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Abstract

Let E be a topological vector space and let us consider a property P . We
say that the subset M of E formed by the vectors in E which satisfy P is
µ-lineable (for certain cardinal µ, finite or infinite) if M ∪ {0} contains an in-
finite dimensional linear space of dimension µ. In 1966 V. Gurariy provided
a non-constructive proof of the ℵ0-lineability of the set of Weierstrass’ Mon-
sters (continuous nowhere differentiable functions on R). Here we provide
the first constructive proof of the c-lineability of this set (where c denotes the
continuum). Of course, this result is the best possible in terms of dimension.

1 Preliminaries. Weierstrass’ Monster and its variants

It came as a general shock when in 1872, and during a presentation before the
Berlin Academy, K. Weierstrass provided the (nowadays) classical example of a
function that was continuous everywhere but differentiable nowhere. The partic-
ular example was defined as

W(x) =
∞

∑
k=0

ak cos(bkπx) (1.1)

where 0 < a < 1, b is any odd integer, and ab > 1 + 3π/2 (see Figure 1).
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Figure 1: A sketch of Weierstrass’ Monster

This apparent shock was a consequence of the general thought that most math-
ematicians shared, namely that a continuous function must have derivatives at a
significant set of points (even A. M. Ampère attempted to give a theoretical justi-
fication for this). Although the first published example is certainly due to Weier-
strass, already in 1830 the Czech mathematician B. Bolzano exhibited a continu-
ous nowhere differentiable function (although it was not published until 1922).
Let us make a brief account of the appearance throughout history of “Weierstrass’
Monsters” (check, e.g. [19] for a thorough study of this topic): B. Bolzano (≈1830),
M. Ch. Cellérier (≈1830), B. Riemann (1861), H. Hankel (1870), or K. Weierstrass
(1872 ). After 1872 many other mathematicians also constructed similar functions,
just to cite a partial list of these we have: H. A. Schwarz (1873), M. G. Darboux
(1874), U. Dini (1877), K. Hertz (1879), G. Peano (1890), D. Hilbert (1891), T. Tak-
agi (1903), H. von Koch (1904), W. Sierpiński (1912), G. H. Hardy (1916), A. S.
Besicovitch (1924), B. van der Waerden (1930), S. Mazurkiewicz (1931), S. Banach
(1931), S. Saks (1932), W. Orlicz (1947), or G. de Rham (1957), among others.

At the end of the twentieth century (and also nowadays) there have been
many authors who have, as well, constructed other variants of the classical “Weier-
strass’ Monster” (1.1), as we shall mention in what follows.

Recall that, as it has become an standard notion in Mathematics, given a subset
M of a topological vector space E, we say that M is µ-lineable (for certain cardinal
µ, finite or infinite) if there exists a linear space V ⊂ M ∪ {0} of dimension µ.

This notion of lineability was originally coined by Gurariy and it first ap-
peared in [1, 18]. Since this concept appeared, a trend has started in which many
authors became interested in the study of subsets of C[0, 1] enjoying certain spe-
cial properties. Prior to the publication of [1, 18], some authors, when working
with infinite dimensional spaces, already found large linear structures enjoying
these type of special properties (even though they did not explicitly used the term
lineability). Probably, the first result in this line this was due to Levine and Milman
(1940, [15]):

Theorem 1.1 (Levine and Milman, 1940). There are no infinite dimensional closed
subspaces of C[0, 1] composed by just functions of bounded variation.
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Authors such as R. Aron, L. Bernal-González, G. Botelho, P. Enflo, G. Gode-
froy, V. Fonf, V. Gurariy, V. Kadets, and D. Pellegrino (among many others) have
been working on this topic in the last decade and on many different frameworks
(see, e.g. [2–8, 10, 14, 16] for a wider range of examples).

Coming back to the set of continuous nowhere differentiable functions, let
us recall that the lineability of this type of function has been thoroughly stud-
ied in the last years (although the very first result in this direction was due to
V. I. Gurariy in 1966, [11, 12], who showed that the set of continuous nowhere
differentiable functions on [0, 1] is ℵ0-lineable.) The lineability of this class of
functions has been studied in depth, as we summarize next. V. Fonf, V. Gurariy
and V. Kadeč [9], in 1999, showed that the set of continuous nowhere differen-
tiable functions on [0, 1] is spaceable (that is, there exists an infinite dimensional
and closed subspace of C[0, 1] every non-zero element of which is continuous
and nowhere differentiable). Much more is true, L. Rodrı́guez-Piazza showed
that the X in [9] can be chosen to be isometrically isomorphic to any separable
Banach space [17]. Also, some years ago, S. Hencl [13] showed that any separable
Banach space is isometrically isomorphic to a subspace of C[0, 1] whose non-zero
elements are nowhere approximately differentiable and nowhere Hölder.

