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Abstract

In this paper we consider a cyclic ϕA-contraction mapping defined on a
partially ordered orbitally complete metric space and prove some fixed point
and best proximity point theorems. We also discuss some relationship be-
tween points of coincidence and common best proximal points. It is shown
that, under certain condition, a point of coincidence, a common best proxi-
mal point and a common fixed point coincide.

1 Introduction and preliminaries

Let (X,≤) be a partially ordered set. A self mapping T : X → X is said to be
monotone nondecreasing if Tx ≤ Ty whenever x ≤ y, x, y ∈ X. In 2005, Nieto
and Rodriguez-Lopez [7] studied fixed point theory in partially ordered metric
spaces and established the following results.

Theorem 1.1. [7] Let (X,≤) be a partially ordered set and let there exist a metric
d in X which makes (X, d) into a complete metric space. Let T be a continuous
and nondecreasing self mapping on X for which there exists k ∈ [0, 1) such that
d(Tx, Ty) ≤ k d(x, y) for each y ≤ x. If there exists x0 ∈ X with x0 ≤ T(x0), then
T has a fixed point.
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Theorem 1.2. [7] Let (X,≤) be a partially ordered set and let there exist a metric
d in X which makes (X, d) into a complete metric space. Assume that X satisfies
the condition

if a nondecreasing sequence xn → x ∈ X, then xn ≤ x, ∀n. (1)

Let T : X → X be a monotone and nondecreasing mapping for which there exists
k ∈ [0, 1) such that d(Tx, Ty) ≤ k d(x, y) for each y ≤ x. If there exists x0 ∈ X
with x0 ≤ T(x0), then T has a fixed point.

Since then, there has been a lot of activity in this area and several interesting
results have appeared.

Let A and B be two nonempty subsets of a metric space X := (X, d),
T : A ∪ B → A ∪ B. The mapping T is said to be

• cyclic if T(A) ⊆ B and T(B) ⊆ A;

• cyclic contraction [6], if it is cyclic and

d(Tx, Ty) ≤ kd(x, y) + (1 − k)dist(A, B)

for some k ∈ (0, 1) and for all x ∈ A and y ∈ B, where

d(A, B) = inf{d(x, y) : x ∈ A, y ∈ B};

• cyclic ϕ-contraction [3, 4], if it is cyclic, ϕ : [0,+∞) → [0,+∞) is a strictly
increasing function and

d(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y)) + ϕ(dist(A, B))

for all x ∈ A and y ∈ B;

• x ∈ A ∪ B is a best proximity point for T if d(x, Tx) = dist(A, B).

Notice that a cyclic contraction mapping is cyclic ϕ-contraction with ϕ(t) =
(1 − k)t for t ≥ 0 and 0 ≤ k < 1.

Recently, Abkar and Gabeleh [1] proved best proximity points results for cyclic
mappings in partially ordered complete metric spaces.

• T : A ∪ B → A ∪ B is said to be cyclic contraction mapping in the sense of
Abkar and Gabeleh [1], if it is cyclic and

d(Tx, T2x′) ≤ k d(x′, Tx) + (1 − k) dist(A, B) (1.2)

for some k ∈ (0, 1) and for all (x, x′) ∈ A × A.
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• T : A∪ B → A∪ B is said to be cyclic ϕA- contraction mapping, if it is cyclic,
ϕA : [0,+∞) → [0,+∞) is a strictly increasing function and

d(Tx, T2x′) ≤ d(x′, Tx)− ϕA(d(x
′, Tx)) + ϕA(dist(A, B)) (1.3)

for some k ∈ (0, 1) and for all (x, x′) ∈ A × A.

Notice that a cyclic contraction mapping in the sense of Abkar and Gabeleh
[1] is cyclic ϕA- contraction with ϕA(t) = (1 − k)t for t ≥ 0 and 0 ≤ k < 1. For
more details on this subject, we refer to [5, 8, 9, 11].

Let (X, d) be a metric space and let T : A ∪ B → A ∪ B be a mapping. The
orbit of T2 at the point x0 ∈ A is the set

O(x0, T2) = {x0, T2x0, T4x0, · · · , T2nx0, · · · }.

Definition 1.1. The set O(x0, T2) is said to be T2-orbitally complete if any Cauchy
subsequence {Tni x0} in orbit O(x0, T2), x0 ∈ A, converges in A.

Definition 1.2. An operator T : X → X is said to be orbitally continuous if
Tni x → p ⇒ T(Tni x) → Tp as i → ∞.

