
of the Smith iteration and its variations for solving the Stein matrix equation
X − AXB = C. By extending the idea of conjugate gradient (CG) method, De-
hghan and Hajarian proposed some efficient iterative methods to solve Sylvester
and Lyapunov matrix equations [17, 10, 11, 12, 13, 14]. Thiran et al. [34] in-
vestigated a rational approximation problem in connection with the convergence
analysis of the ADI iterative method applied to the Stein matrix equation. Jiang
and Wei [28] obtained explicit solutions of the Stein matrix equation and Stein-
conjugate matrix equation X − AXB = C by the method of characteristic polyno-
mial and a method of real representation of a complex matrix respectively.
It is known that solving complex matrix equations can be very difficult and it
is sufficiently complicated. This paper is concerned with the reflexive (Hermi-
tian reflexive) solution pair [X, Y] of the generalized Sylvester-conjugate matrix
equation

A1XB1 + A2XB2 + C1YD1 + C2YD2 = E, (1.1)

where A1, A2 ∈ C p×n, B1, B2 ∈ Cn×q, C1, C2 ∈ C p×m, D1, D2 ∈ Cm×q,
E ∈ C p×q are known matrices and X ∈ Cn×n

r (P), Y ∈ Cm×m
r (Q) (X ∈ HCn×n

r (P),
Y ∈ HCm×m

r (Q)) are unknown matrices to be determined. The reflexive and Her-
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mitian reflexive solutions of the matrix equation (1.1) have not been dealt with
yet. This matrix equation includes various linear matrix equations such as Lya-
punov, Sylvester, Stein, Yakubovich, Kalman-Yakubovich, homogeneous (nonho-
mogeneous) Yakubovich-conjugate matrix equations as special cases. Hence the
generalized Sylvester-conjugate matrix equation (1.1) can play an important role
in control theory and can be used to achieve pole assignment, robust pole assign-
ment and observer design for descriptor linear systems [26]. The rest of the paper
is organized as follows. In Section 2, by extending the Jacobi and Gauss-Seidel
iterations we propose two GI methods to solve (1.1) over reflexive and Hermi-
tian reflexive matrices. Theoretical analysis shows that the proposed methods
converge to the reflexive and Hermitian reflexive solutions of (1.1) for any initial
reflexive and Hermitian reflexive matrices, respectively. Finally, two numerical
examples are given to illustrate the effectiveness of the proposed methods in Sec-
tion 3.

2 Main results

In this section we propose two iterative methods for finding the reflexive and
Hermitian reflexive solutions of (1.1) respectively and their convergence analysis
is also given.
In [21, 29], some iterative methods were presented to solve Sylvester matrix equa-
tions over real matrices. In the methods [21, 29], matrix inversion is required in
the first iteration. These methods may turn out to be numerically expensive and
are not practical for equations of large systems. The purpose in this paper is to
obtain two iterative methods without any inverse for solving the linear matrix
equation (1.1) over the reflexive and Hermitian reflexive matrices.
First, it is known that the solvability of linear matrix equation (1.1) over the reflex-
ive (Hermitian reflexive) matrix pair [X, Y] is equivalent to the following system
of matrix equations:

{

A1XB1 + A2XB2 + C1YD1 + C2YD2 = E,

A1PXPB1 + A2PXPB2 + C1QYQD1 + C2QYQD2 = E,
(2.1)























A1XB1 + A2XB2 + C1YD1 + C2YD2 = E,

A1PXPB1 + A2PXPB2 + C1QYQD1 + C2QYQD2 = E,

BH
1 XAH

1 + BH
2 XAH

2 + DH
1 YCH

1 + DH
2 YCH

2 = EH ,

BH
1 PXPAH

1 + BH
2 PXPAH

2 + DH
1 QYQCH

1 + DH
2 QYQCH

2 = EH ,









. (2.2)

Now consider a linear algebraic system of equations

Ax = b, (2.3)

which A is the coefficient matrix; and b and x are, respectively, the known right
hand side and the solution to be sought. Also suppose that

A = D − E − F, (2.4)

in which D is the diagonal of A, −E its strict lower part, and −F its strict upper
part. It is always assumed that the diagonal entries of A are all nonzero. To solve
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the linear system (2.3), the Jacobi and the Gauss-Seidel iterations are both of the
form