In this note we contribute to the above results by providing a constructive
proof of the c-lineability of the set of Weierstrass’ Monsters. In [11, 12] V. Gurariy
provided a non-constructive proof of the ℵ0-lineability of this set and later (as
we mentioned above) the existence of infinite dimensional Banach spaces of such
functions was also obtained (which, in particular, gives c-lineability). Here, we
give the first constructive proof of the c-lineability of this set. Of course, since c

denotes the continuum, all the previous results are the best possible in terms of
dimension.

2 Our construction

2.1 Some remarks on the “original” Monster

For the sake of completeness of this paper (and since it shall be needed in what
follows), we shall now give a simplified proof of the fact that Weierstrass’ Mon-
ster is, actually, continuous and nowhere differentiable. The steps followed in the
forthcoming proof shall be needed in our construction in Subsection 2.2.

Theorem 2.1 (Weierstrass, 1872). The function W : R −→ R given by

W(x) =
∞

∑
k=0

ak cos(bkπx)

where 0 < a < 1, ab > 1 + 3
2π and b is an odd natural number greater than 1, is a

continuous nowhere differentiable function on R

Proof. Since 0 < a < 1 we have that ∑
∞
k=0 ak = 1

1−a < ∞. Hence, together with

supx∈R
|ak cos(bkπx)| ≤ ak for all k ∈ N and Weierstrass Convergence Criterion,
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we can conclude that ∑
n
k=0 ak cos(bkπx) converges uniformly to W(x) on R. The

continuity of W follows then from the continuity of ∑
n
k=0 ak cos(bkπx).

Let us now prove the non-differentiability of W at any x0 ∈ R. For every
m ∈ N, choose am ∈ Z such that bmx0 − am ∈ (− 1

2 , 1
2 ] and call xm+1 = bmx0 − am.

Also, define

ym =
am − 1

bm
and zm =

am + 1

bm
. (2.1)

Then, we have

ym − x0 = −
1 + xm+1

bm
< 0 <

1 − xm+1

bm
= zm − x0,

where xm+1 ∈ (− 1
2 , 1

2 ], and therefore ym < x0 < zm. Hence, 0 < x0 − ym, zm −

x0 < zm − ym = 2
bm and then ym −→ x−0 and zm −→ x+0 as m → ∞.

Now, consider the quotient

W(ym)− W(x0)

ym − x0
=

m−1

∑
k=0

(

(ab)k cos(bkπym)− cos(bkπx0)

bk(ym − x0)

)

+
∞

∑
k=0

(

am+k cos(bm+kπym)− cos(bm+kπx0)

ym − x0

)

=: S1 + S2.

It can be seen, after performing some simple calculations (and by means of the
mean value theorem), that

|S1| ≤
π(ab)m

ab − 1
. (2.2)

Focusing now on S2, and since b > 1 is odd and am ∈ Z, we have

cos(bm+kπym) = −(−1)am

and
cos(bm+kπx0) = (−1)am cos(bkπxm+1).

Therefore, we have

S2 =
∞

∑
k=0

am+k−(−1)am − (−1)am cos(bkπxm+1)

− 1+xm+1
bm

=

(ab)m(−1)am

∞

∑
k=0

ak 1 + cos(bkπxm+1)

1 + xm+1
.

Since xm+1 ∈ (− 1
2 , 1

2 ] and cos(bkπxm+1) ≥ 0 we also have

∞

∑
k=0

ak 1 + cos(bkπxm+1)

1 + xm+1
≥

1 + cos(πxm+1)

1 + xm+1
≥

1

1 + 1
2

=
2

3
. (2.3)

Next, inequality (2.2) ensures the existence of ǫ1,m ∈ [−1, 1] with

S1 = (−1)am
π(ab)mǫ1,m

ab − 1
,
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and inequality (2.3) guarantees the existence of ηm ≥ 1 such that

∞

∑
k=0

ak 1 + cos(bkπxm+1)

1 + xm+1
= ηm

2

3
.