Notice that a complete metric space (X, d) is orbitally complete with respect
to any self-mapping of X, and that a continuous mapping is always orbitally con-
tinuous.

In this paper we consider a cyclic ϕA-contraction mapping defined on a par-
tially ordered orbitally complete metric space. We prove some fixed point and
best proximity point theorems and discuss some relationship between points of
coincidence and common best proximal points. It is also shown that, under cer-
tain condition, a point of coincidence, a common best proximal point and a com-
mon fixed point coincide.

2. Fixed Point Theorems

Throughout this section, let ϕA : [0,+∞) → [0,+∞) be a strictly increasing func-
tion. Denote by φ1(t), φ2(t), φ3(t), φ4(t), · · · to ϕA(t), ϕA(t − ϕA(t)),

ϕA

(

t− ϕA(t)− ϕA(t− ϕA(t))
)

, ϕA

(

t− ϕA(t)− ϕA(t− ϕA(t))− ϕA(t− ϕA(t)−

ϕA(t − ϕA(t))))
)

, · · · , respectively. Let Φ be the class of functions ϕA satisfying

the following conditions:
(a1) t − ϕA(t) is a nondecreasing function of t, ∀ t > 0,
(a2) t − ϕA(t) → 0 as t → 0.

(a3) t − ∑
2n−1
r=1 φr(t) → 0 as n → ∞, ∀ t > 0.
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Remark 2.1. Since ϕA : [0,+∞) → [0,+∞) is a strictly increasing function, it is
injective and ϕA(0) = 0.

The following lemma is obvious.

Lemma 2.1. Let A, B be two nonempty subsets of a metric space (X, d) and T : A∪
B → A ∪ B be a cyclic ϕA-contraction mapping. For x0 ∈ A, define xn+1 = Txn

for each n ≥ 0. Then
(a) − ϕA(d(x

′, Tx)) + ϕA(dist(A, B)) ≤ 0 for all (x, x′) ∈ A × A.
(b) d(Tx′, T2x) ≤ d(x′, Tx) for all (x, x′) ∈ A × A.
(c) if dist(A, B) = 0, then d(x2n−1, x2n) = d(Tx2n−2, T2x2n−2) ≤ d(x0, Tx0) −
∑

2n−1
r=1 φr(d(x0, Tx0)) for all n ≥ 1.

Lemma 2.2. Let A, B be two nonempty subsets of a metric space (X, d) and
T : A ∪ B → A ∪ B be a cyclic ϕA-contraction mapping. Let there exist x0 ∈ A
such that O(x0, T2) is T2-orbitally complete and T2 is nondecreasing on O(x0, T2).
Let “ ≤ ” be a partial order relation on O(x0, T2) such that

d(Tx′, T2x) ≤ d(x′, Tx)− ϕA(d(x
′ , Tx)) + ϕA(dist(A, B)) (2.1)

for all (x, x′) ∈ O(x0, T2)×O(x0, T2) with x ≤ x′. If x0 ≤ T2x0, then d(xn, xn+1) →
dist(A, B) as n → ∞ where xn+1 = Txn.

Proof. Assume that x0 ∈ A with x0 ≤ T2(x0) and T2 is nondecreasing on O(x0, T2),
then it follows that

x0 ≤ T2(x0) ≤ · · · ≤ T2nx0 ≤ · · ·

Put rn = d(xn, xn+1) for all n ≥ 1. By Lemma 2.1(b), it is clear that {rn} is
decreasing and bounded. Thus limn→∞ rn = ξ for some ξ ≥ d(A, B). It follows
that r2n → ξ and also r2n+1 → ξ. If r2n0

= 0 for some n0 ≥ 1, there is nothing to
proof. So we assume that r2n > 0 for each n ≥ 1. By (2.1) we have

r2n+1 = d(Tx2n, T2x2n) ≤ d(x2n, Tx2n)− ϕA(d(x2n, Tx2n)) + ϕA(dist(A, B)).

This yields

ϕA(r2n) ≤ r2n − r2n+1 + ϕA(dist(A, B)) (2.2)

for each n ≥ 1. Since ϕA is strictly increasing and r2n ≥ ξ ≥ d(A, B) for each
n ≥ 1, it follows from (2.2) that

lim
n→∞

ϕA(r2n) = ϕA(ξ) = ϕA(d(A, B)).