Mx(k + 1) = Nx(k) + b = (M − A)x(k) + b, (2.5)

in which

A = M − N, (2.6)

is a splitting of A, with M = D for Jacobi, M = D − E for forward Gauss-Seidel,
and M = D − F for backward Gauss-Seidel. Here by extending the Jacobi and
the Gauss-Seidel iterations (2.5) and by applying the hierarchical identification
principle for (2.1) and (2.2), respectively, we can obtain the GI methods described
in the following:

Algorithm 1. To solve (1.1) over reflexive matrix pair [X, Y]:
Given an initial reflexive matrix pair [X(1), Y(1)] with X(1) ∈ Cn×n

r (P) and
Y(1) ∈ Cm×m

r (Q);
For k:=1,2,.... until convergence do;

R(k) = E − A1X(k)B1 − A2X(k)B2 − C1Y(k)D1 − C2Y(k)D2;

X(k+ 1) = X(k)+
µ

4

[

AH
1 R(k)BH

1 + AT
2 R(k) BT

2 + PAH
1 R(k)BH

1 P+ PAT
2 R(k) BT

2 P
]

;

Y(k+ 1) = Y(k)+
µ

4

[

CH
1 R(k)DH

1 +CT
2 R(k) DT

2 +QCH
1 R(k)DH

1 Q+QCT
2 R(k) DT

2 Q
]

;

0 < µ <
2

||A1||2||B1||2 + ||A2||2||B2||2 + ||C1||2||D1||2 + ||C2||2||D2||2
.

Algorithm 2. To solve (1.1) over Hermitian reflexive matrix pair [X, Y]:
Given an initial Hermitian reflexive matrix pair [X(1), Y(1)] with X(1) ∈ HCn×n

r (P)
and Y(1) ∈ HCm×m

r (Q);
For k:=1,2,.... until convergence do;

R(k) = E − A1X(k)B1 − A2X(k)B2 − C1Y(k)D1 − C2Y(k)D2;

X(k + 1) = X(k) +
µ

8

[

AH
1 R(k)BH

1 + AT
2 R(k) BT

2 + B1R(k)H A1 + B2R(k)T A2

+PAH
1 R(k)BH

1 P + PAT
2 R(k) BT

2 P + PB1R(k)H A1P + PB2R(k)T A2P
]

;

Y(k + 1) = Y(k) +
µ

8

[

CH
1 R(k)DH

1 + CT
2 R(k) DT

2 + D1R(k)H C1 + D2R(k)T C2

+QCH
1 R(k)DH

1 Q + QCT
2 R(k) DT

2 Q + QD1R(k)H C1Q + QD2R(k)T C2Q
]

;

0 < µ <
2

||A1||2||B1||2 + ||A2||2||B2||2 + ||C1||2||D1||2 + ||C2||2||D2||2
.

From Algorithm 1 (2), we can see that X(k) ∈ Cn×n
r (P) and Y(k) ∈ Cm×m

r (Q)
(X(k) ∈ HCn×n

r (P) and Y(k) ∈ HCm×m
r (Q)) for k = 1, 2, ....

Now we present the main results of this paper.
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Theorem 2.1. If the generalized Sylvester-conjugate matrix equation (1.1) has a unique
reflexive solution pair [X∗, Y∗], then the iterative solution pair [X(k), Y(k)] given by the
Algorithm 1 converges to [X∗, Y∗], i.e.,

lim
k→∞

X(k) = X∗ and lim
k→∞

Y(k) = Y∗,

for any initial reflexive matrix pair [X(1), Y(1)].

Proof. First we define the estimation error matrices as:

ξ1(k) = X(k) − X∗ and ξ2(k) = Y(k) − Y∗.