Thus, we have

W(ym)− W(x0)

ym − x0
= (−1)am(ab)m(

2

3
ηm + ǫ1,m ·

π

ab − 1
). (2.4)

Next, since ab > 1 + 3
2π is equivalent to 2

3 >
π

ab−1 , we have

2

3
ηm + ǫ1,m ·

π

ab − 1
≥

2

3
−

π

ab − 1
> 0 (2.5)

and, thus, the quantity 2
3ηm + ǫ1,m · π

ab−1 is bounded below by a strictly positive
constant. This, along with ab > 1 allows us to conclude

∣

∣

∣

∣

W(ym)− W(x0)

ym − x0

∣

∣

∣

∣

−−−−→
m−→∞

∞

and then W is not differentiable in x0.

The following remark shall also be useful in our construction.

Remark 2.2. Although the non-differentiability of W has already been proved, it shall
be useful to study what happens with the sequence {zm} (see equation (2.1)) in order to
show that the set of all continuous nowhere differentiable functions is lineable. As earlier,
we have

W(zm)− W(x0)

zm − x0
=: S′

1 + S′
2, with

|S′
1| ≤

π(ab)m

ab − 1
, cos(bm+kπzm) = −(−1)am

and

S′
2 = −(ab)m(−1)am

∞

∑
k=0

ak 1 + cos(bkπxm+1)

1 − xm+1

and, when it comes to consider the same constants as the ones appearing earlier, we see
that

S′
2 = −ηm

2

3
,

since ym and zm do not appear in the expressions.
Hence, we would have

W(zm)− W(x0)

zm − x0
= −(−1)am(ab)m(

2

3
ηm + ǫ2,m ·

π

ab − 1
), (2.6)

where ǫ2,m ∈ [−1, 1].
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2.2 Our construction (c-lineability of Weierstrass’ Monsters)

In this section we give our construction of a c-dimensional linear space every non-
zero element of which is a Weierstrass’ Monster. Of course, this will not give a
closed linear space (we will just simply consider the linear, and non-closed, span
of a basis that we will provide). As we mentioned earlier, the existence of infinite
dimensional closed linear spaces of “monsters” has already been proved in the
past (see, e.g., [9, 11, 12]).

Theorem 2.3. The set of all continuous nowhere differentiable functions from R to R is
c-lineable.

Proof. Consider, for 7
9 < a < 1,

Wa(x) =
∞

∑
k=0

ak cos(9kπx).

These Wa’s will be the basis of our linear space. We see that each Wa is a
Weierstrass function, since 9a > 7 > 1 + 3

2π. Let now 7
9 < a1 < a2 < . . . < al < 1,

λ1, . . . , λl ∈ R, define g(x) = ∑
l
i=1 λiWai

(x) and assume g = 0. We shall prove
by induction that

l

∑
i=1

λia
n
i = 0 and

l

∑
i=1

λi
an+1

i

1 − ai
= 0,

for all n ∈ N, which would prove λi = 0 for all 1 ≤ i ≤ l since we would have a
Vandermonde-like determinant.

First, start with n = 0. We have

Wa(
1

3
) =

∞

∑
k=0

ak cos(
9k

3
π) = cos(

π

3
) +

∞

∑
k=1

ak cos(3k−13kπ) = cos(
π

3
)−

a

1 − a

for every a with 7
9 < a < 1.

Hence,

g(
1

3
) =

l

∑
i=1

λi

(

cos
π

3
−

ai

1 − ai

)

= cos
π

3

(

l

∑
i=1

λi

)

−
l

∑
i=1

λiai

1 − ai
= 0.

Similarly,

g(
1

9
) =

l

∑
i=1

λi

(

cos
π

9
−

ai

1 − ai

)

= cos
π

9

(

l

∑
i=1

λi

)

−
l

∑
i=1

λiai

1 − ai
= 0,

which implies
(

l

∑
i=1

λi

)

(

cos
π

9
− cos

π

3

)

= 0
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from which ∑
l
i=1 λi = 0 and ∑

l
i=1

aiλi
1−ai

= 0. Assume now ∑
l
i=1 λia

n
i = 0 and

∑
l
i=1 λi

an+1
i

1−ai
= 0, for all 0 ≤ n ≤ m. Then,

Wai
(

1

9m+2
) =

∞

∑
k=0

ak
i cos

9kπ

9m+2

= cos
π

9m+2
+ ai cos

π

9m+1
+ . . . + am+1

i cos
π

9
−

am+2
i

1 − ai
.