Since ϕA is strictly increasing, we have ξ = d(A, B) i.e., r2n → dist(A, B). We can
similarly show that r2n+1 → dist(A, B). It follows that rn → dist(A, B) as n → ∞.
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Theorem 2.3. Let A, B be two nonempty subsets of a metric space (X, d). Let
there exist x0 ∈ A such that O(x0, T2) is T2-orbitally complete, and let “ ≤ ” be
a partially ordered relation on O(x0, T2), T be orbitally continuous, T2 be nonde-
creasing on O(x0, T2) and T : A ∪ B → A ∪ B be a cyclic mapping such that

d(Tx′, T2x) ≤ d(x′, Tx)− ϕA(d(x
′, Tx)) (2.1a)

for all (x, x′) ∈ O(x0, T2)×O(x0, T2) with x ≤ x′ and ϕA ∈ Φ. If x0 ≤ T2x0, then
A ∩ B 6= ∅, hence T has a fixed point p ∈ A ∩ B. Moreover, if xn+1 = Txn, then
x2n → p.

Proof. Suppose T2x0 = x0, then x0 is a fixed point of T. Indeed, by (2.1a), we have

d(Tx0, x0) = d(Tx0, T2x0) ≤ d(x0, Tx0)− ϕA(d(x0, Tx0))

which implies ϕA(d(x0, Tx0)) = 0. By Remark 2.1, d(x0, Tx0) = 0. It follows that
x0 is a fixed point of T. Suppose that T2x0 6= x0. By Lemma 2.1(c), it follows that
limn→∞ r2n exists. Suppose limn→∞ r2n = δ ≥ 0. We show that δ = 0. Suppose

δ > 0. Let N > 0 be an integer such that r2n ≥ δ
2 for all n ≥ N. Then

lim inf
n→∞

ϕA(r2n) ≥ ϕA(
δ

2
) > 0. (2.3)

Now(2.1a) yields

ϕA(r2n) ≤ r2n − r2n+1. (2.1b)

Similarly, we see that

ϕA(r2n+1) ≤ r2n+1 − r2n+2. (2.1c)

Thus, from (2.1b) and (2.1c) we obtain

∞

∑
n=1

ϕA(rn) < ∞,

from which it follows that {ϕA(rn)} is a Cauchy sequence in [0,+∞) and

lim inf
n→∞

ϕA(r2n) = 0,

contradicting (2.3). Thus, δ = 0. It follows that {x2n} is a Cauchy sequence in
O(x0, T2). Therefore, there exists p ∈ O(x0, T2) such that x2n → p. As T is or-
bitally continuous, Tx2n → Tp. Using (2.1a) again we have

d(p, Tp) = lim
n→∞

r2n ≤ lim
n→∞

r2n−1 − lim inf ϕA(r2n−1) = 0.

Theorem 2.4. Let A, B be two nonempty subsets of a metric space (X, d). Let there
exist x0 ∈ A such that O(x0, T2) is T2-orbitally complete and O(x0, T2) satisfies
the condition (1), and let “ ≤ ” be a partially ordered relation on O(x0, T2), T be
orbitally continuous, T2 be nondecreasing on O(x0, T2) and T : A ∪ B → A ∪ B
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be a cyclic mapping such that d(Tx′, T2x) ≤ d(x′, Tx) − ϕA(d(x
′, Tx)) for all

(x, x′) ∈ O(x0, T2) × O(x0, T2) with x ≤ x′ and ϕA ∈ Φ. If x0 ≤ T2x0, then
A ∩ B 6= ∅, hence T has a fixed point p ∈ A ∩ B. Moreover, if xn+1 = Txn, then
x2n → p.

Proof. In view of Theorem 2.3, {x2n} is a Cauchy sequence in O(x0, T2). So by T2-
orbitally completeness of O(x0, T2) there exists p ∈ O(x0, T2) such that x2n → p.
Since T2 is nondecreasing on O(x0, T2), and O(x0, T2) satisfies the condition (1),
we have T2nx0 ≤ p for all n ∈ N. We now have

d(p, Tp)

≤ d(p, T2nx0) + d(Tp, T2(T2n−2x0))

≤ 2d(p, T2nx0) + d(T(T2n−2x0), T2(T2n−2x0))

≤ 2d(p, T2nx0) + d(T2n−2x0, T(T2n−2x0))− ϕA(d(T
2n−2x0, T(T2n−2x0)))

= 2d(p, T2nx0) + d(T(T2n−2x0), T2(T2n−4x0))− ϕA(d(T(T
2n−2x0), T2(T2n−4x0)))

≤ 2d(p, T2nx0) + d(T2n−2x0, T(T2n−4x0))− ϕA(d(T
2n−2x0, T(T2n−4x0)))