It is obvious that ξ1(k) ∈ Cn×n
r (P) and ξ2(k) ∈ Cm×m

r (Q) for k = 1, 2, .... By using
the above error matrices and Algorithm 1, we can obtain

R(k) = −A1ξ1(k)B1 − A2ξ1(k)B2 − C1ξ2(k)D1 − C2ξ2(k)D2,

ξ1(k + 1) =

ξ1(k)−
µ

4

{

AH
1

[

A1ξ1(k)B1 + A2ξ1(k)B2 + C1ξ2(k)D1 + C2ξ2(k)D2

]

BH
1

+ AT
2

[

A1 ξ1(k) B1 + A2 ξ1(k) B2 + C1 ξ2(k) D1 + C2 ξ2(k) D2

]

BT
2

+ PAH
1

[

A1ξ1(k)B1 + A2ξ1(k)B2 + C1ξ2(k)D1 + C2ξ2(k)D2

]

BH
1 P

+ PAT
2

[

A1 ξ1(k) B1 + A2 ξ1(k) B2 + C1 ξ2(k) D1 + C2 ξ2(k) D2

]

BT
2 P

}

, (2.7)

ξ2(k + 1) =

ξ2(k)−
µ

4

{

CH
1

[

A1ξ1(k)B1 + A2ξ1(k)B2 + C1ξ2(k)D1 + C2ξ2(k)D2

]

DH
1

+ CT
2

[

A1 ξ1(k) B1 + A2 ξ1(k) B2 + C1 ξ2(k) D1 + C2 ξ2(k) D2

]

DT
2

+ QCH
1

[

A1ξ1(k)B1 + A2ξ1(k)B2 + C1ξ2(k)D1 + C2ξ2(k)D2

]

DH
1 Q

+ QCT
2

[

A1 ξ1(k) B1 + A2 ξ1(k) B2 + C1 ξ2(k) D1 + C2 ξ2(k) D2

]

DT
2 Q

}

. (2.8)

By taking the norm of both sides of (2.7) and using following facts for two square
complex matrices A, B and the generalized reflection matrix P































tr(AB) = tr(BA),

〈A, B〉r = 〈B, A〉r ,

||A + B|| ≤ ||A||+ ||B||,

||PAP|| = ||A||,

(2.9)
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we have

||ξ1(k + 1)||2 =
(

tr
(

ξ1(k + 1)Hξ1(k + 1)
))

=
(

tr
(

ξ1(k)
Hξ1(k)

))

−
µ

2

(

tr
([

A1ξ1(k)B1 + A2ξ1(k)B2 + C1ξ2(k)D1 + C2ξ2(k)D2

]H
A1ξ1(k)B1

+
[

A1 ξ1(k) B1 + A2 ξ1(k) B2 + C1 ξ2(k) D1 + C2 ξ2(k) D2

]H
A2ξ1(k)B2

+
[

A1ξ1(k)B1 + A2ξ1(k)B2 + C1ξ2(k)D1 + C2ξ2(k)D2

]H
A1Pξ1(k)PB1

+
[

A1 ξ1(k) B1 + A2 ξ1(k) B2 + C1 ξ2(k) D1 + C2 ξ2(k) D2

]H
A2Pξ1(k)PB2

))

+
µ2

16

∣

∣

∣

∣

∣

∣
AH

1

[

A1ξ1(k)B1 + A2ξ1(k)B2 + C1ξ2(k)D1 + C2ξ2(k)D2

]

BH
1

+ AT
2

[

A1 ξ1(k) B1 + A2 ξ1(k) B2 + C1 ξ2(k) D1 + C2 ξ2(k) D2

]

BT
2

+ PAH
1

[

A1ξ1(k)B1 + A2ξ1(k)B2 + C1ξ2(k)D1 + C2ξ2(k)D2

]

BH
1 P

+ PAT
2

[

A1 ξ1(k) B1 + A2 ξ1(k) B2 + C1 ξ2(k) D1 + C2 ξ2(k) D2

]

BT
2 P

∣

∣

∣

∣

∣

∣

2

≤ ||ξ1(k)||
2 −µ

(

tr
([

A1ξ1(k)B1 + A2ξ1(k)B2 +C1ξ2(k)D1 +C2ξ2(k)D2

]H
A1ξ1(k)B1

+
[

A1ξ1(k)B1 + A2ξ1(k)B2 + C1ξ2(k)D1 + C2ξ2(k)D2

]H
A2ξ1(k)B2

))