Hence, using the induction hypothesis ∑
l
i=1 λia

n
i = 0 for all 0 ≤ n ≤ m,

g(
1

9m+2
) =

l

∑
i=1

λiWai
(

1

9m+2
)

=
l

∑
i=1

λi

[

cos
π

9m+2
+ ai cos

π

9m+1
+ . . . + am+1

i cos
π

9
−

am+2
i

1 − ai

]

=

(

l

∑
i=1

λia
m+1
i

)

cos
π

9
−

l

∑
i=1

λi
am+2

i

1 − ai
= 0,

(2.7)

which allows us to conclude, using the induction hypothesis ∑
l
i=1 λi

an+1
i

1−ai
= 0, that

(

l

∑
i=1

λia
m+1
i

)

cos
π

9
−

l

∑
i=1

λi
am+2

i

1 − ai
+

l

∑
i=1

λi
am+1

i

1 − ai
= 0.

Then,
(

l

∑
i=1

λia
m+1
i

)

cos
π

9
−

l

∑
i=1

λi
am+1

i (ai − 1)

1 − ai
=

(

l

∑
i=1

λia
m+1
i

)

(cos
π

9
+ 1) = 0.

Using this last result we have ∑
l
i=1 λia

m+1
i = 0, which, together with the conclu-

sion in (2.7), yields ∑
l
i=1 λi

am+2
i

1−ai
= 0. This proves the linear independency of the

Wa’s. Assume now that λ1 · . . . · λl 6= 0, 7
9 < al < al−1 < . . . < a1 < 1 and

g(x) := ∑
l
i=1 λiWai

(x) is differentiable at x0 ∈ R. Then, following the proof of
Theorem 2.1 and focusing on the equations (2.4) and (2.6), we have that for each
m ∈ N and each 1 ≤ i ≤ l there exist ǫi

1,m, ǫi
1,m ∈ [−1, 1] and an ηi

m ≥ 1 such that

g′(x0) = lim
m→∞

[

(−1)am

l

∑
i=1

λi(9ai)
m

(

ǫi
1,mπ

9ai − 1
+ ηi

m
2

3

)]

= lim
m→∞

[

−(−1)am

l

∑
i=1

λi(9ai)
m

(

ǫi
2,mπ

9ai − 1
+ ηi

m
2

3

)]

and putting both limits together we obtain

lim
m→∞

[

l

∑
i=1

λi(9ai)
m

(

π

9ai − 1
(ǫi

1,m + ǫi
2,m) +

4

3
ηi

m

)

]

= 0.
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In other words,

lim
m→∞

[

(9a1)
m

l

∑
i=1

λi

(

ai

a1

)m( π

9ai − 1
(ǫi

1,m + ǫi
2,m) +

4

3
ηi

m

)

]

= 0.

Now, if we recall the steps of the proof of Theorem 2.1 where ηi
m was to appear

and we have in mind that 1 + xm+1 ≥ 1
2 , then

ηi
m

4

3
= 2

∞

∑
k=0

ak
i

1 + cos(9kπxm+1)

1 + xm+1

≤ 4
∞

∑
k=0

ak
i [1 + cos(9kπxm+1)] ≤ 8

1

1 − ai
≤

8

1 − a1
< ∞.

Hence, by the conclusion in equation (2.1) and the above, we have that

π

9ai − 1
(ǫi

1,m + ǫi
2,m) +

4

3
ηi

m

is bounded above and below (by an strictly positive quantity), for all 1 ≤ i ≤ l.
Also, since 0 < ai < a1 for all 2 ≤ i ≤ l and 9a1 > 1, we obtain that

lim
m→∞

[

(9a1)
m

l

∑
i=1

λi

(

ai

a1

)m( π

9ai − 1
(ǫi

1,m + ǫi
2,m) +

4

3
ηi

m

)

]

= sign(λ1) · ∞,

contradicting the conclusion that the upper limit is null.
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