− ϕA

(

d(T2n−2x0, T(T2n−4x0))− ϕA

(

d(T2n−2x0, T(T2n−4x0))
)

)

= 2d(p, T2nx0) + d(T(T2n−4x0), T2(T2n−4x0))− ϕA(d(T(T
2n−4x0), T2(T2n−4x0))

− ϕA

(

d(T(T2n−4x0), T2(T2n−4x0))− ϕA

(

d(T(T2n−4x0), T2(T2n−4x0))
)

)

≤ 2d(p, T2nx0) + d(T2n−4x0, T(T2n−4x0))− ϕA(d(T
2n−4x0, T(T2n−4x0)))

− ϕA

(

d(T2n−4x0, T(T2n−4x0))− ϕA(d(T
2n−4x0, T(T2n−4x0)))

)

− ϕA

(

d(T2n−4x0, T(T2n−4x0))− ϕA(d(T
2n−4x0, T(T2n−4x0)))

− ϕA

(

d(T2n−4x0, T(T2n−4x0))− ϕA(d(T
2n−4x0, T(T2n−4x0)))

)

)

...

≤ 2d(p, T2nx0) + d(x0, Tx0)−
2n−1

∑
r=1

φr(d(x0, Tx0)).

Letting n → ∞ and noting that T2nx0 → p, ϕA ∈ Φ, we obtain d(p, Tp) = 0 or
Tp = p.

Example 2.1. Consider X = R
2. For x = (x1, x2), y = (y1, y2) ∈ X, define

d(x, y) = max{|x1 − y1|, |x2 − y2|}. Then d is a metric on X. Let

A = {(x, 0) ∈ R
2 : 0 ≤ x < 1}∪{(2, 0)}, B = {(0, y) ∈ R

2 : 0 ≤ y < 1}∪{(0, 2)}.

Define T : A ∪ B → A ∪ B by T(x, 0) = (0, x
3 ) for 0 ≤ x < 1, T(2, 0) = (0, 2

3),

T(0, y) = (
y
3 , 0) for 0 ≤ y < 1, T(0, 2) = (2

3 , 0), and ϕA : [0,+∞) → [0,+∞)

by ϕA(t) = 2t
3 for all t ∈ [0,+∞). Then T is a cyclic ϕA-contraction mapping.

For any x0 ∈ A, we define the partial order relation “ ≤ ” on O(x0, T2) in the
following way: (x, 0) ≤ (x′, 0) ⇔ x ≤ x′. Pick x0 = (2, 0) ∈ A, then O(x0, T2) =
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{( 2
32n , 0) : n = 0, 1, 2, · · · }. Clearly O(x0, T2) is T2-orbitally complete. We observe

that, for x = ( 2
32n , 0) and x′ = ( 2

32m , 0) with n ≥ m i.e., x ≤ x′,

d(Tx′, T2x) = d
(

(0,
2

32m+1
), (

2

32n+2
, 0)

)

= max{|0 −
2

32n+2
|, |

2

32m+1
− 0|}

=
2

32m+1
=

1

3
(

2

32m
) =

2

32m
−

2

3
(

2

32m
)

= d
(

(
2

32m
, 0), (0,

2

32n+1
)
)

− ϕA

(

d
(

(
2

32m
, 0), (0,

2

32n+1
)
))

= d(x′, Tx)− ϕA(d(x
′, Tx))

Thus we see that T satisfies all the conditions of Theorem 2.3, hence T has a fixed
point. Indeed, p = (0, 0) ∈ A ∩ B is a fixed point of T.

It may be remarked that in Example 2.1 above neither A nor B is complete.
Hence our Theorem 2.3 is a proper generalization of the corresponding result i.e.,
Theorem 2.2 of Abkar and Gabeleh [1].

3. Best Proximity Points

In this section we obtain some results on the existence and convergence of best
proximity points for ϕA-cyclic mappings.

Theorem 3.1. Let A, B be two nonempty closed subsets of a metric space (X, d).
Let there exist x0 ∈ A such that O(x0, T2) is T2-orbitally complete and O(x0, T2)
satisfies the condition (1), and let “ ≤ ” be a partially ordered relation on O(x0, T2),
T be orbitally continuous, T2 be nondecreasing on O(x0, T2) and T : A ∪ B →
A ∪ B be a cyclic mapping such that

d(Tx′, T2x) ≤ d(x′, Tx)− ϕA(d(x
′, Tx)) + ϕA(dist(A, B))

for all (x, x′) ∈ O(x0, T2) ×O(x0, T2) with x ≤ x′ and ϕA ∈ Φ. If x0 ≤ T2x0,
define xn+1 = Txn, and {x2n} has a convergent subsequence in A , then T has a
best proximity point p ∈ A.