+
µ2

4

∣

∣

∣

∣

∣

∣
AH

1

[

A1ξ1(k)B1 + A2ξ1(k)B2 + C1ξ2(k)D1 + C2ξ2(k)D2

]

BH
1

∣

∣

∣

∣

∣

∣

2

+
∣

∣

∣

∣

∣

∣
AT

2

[

A1 ξ1(k) B1 + A2 ξ1(k) B2 + C1 ξ2(k) D1 + C2 ξ2(k) D2

]

BT
2

∣

∣

∣

∣

∣

∣

2

+
∣

∣

∣

∣

∣

∣
PAH

1

[

A1ξ1(k)B1 + A2ξ1(k)B2 + C1ξ2(k)D1 + C2ξ2(k)D2

]

BH
1 P

∣

∣

∣

∣

∣

∣

2

+
∣

∣

∣

∣

∣

∣
PAT

2

[

A1 ξ1(k) B1 + A2 ξ1(k) B2 + C1 ξ2(k) D1 + C2 ξ2(k) D2

]

BT
2 P

∣

∣

∣

∣

∣

∣

2

≤ ||ξ1(k)||
2 − µ

(

tr
([

A1ξ1(k)B1 + A2ξ1(k)B2 + C1ξ2(k)D1 + C2ξ2(k)D2

]H

×
[

A1ξ1(k)B1 + A2ξ1(k)B2

]))

+
µ2

2

[∣

∣

∣

∣

∣

∣
A1

∣

∣

∣

∣

∣

∣

2∣
∣

∣

∣

∣

∣
B1

∣

∣

∣

∣

∣

∣

2
+

∣

∣

∣

∣

∣

∣
A2

∣

∣

∣

∣

∣

∣

2∣
∣

∣

∣

∣

∣
B2

∣

∣

∣

∣

∣

∣

2]

×
∣

∣

∣

∣

∣

∣
A1ξ1(k)B1 + A2ξ1(k)B2 + C1ξ2(k)D1 + C2ξ2(k)D2

∣

∣

∣

∣

∣

∣

2
.

Similarly to the above, we can write

||ξ2(k + 1)||2 ≤

||ξ2(k)||
2 − µ

(

tr
([

A1ξ1(k)B1 + A2ξ1(k)B2 + C1ξ2(k)D1 + C2ξ2(k)D2

]H

×
[

C1ξ2(k)D1 + C2ξ2(k)D2

]))

+
µ2

2

[∣

∣

∣

∣

∣

∣
C1

∣

∣

∣

∣

∣

∣

2∣
∣

∣

∣

∣

∣
D1

∣

∣

∣

∣

∣

∣

2
+

∣

∣

∣

∣

∣

∣
C2

∣

∣

∣

∣

∣

∣

2∣
∣

∣

∣

∣

∣
D2

∣

∣

∣

∣

∣

∣

2]

×
∣

∣

∣

∣

∣

∣
A1ξ1(k)B1 + A2ξ1(k)B2 + C1ξ2(k)D1 + C2ξ2(k)D2

∣

∣

∣

∣

∣

∣

2
.
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Define the nonnegative definite function ξ(k) by:

ξ(k) = ||ξ1(k)||
2 + ||ξ2(k)||

2 .

By the previous results, this function can be computed as

ξ(k + 1) = ||ξ1(k + 1)||2 + ||ξ2(k + 1)||2

≤ ||ξ1(k)||
2 + ||ξ2(k)||

2 −µ
(

tr
([

A1ξ1(k)B1 + A2ξ1(k)B2 +C1ξ2(k)D1 +C2ξ2(k)D2

]H

×
[

A1ξ1(k)B1 + A2ξ1(k)B2 + C1ξ2(k)D1 + C2ξ2(k)D2

]))

+
µ2

2

[∣

∣

∣

∣

∣

∣
A1

∣

∣

∣

∣

∣

∣

2∣
∣

∣

∣

∣

∣
B1

∣

∣

∣

∣

∣

∣

2
+

∣

∣

∣

∣

∣

∣
A2

∣

∣

∣

∣

∣

∣

2∣
∣

∣

∣

∣

∣
B2

∣

∣

∣

∣

∣

∣

2
+

∣

∣

∣

∣

∣

∣
C1

∣

∣

∣

∣

∣

∣

2∣
∣

∣

∣

∣

∣
D1

∣

∣

∣

∣

∣

∣

2
+

∣

∣

∣

∣

∣

∣
C2

∣

∣

∣

∣

∣

∣

2∣
∣

∣

∣

∣

∣
D2

∣

∣

∣

∣

∣

∣

2]

×
∣

∣

∣

∣

∣

∣
A1ξ1(k)B1 + A2ξ1(k)B2 + C1ξ2(k)D1 + C2ξ2(k)D2

∣

∣

∣

∣

∣

∣

2

= ξ(k) − µ
∣

∣

∣

∣

∣

∣
A1ξ1(k)B1 + A2ξ1(k)B2 + C1ξ2(k)D1 + C2ξ2(k)D2

∣

∣

∣

∣

∣

∣

2

+
µ2

2

[∣

∣

∣

∣

∣

∣
A1

∣

∣

∣

∣

∣

∣

2∣
∣

∣

∣

∣

∣
B1

∣

∣

∣

∣

∣

∣

2
+

∣

∣

∣

∣

∣

∣
A2

∣

∣

∣

∣

∣

∣

2∣
∣

∣

∣

∣

∣
B2

∣

∣

∣

∣

∣

∣

2
+

∣

∣

∣

∣

∣

∣
C1

∣

∣

∣

∣

∣

∣

2∣
∣

∣

∣

∣

∣
D1

∣

∣

∣

∣

∣

∣

2
+

∣

∣

∣

∣

∣

∣
C2

∣

∣

∣

∣

∣

∣

2∣
∣

∣

∣

∣

∣
D2

∣

∣

∣

∣

∣

∣

2]

×
∣

∣

∣

∣

∣

∣
A1ξ1(k)B1 + A2ξ1(k)B2 + C1ξ2(k)D1 + C2ξ2(k)D2

∣

∣

∣

∣

∣

∣

2

= ξ(k)−µ
{

1−
µ

2

[∣

∣

∣

∣

∣

∣
A1

∣

∣

∣

∣

∣

∣

2∣
∣

∣

∣

∣

∣
B1

∣

∣

∣

∣

∣

∣

2
+
∣

∣

∣

∣

∣

∣
A2

∣

∣

∣

∣

∣

∣

2∣
∣

∣

∣

∣

∣
B2

∣

∣

∣

∣

∣

∣

2
+
∣

∣

∣

∣

∣

∣
C1

∣

∣

∣

∣

∣

∣

2∣
∣

∣

∣
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∣

∣

∣
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∣

2
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∣

∣

∣
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∣
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∣

∣

∣

∣

∣

∣
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∣

∣

∣

∣
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∣

∣

∣

∣

∣

∣

2]}

×
∣

∣

∣

∣

∣
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A1ξ1(k)B1 + A2ξ1(k)B2 + C1ξ2(k)D1 + C2ξ2(k)D2

∣

∣

∣

∣

∣

∣

2

≤ ξ(1)−µ
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1−
µ
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∣

∣

∣
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2
+
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∣

∣

∣

∣

∣
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∣

∣

∣
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∣
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∣

2
+
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∣

∣

∣
C2
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∣

∣

∣

∣

∣
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∣

∣

∣

∣

∣
D2

∣

∣

∣

∣

∣

∣

2]}

×
k−1

∑
i=1

∣

∣

∣

∣

∣

∣
A1ξ1(i)B1 + A2ξ1(i)B2 + C1ξ2(i)D1 + C2ξ2(i)D2

∣

∣

∣

∣

∣

∣

2
.

If the convergence factor µ is chosen to satisfy

0 < µ <
2

||A1||2||B1||2 + ||A2||2||B2||2 + ||C1||2||D1||2 + ||C2||2||D2||2
, (2.10)

then we can conclude that

∞

∑
i=1

∣

∣

∣

∣

∣

∣
A1ξ1(i)B1 + A2ξ1(i)B2 + C1ξ2(i)D1 + C2ξ2(i)D2

∣

∣

∣

∣

∣

∣

2
< ∞. (2.11)