Proof. Let {x2nk
} be a subsequence of {x2n} converging to some p ∈ A. Then

dist(A, B) ≤ d(p, x2nk−1) ≤ d(p, x2nk
) + d(x2nk

, x2nk−1).

If k → ∞, then by Lemma 2.2 we have d(x2nk
, x2nk−1) → dist(A, B). Thus, it

follows from the above inequality that d(p, x2nk
) → dist(A, B). Since T2 is nonde-

creasing and condition (1) holds, it follows from Lemma 2.1(b) that

dist(A, B) ≤ d(x2nk
, Tp) = d(Tp, T2(x2nk−2))

≤ d(p, T(x2nk−2)) = d(p, x2nk−1).

Again if k → ∞, we obtain

d(p, Tp) = lim
k→∞

d(x2nk
, Tp) = dist(A, B).
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Theorem 3.2. Let A, B be two nonempty, closed and convex subsets of a Banach
space (X, ‖ · ‖). Let there exist x0 ∈ A such that O(x0, T2) is T2-orbitally com-
plete and bounded and satisfies the condition (1), and let “ ≤ ” be a partially
ordered relation on O(x0, T2), T be orbitally continuous, T2 be nondecreasing on
O(x0, T2) and T : A ∪ B → A ∪ B be a cyclic mapping such that

d(Tx′, T2x) ≤ d(x′, Tx)− ϕA(d(x
′ , Tx)) + ϕA(dist(A, B))

for all (x, x′) ∈ O(x0, T2) × O(x0, T2) with x ≤ x′ and ϕA ∈ Φ. If x0 ≤ T2x0,
define xn+1 = Txn, and T is weakly continuous on O(x0, T2), then T has a best
proximity point p ∈ A.

Proof. It follows by Lemma 2.2 that ‖x2n − Tx2n‖ → dist(A, B). Now applying
similar argument as in Theorem 10 of [3] we obtain the desired conclusion. So we
omit the details.

Remark 3.1. If in Theorem 3.2 we assume that X is a uniformly convex Banach
space, then the best proximity point of T is unique.

In a recent paper, Suzuki, Kikkawa and Vetro [10] introduced the geometric
notion of property UC as follows:

Definition 3.1. Let A, B be two nonempty subsets of a metric space (X, d). A pair
(A, B) is said to satisfy property UC iff the following holds: If {xn} and {zn} are
sequences in A, and {yn} is a sequence in B such that

lim
n→∞

d(xn, yn) = lim
n→∞

d(zn, yn) = dist(A, B),

then limn→∞ d(xn, zn) = 0.

In the following we prove the existence and convergence of best proximity
points in ordered metric spaces with this geometric property.

Lemma 3.3. [10] Let A, B be two nonempty subsets of a metric space (X, d). Let
the pair (A, B) satisfy the property UC. If {xn} and {yn} are sequences in A and
B, respectively, such that either of the following condition holds:

lim
m→∞

sup
n≥m

d(xm, yn) = dist(A, B) or lim
n→∞

sup
m≥n

d(xm, yn) = dist(A, B).

Then {xn} is a Cauchy sequence.

Theorem 3.4. Let (X,≤) be a partially ordered set and d be a metric on X. Let A, B
be two nonempty subsets of X such that the pair (A, B) satisfies the property UC.
Let there exist x0 ∈ A and y0 ∈ B such that O(x0, T2) is T2-orbitally complete
and satisfies the condition (1), and let “ ≤ ” be a partially ordered relation on
O(x0, T2), T and T2 be nondecreasing on O(x0, T2) and T : A ∪ B → A ∪ B be a
cyclic mapping such that

d(Tx′, T2x) ≤ d(x′, Tx)− ϕA(d(x
′ , Tx)) + ϕA(dist(A, B))
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and
d(Ty′, T2y) ≤ d(y′, Ty)− ϕA(d(y

′, Ty)) + ϕA(dist(A, B))

for all (x, x′) ∈ O(x0, T2)×O(x0, T2), (y, y′) ∈ O(y0, T2)×O(y0, T2) with x ≤ x′,
y ≤ y′, and ϕA ∈ Φ. If x0 ≤ T2x0, define xn+1 = Txn, then T has a best proximity
point p ∈ A and x2n → p.