Because if

∞

∑
i=1

∣

∣

∣

∣

∣

∣
A1ξ1(i)B1 + A2ξ1(i)B2 + C1ξ2(i)D1 + C2ξ2(i)D2

∣

∣

∣

∣

∣

∣

2
= ∞,
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then by considering (2.10) we have

ξ(k + 1) ≤ ξ(1)− µ
{

1 −
µ

2

[∣

∣

∣

∣

∣

∣
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∣

∣

∣

∣

∣

∣
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∣
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∣
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∣
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∣

∣

∣
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∣

∣
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∣

∣

∣

∣

∣
D1

∣

∣

∣

∣

∣
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2
+

∣

∣

∣

∣

∣

∣
C2

∣

∣

∣

∣

∣

∣

2∣
∣

∣

∣

∣

∣
D2

∣

∣

∣

∣

∣

∣

2]}

×
k−1

∑
i=1

∣

∣

∣

∣

∣

∣
A1ξ1(i)B1 + A2ξ1(i)B2 + C1ξ2(i)D1 + C2ξ2(i)D2

∣

∣

∣

∣

∣

∣

2
≤ −∞ (2.12)

Now it is obvious that (2.12) contradicts ξ(k) ≥ 0.
The necessary condition of the series convergence (2.11) implies that

lim
i→∞

[

A1ξ1(i)B1 + A2ξ1(i)B2 + C1ξ2(i)D1 + C2ξ2(i)D2

]

= 0,

or

A1( lim
i→∞

ξ1(i))B1 + A2( lim
i→∞

ξ1(i))B2 + C1( lim
i→∞

ξ2(i))D1 + C2( lim
i→∞

ξ2(i))D2 = 0,

If we define matrices M1 := limi→∞ ξ1(i) and M2 := limi→∞ ξ2(i) then the above
relation can be written by

A1M1B1 + A2M1B2 + C1M2D1 + C2M2D2 = 0. (2.13)

It follows from (1.1) (or (2.13)) has a unique reflexive solution pair that

M1 = lim
i→∞

ξ1(i) = 0 and M2 = lim
i→∞

ξ2(i) = 0,

or
lim
i→∞

X(i) = X∗ and lim
i→∞

Y(i) = Y∗.

The proof is finished.

Similarly to the proof of Theorem 2.1, we can prove the following theorem.

Theorem 2.2. If the generalized Sylvester-conjugate matrix equation (1.1) has a unique
Hermitian reflexive solution pair [X∗, Y∗], then the iterative solution pair [X(k), Y(k)]
given by the Algorithm 2 converges to [X∗, Y∗], i.e.,

lim
k→∞

X(k) = X∗ and lim
k→∞

Y(k) = Y∗,

for any initial Hermitian reflexive matrix pair [X(1), Y(1)].
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3 Numerical experiments

This section gives two numerical experiments to illustrate the convergence
behaviors of both Algorithms 1 and 2. All codes were written in Matlab. All
the experiments were performed on a PC of Intel Pentium 2.0 GHz.

Example 3.1. In this example we consider the matrix equation

X + AXB = C, (3.1)

with the following parameters

A =





0 − 4.2028i 0.7621 0.6154 0.4057 0.0579
0 0 − 4.7468i 0.7919 0.9355 0.3529
0 0 0 − 4.5252i 0.9169 0.8132
0 0 0 0 − 4.3795i 0.0099
0 0 0 0 0 − 4.1897i



 ,

B =





4.7027 − 0.1934i 0 − 0.6979i 0 0 0
0 − 0.6822i 4.9568 − 0.3784i 0 − 0.8998i 0 0
0 − 0.3028i 0 − 0.8600i 4.2523 − 0.8216i 0 − 0.2897i 0
0 − 0.5417i 0 − 0.8537i 0 − 0.6449i 4.1991 − 0.3412i 0 − 0.5681i
0 − 0.1509i 0 − 0.5936i 0 − 0.8180i 0 − 0.5341i 4.9883 − 0.3704i



 ,

C =





2.1724 − 50.7332i −2.2213 − 7.1968i −0.5299 − 33.5896i 7.0098 − 2.5987i 8.1422 − 37.9450i
−6.1068 − 4.7690i −0.2975 − 63.4945i −3.4524 − 9.1137i 7.8320 − 56.2526i 8.8178 − 2.4665i
0.5522 − 34.9945i −11.9091 − 7.1195i −9.1670 − 67.7309i −1.2783 − 2.7177i 10.6543 − 62.4720i
−13.5538 − 0.0158i −10.7554 − 57.5376i −17.1337 − 0.0464i −1.1919 − 44.3710i −5.8483 − 0.0112i
−5.0081 − 33.4271i −22.2234 −17.0505 − 47.5846i −10.1156 −1.6953 − 64.1988i



 .

It can be verified that this matrix equation is consistent over reflexive matrices
and has the reflexive solution X∗ ∈ C5×5

r (P), that is

X∗ = 102





0.0117 + 1.8194i 0 0.0042 0 0.0083
0 0.0116 + 1.8129i 0 0.0159 0

0.0103 0 0.0157 + 1.8054i 0 0.0175
0 0.0106 0 0.0121 + 1.8126i 0

0.0087 0 0.0092 0 0.0154 + 1.8115i



 ,

where

P =













−1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 1 0
0 0 0 0 −1













.

We apply Algorithm 1 with the initial reflexive matrix X(1) = 0 to calculate
{X(k)}. The derived results are displayed in Figure 1, where

r(k) = log10 ||R(k)|| (residual) and δ(k) = log10

||X(k) − X∗||

||X∗||
(relative error).

We can easily see that r(k), δ(k) decrease and converge to zero as k increases. In
[28], the solution of complex matrix equation (3.1) was obtained by the method
of characteristic polynomial and a method of real representation of a complex
matrix respectively. Because of characteristic polynomial, the method [28] may
turn out to be numerically expensive and is not practical for equations of large
systems.
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Figure 1: The results obtained for Example 3.1.
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Example 3.2. Consider the matrix equation

AX + YB = C, (3.2)

where

A =











0 + 3.2028i 0.7621 0.6154 0.4057 0.0579
0 0 + 3.7468i 0.7919 0.9355 0.3529
0 0 0 + 3.5252i 0.9169 0.8132
0 0 0 0 + 3.3795i 0.0099
0 0 0 0 0 + 3.1897i











,

B =





3.7027 + 0.1934i 0 + 0.6979i 0 0 0
0 + 0.6822i 3.9568 + 0.3784i 0 + 0.8998i 0 0
0 + 0.3028i 0 + 0.8600i 3.2523 + 0.8216i 0 + 0.2897i 0
0 + 0.5417i 0 + 0.8537i 0 + 0.6449i 3.1991 + 0.3412i 0 + 0.5681i
0 + 0.1509i 0 + 0.5936i 0 + 0.8180i 0 + 0.5341i 3.9883 + 0.3704i



 ,

C =





0.9901 + 7.4662i 2.8418 2.0830 + 4.6413i 2.9964 1.8216 + 5.4337i
1.7463 2.4772 + 8.6896i 3.4239 2.2559 + 9.9217i 3.1991

1.3796 + 5.1085i 2.4280 2.1719 + 11.0454i 2.2111 2.4979 + 9.4154i
0.0167 0 + 8.9491i 0.0263 0 + 8.1495i 0.0303

0 + 5.4114i 0 0 + 8.5193i 0 0 + 9.7980i



 .

We can verify that the matrix equation (3.2) is consistent over Hermitian reflexive
matrices and has Hermitian reflexive solution pair [X∗, Y∗] with

X∗, Y∗ ∈ HC5×5
r (P) as follows:

X∗ =











2.3312 0 1.4492 0 1.6966
0 2.3192 0 2.6481 0

1.4492 0 3.1333 0 2.6709
0 2.6481 0 2.4115 0

1.6966 0 2.6709 0 3.0718











,

Y∗ =











1.8057 0 1.2715 0 0.1939
0 2.7325 0 0.8058 0

1.2715 0 0.0654 0 2.0575
0 0.8058 0 2.8705 0

0.1939 0 2.0575 0 0.6144











.