Proof. Since T2 and T are nondecreasing on O(x0, T2) and x0 ≤ T2x0, it fol-
lows that {T2nx0} and {T2n−1x0} are nondecreasing. By Lemma 2.2, we have
d(T2nx0, T2n+1x0) → dist(A, B) and d(T2n+2x0, T2n+1x0) → dist(A, B). Since the
pair (A, B) satisfies the property UC, d(T2nx0, , T2n+2x0) → 0. Fix ǫ > 0 and
choose k ∈ N such that for each m ≥ k we have

d∗(T2mx0, T2m+1x0) < ǫ, d∗(T2m+2x0, T2m+1x0) < ǫ,

and

d(T2mx0, T2m+2x0) < [1 − {ǫ − ϕA(ǫ) + ϕA(dist(A, B))

− ϕA(ǫ − ϕA(ǫ) + ϕA(dist(A, B)))}]ǫ,

where d∗(a, b) := d(a, b) − ϕA(dist(A, B)) for (a, b) ∈ A × B. The above inequal-
ity can be justified for sufficiently small ǫ because t − ϕA(t) → 0 as t → 0. Now,
fix m ∈ N with m ≥ k. We shall show by induction

d∗(T2mx0, T2n+1x0) < ǫ (3.1)

for all n ∈ N with n ≥ m. It is obvious that (3.1) holds when n = m. We assume
that (3.1) holds for some n ≥ m. Then we have

d∗(T2mx0, T2n+3x0)

≤ d(T2mx0, T2m+2x0) + d∗(T2m+2x0, T2n+3x0)

< [1 − {ǫ − ϕA(ǫ) + ϕA(dist(A, B)) − ϕA(ǫ − ϕA(ǫ) + ϕA(dist(A, B)))}]ǫ

+ d(T2n+2x0, T2m+1x0)− ϕA(d(T
2n+2x0, T2m+1x0))

≤ [1 − {ǫ − ϕA(ǫ) + ϕA(dist(A, B)) − ϕA(ǫ − ϕA(ǫ) + ϕA(dist(A, B)))}]ǫ

+ d(T2mx0, T2n+1x0)− ϕA(d(T
2mx0, T2n+1x0)) + ϕA(dist(A, B))

− ϕA(d(T
2mx0, T2n+1x0)− ϕA(d(T

2mx0, T2n+1x0)) + ϕA(dist(A, B)))

≤ [1 − {ǫ − ϕA(ǫ) + ϕA(dist(A, B)) − ϕA(ǫ − ϕA(ǫ) + ϕA(dist(A, B)))}]ǫ

+ ǫ − ϕA(ǫ) + ϕA(dist(A, B)) − ϕA(ǫ − ϕA(ǫ) + ϕA(dist(A, B)))

≤ ǫ

and so (3.1) holds when n := n + 1. Hence by induction, (3.1) holds for all n ∈ N

with n ≥ k. This, in turn, implies that

lim
m→∞

sup
n≥m

d∗(T2mx0, T2n+3x0) = 0.

Since (A, B) satisfies the property UC, it follows from Lemma 3.3 that {x2n} is
a Cauchy sequence, and since O(x0, T2) is T2-orbitally complete, there exists
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p ∈ O(x0, T2) such that x2n → p. Further, since T2 is nondecreasing on O(x0, T2)
and that the condition (1) holds, we conclude that x2n ≤ p. Therefore

d(p, Tp) = lim
n→∞

d(T2nx0, Tp) = lim
n→∞

d(Tp, T2(T2n−2x0))

= lim
n→∞

[d(p, T2n−1x0)− ϕA(d(p, T2n−1x0))] + ϕA(dist(A, B)) = dist(A, B).

Hence p is a best proximity point of T in A, and T2nx0 → p.

Example 3.1. Let X = R
2 be endowed with metric d as defined in Example 2.1.

Let

A = {(1,−a) ∈ R
2 : 0 ≤ a < 1} ∪ {(1,−2)},

B = {(−1, b) ∈ R
2 : 0 ≤ b < 1} ∪ {(−1, 2)}.

Then dist(A, B) = 2. Define T : A ∪ B → A ∪ B by T(1,−a) = (−1, a
3) for 0 ≤

a < 1, T(1,−2) = (−1, 2
3), T(−1, b) = (1,− b

3) for 0 ≤ b < 1, T(−1, 2) = (1,− 2
3),

and ϕA : [0,+∞) → [0,+∞) by ϕA(t) =
2t
3 for all t ∈ [0,+∞). Then T is a cyclic

ϕA-contraction mapping. We define the partial order relation “ ≤ ” on O(x0, T2)
in the following way:

(x1, y1) ≤ (x2, y2) ⇔ x1 ≤ x2, y1 ≤ y2,

for all (x1, y1), (x2, y2) ∈ R
2. Pick x0 = (1,−2) ∈ A, then T2-orbitally complete

such that O(x0, T2) satisfies the condition (1) and O(x0, T2) = {(1,− 2
32n ) : n =

0, 1, 2, · · · }. We observe that, for x = (1,− 2
32n ) and x′ = (1,− 2

32m ) with n ≥ m i.e.,

x ≤ x′,

d(Tx′, T2x) = d
(

(−1,
2

32m+1
), (1,−

2

32n+2
)
)

= max{| − 1 − 1|, |
2

32m+1
+

2

32n+2
|}

= 2 = 2 −
4

3
+

4

3

= d
(

(1,−
2

32m
), (−1,

2

32n+1
)
)

− ϕA

(

d
(

(1,−
2

32m
), (−1,

2

32n+1
)
))

+ ϕA(dist(A, B))

= d(x′, Tx)− ϕA(d(x
′ , Tx)) + ϕA(dist(A, B))

Thus we see that T satisfies all the conditions of Theorem 3.4. Now, if xn+1 =
T(xn), then x0 ≤ T2x0 and {x2n}, {x2n−1} are nondecreasing on O(x0, T2). There-
fore, T has a best proximity point. Clearly this point is p = (1, 0).

Example 3.2. Let X = R
2 be endowed with Euclidean metric d. Let

A = {(1, a) ∈ R
2 : −1 ≤ a < 1}, B = {(−1, b) ∈ R

2 : −1 < b ≤ 1}}.

Then dist(A, B) = 2. Define T : A ∪ B → A ∪ B by T(1, a) = (−1,− a
2) for all

−1 ≤ a < 1, T(−1, b) = (1,− b
2) for all −1 < b ≤ 1, and ϕA : [0,+∞) → [0,+∞)
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by ϕA(t) = t
t+1 for all t ∈ [0,+∞). Then T is a cyclic ϕA-contraction mapping.

We define the partial order relation “ ≤ ” on O(x0, T2) in the following way:

(x1, y1) ≤ (x2, y2) ⇔ x1 ≤ x2, y1 ≤ y2,

for all (x1, y1), (x2, y2) ∈ R
2. Pick x0 = (1, 0) ∈ A, then T2-orbitally complete

such that O(x0, T2) satisfies the condition (1) and O(x0, T2) = {(1, 0)}. We ob-
serve that, for any x, x′ ∈ O(x0, T2) and x ≤ x′,

d(Tx′, T2x) = d
(

(−1, 0), (1, 0)
)

= 2 = 2 −
2

2 + 1
+

2

2 + 1

= d
(

(1, 0), (−1, 0)
)

− ϕA

(

d
(

(1, 0), (−1, 0)
)))

+ ϕA(dist(A, B))

= d(x′, Tx)− ϕA(d(x
′, Tx)) + ϕA(dist(A, B))

Thus we see that T satisfies conditions of Theorem 3.4. Now, if xn+1 = T(xn),
then x0 ≤ T2x0 and {x2n}, {x2n−1} are nondecreasing on O(x0, T2). Therefore, T
has a best proximity point. Clearly this point is p = (1, 0).

The following concept [2] is a proper generalization of nontrivial weakly com-
patible mappings which do have a coincidence point.

Definition 3.2. Two self-mappings S and T of a set X are occasionally weakly
compatible (owc) iff there is a point u in X which is a coincidence point of S and
T at which S and T commute.

Let A, B be two nonempty subsets of a metric space (X, d), S, T : A ∪ B → A ∪ B
be mappings and let CA(S, T), PCB(S, T) denote the set of coincidence points and
the set of points of coincidence of mappings S and T in A and in B, respectively.

Definition 3.3. A point x ∈ A ∪ B is called a common best proximity point for S
and T if d(x, Sx) = d(x, Tx) = dist(A, B).

Theorem 3.5. Let S, T : A ∪ B → A ∪ B be cyclic mappings and occasionally
weakly compatible satisfying the condition

ϕA(d
∗(Sx, Ty)) ≤ d(x, Ty)− ϕA(d(x, Ty)) (3.2)

for all x ∈ B, y ∈ A and ϕA ∈ Φ. Then ∃ y′ ∈ PCB(S, T) such that d(y′, Sy′) =
d(y′, Ty′) = dist(A, B). Further, if dist(A, B) = 0, then y′ is a unique common
fixed point of S and T.