By Algorithm 2 for (3.2) with the the initial matrix pair [X(1), Y(1)] = [0, 0] we
obtain the sequences {X(k)} and {Y(k)}. The obtained results are presented in
Figure 2. From Figure 2, we can see that Algorithm 2 is effective.
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Figure 2: The results obtained for Example 3.2.
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4 Conclusions

In this work, we have proposed Algorithms 1 and 2, respectively, for comput-
ing the reflexive and Hermitian reflexive solutions of (1.1). We have proven that
Algorithms 1 and 2 always converge to the reflexive and Hermitian reflexive so-
lutions for any initial reflexive and Hermitian reflexive matrices, respectively.
Moreover, we have presented two numerical examples to test the performance
of the proposed algorithms.
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[29] A. Kılıçman, Z.A.A. Al Zhour, Vector least-squares solutions for coupled
singular matrix equations, J. Comput. Appl. Math. 206 (2007) 1051-1069.

[30] J.F. Li, X.Y. Hu, L. Zhang, The submatrix constraint problem of matrix equa-
tion AXB + CYD = E, Appl. Math. Comput. 215 (2009) 2578-2590.

[31] J.F. Li, X.Y. Hu, L. Zhang,, The nearness problems for symmetric centrosym-
metric with a special submatrix constraint, Numerical Algorithms, In Press.

[32] F. Piao, Q. Zhang, Z. Wang, The solution to matrix equation AX + XTC = B,
J. Franklin Institute 344 (2007) 1056-1062.

[33] M.A. Ramadan, M.A.A. Naby, A.M.E. Bayoumi, On the explicit solutions of
forms of the Sylvester and the Yakubovich matrix equations, Math. Comput.
Model. 50 (2009) 1400-1408.



652 M. Hajarian – M. Dehghan

[34] J.P. Thiran, M. Matelart, B.L. Bailly, On the generalized ADI method for the
matrix equation X − AXB = C, J. Comput. Appl. Math. 156 (2003) 285-302.

[35] M.A. Ramadan, E.A. El-Sayed, On the matrix equation XH = HX and the
associated controllability problem, Appl. Math. Comput. 186 (2007) 844-859.

[36] Q.W. Wang, The general solution to a system of real quaternion matrix equa-
tions, Comput. Math. Appl. 49 (2005) 665-675.

[37] Q. W. Wang, A system of four matrix equations over von Neumann regular
rings and Its applications, Acta Mathematica Sinica, English Series, 21 (2005)
323-334.

[38] Q.W. Wang, Bisymmetric and centrosymmetric solutions to systems of real
quaternion matrix equations, Comput. Math. Appl. 49 (2005) 641-650.

[39] Q.W. Wang, H.X. Chang, Q. Ning, The common solution to six quaternion
matrix equations with applications, Appl. Math. Comput. 198 (2008) 209-
226.

[40] Q.W. Wang, C.K. Li, Ranks and the least-norm of the general solution to
a system of quaternion matrix equations, Linear Algebra Appl. 430 (2009)
1626-1640.

[41] Q.W Wang, H.S. Zhang, G.J. Song, A new solvable condition for a pair of
generalized Sylvester equations, Electron. J. Linear Algebra 18 (2009) 289-
301.

[42] Q.W. Wang, J.W. Woude, H.X. Chang, A system of real quaternion matrix
equations with applications, Linear Algebra Appl. 431 (2009) 2291-2303.

[43] J. Weaver, Centrosymmetric (cross-symmetric) matrices, their basic proper-
ties, eigenvalues, and eigenvectors, Amer. Math. Monthly 92 (1985) 711-717.

[44] L. Xie, J. Ding, F. Ding, Gradient based iterative solutions for general linear
matrix equations, Comput. Math. Appl. 58 (2009) 1441-1448.

[45] D.X. Xie, X.Y. Hu, Y.P. Sheng, The solvability conditions for the inverse eigen-
problems of symmetric and generalized centro-symmetric matrices and their
approximations, Linear Algebra Appl. 418 (2006) 142-152.

[46] F.Z. Zhou, X.Y. Hu, L. Zhang, The solvability conditions for the inverse
eigenvalue problem of generalized centro-symmetric matrices, Linear Al-
gebra Appl. 364 (2003) 147-160.

[47] L. Zhao, X. Hu, L. Zhang, Linear restriction problem of Hermitian reflexive
matrices and its approximation, Appl. Math. Comput. 200 (2008) 341-351.
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