Proof. Since S, T are occasionally weakly compatible, it follows that ∃u ∈ A such
that Su = Tu. Now (3.2) yields

ϕA(d
∗(S2u, Tu)) ≤ d(Su, Tu) − ϕA(d(Su, Tu)) = 0.

Thus ϕA(d
∗(S2u, Su)) = 0. Since ϕA is strictly increasing, it follows that

d∗(S2u, Su) = 0 i.e., ∃ y′(= Su) ∈ PCB(S, T) such that d(y′, Sy′) = dist(A, B).
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Again, by owc of the pair, we have STu = TSu i.e., Sy′ = Ty′. It follows that
d(y′, Sy′) = d(y′, Ty′) = dist(A, B). Hence y′ a common best proximity point for
S and T.

Assume that dist(A, B) = 0, then it is obvious that y′ is a common fixed point
for S and T. This completes the proof.

Notice that in Theorem 3.5, without affecting the conclusion, one can replace
the condition (3.2) with the following condition:

d∗(Sx, Ty) ≤ d(x, Ty)− ϕA(d(x, Ty)). (3.2’)

Our next example validates all the conditions of Theorem 3.5.

Example 3.3. Let X = R
2 be endowed with metric d as defined in Example 2.1.

Let

A = {(1, a) ∈ R
2 : −1 ≤ a ≤ 1}, B = {(−1, b) ∈ R

2 : −1 ≤ b ≤ 1}}.

Then dist(A, B) = 2. Define S, T : A ∪ B → A ∪ B by S(1, a) = (−1,− a
4) for

all −1 ≤ a ≤ 1, S(−1, b) = (1,− b
4) for all −1 ≤ b ≤ 1, T(1, a) = (−1,− a

2) for

all −1 ≤ a ≤ 1, T(−1, b) = (1,− b
2) for all −1 ≤ b ≤ 1, and ϕA : [0,+∞) →

[0,+∞) by ϕA(t) =
t
2 for all t ∈ [0,+∞). Then S, T are cyclic mappings. Clearly,

CA(S, T) = {(1, 0)}. Now, for any (−1, b) ∈ B and (1, a) ∈ A, we have

ϕA(d
∗(S(−1, b), T(1, a))) = ϕA(d(S(−1, b), T(1, a)) − dist(A, B))

= ϕA(0) = 0 ≤
1

2
d((−1, b), T(1, a))

= d((−1, b), T(1, a)) − ϕA(d((−1, b), T(1, a))).

Therefore, all the conditions of Theorem 3.5 are satisfied, and hence ∃ y′ = (−1, 0)
(= S(1, 0)) ∈ PCB(S, T) such that d(y′, Sy′) = d(y′, Sy′) = dist(A, B).
Remark 3.2. It may be remarked that

(i) Nieto and Rodriguez-Lopez [7] proved that every continuous and nondecreas-
ing contraction on a complete partially ordered metric space has a fixed point
(see Theorem 1.1). This result was generalized by Abkar and Gabeleh [1] to cyclic
contractions which requires completeness of A only. We have further generalized
this theorem to cyclic ϕA-contractions under much weaker condition. Indeed,
we have used T2-orbital completeness on O(x0, T2) for some x0 in A rather than
completeness of A as used by Abkar and Gabeleh [1].

(ii) Theorem 1.2 of Nieto and Rodriguez-Lopez [7] states that every monotone and
nondecreasing contraction has a fixed point. This result was extended to cyclic
contractions by Abkar and Gabeleh [1]. We further extended the corresponding
result of Abkar and Gabeleh [1] to ϕA-contractions under much weaker condition
on the space.
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(iii) In section 3, we have established several theorems on the existence and con-
vergence of best proximity points for cyclic ϕ-contractions under much weaker
condition on the space. These results improve and extend corresponding results
of Abkar and Gabeleh [1] from cyclic mappings to cyclic ϕA-contraction map-
pings.

(iv) In Examples 3.1 and 3.2 above neither A nor B is complete. Hence our Theo-
rem 3.4 is a proper generalization of the corresponding result i.e., Theorem 3.5 of
Abkar and Gabeleh [1].

(v) Our Examples 3.3 appreciably exhibits a close relationship between points of
coincidence and common best proximal points.
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