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Abstract

In this paper, for the fourth-order parabolic equation modeling epitaxial
thin film growth, the optimal control under boundary condition is given, and
the existence of optimal solution to the equation is proved.

1 Introduction

In this paper, we study the optimal control problem of the following fourth-order
parabolic equation

ut + D4u − Dϕ(Du) = 0, (x, t) ∈ (0, 1)× (0, T), (1.1)

where D = ∂
∂x , ϕ(s) = s3 − s. On the basis of physical considerations, Eq.(1.1) is

supplemented by the following boundary conditions and initial condition

Du(x, t) = D3u(x, t) = 0, x = 0, 1, (1.2)

u(x, 0) = u0(x), x ∈ (0, 1). (1.3)

Eq.(1.1) arises in epitaxial growth of nanoscale thin films [2, 11], where u(x, t)
denotes the height from the surface of the film in epitaxial growth. The term D4u
denotes the capillarity-driven surface diffusion, and Dϕ(Du) correspond to the
upward hopping of atoms.
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In 2003, King, Stein and Winkler [2] studied the following equation

ut + ∆2u − div
(

f (∇u)
)

= h(x).

In their paper, they proved the existence, uniqueness and regularity of solutions
in an appropriate function space for the initial boundary value problem. Kohn
and Yan [5] considered the following equation

ut + ∆2u +∇ ·
(

2(1 − |∇u|2)∇u
)

= 0,

in two space dimensions. Numerical simulations and heuristic arguments in-

dicate that the standard deviation of u grows like t−
1
3 , and the energy per unit

area decays like t−
1
3 . There is much literature concerned with the fourth-order

parabolic equation modeling epitaxial thin film growth. For more recent results
we refer the reader to [1, 4] and the references therein.

The optimal control plays an important role in modern control theories, and
has a wider application in modern engineering. Many papers have already been
published to study the control problems of nonlinear parabolic equations. In
1991, Yong and Zheng [10] studied the feedback stabilization and optimal control
of the Cahn-Hilliard equation in a bounded domain with smooth boundary. Tian
et al [8, 9] considered the optimal control problems for parabolic equations, such
as viscous Camassa-Holm equation, viscous Degasperis-Procesi equation and so
on. There are also many papers were denoted to the optimal control problem, for
example [6, 7, 12] and so on.

In this paper, suppose that Q0 ⊆ Q = (0, 1)× (0, T), C ∈ L(W(0, T; V), L2(Q0))
is the observer, we are concerned with distributed optimal control problem

min J(u, ω̄) =
1

2

∫

Q0

(Cu − zd)
2dxdt +

δ

2

∫

Q0

|ω̄|2dxdt, (1.4)

subject to






ut + D4u − Dϕ(Du) = Bω̄, (x, t) ∈ Ω × (0, T),
Du(0, t) = Du(1, t) = D3u(0, t) = D3u(1, t) = 0,
u(0) = u0.

(1.5)

The control target is to match the given desired state zd in L2-sense by adjusting
the body force ω̄ in a control volume Q0 in the L2-sense.

Assume that H = L2(0, 1), U = {u ∈ H1(0, 1);
∫ 1

0 udx = 0} and

V = {u ∈ H2(0, 1)
∣

∣Du(0, t) = Du(1, t) = 0,
∫ 1

0
udx = 0}.

Assume further V ′, U′ and H′ are dual spaces of V, U and H. Then,

V →֒ U →֒ H = H′ →֒ U′ →֒ V ′,

each embedding being dense. The extension operator B ∈ L(L2(Q0), L2(0, T; H))
which is called the controller is introduced as

Bq =

{

q, q ∈ Q0,
0, q ∈ Q \ Q0.
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We supply H with the inner product (·, ·) and the norm ‖ · ‖, and define a space
W(0, T; V) as

W(0, T; V) =
{

y : y ∈ L2(0, T; V), yt ∈ L2(0, T; V ′)
}

,

which is a Hilbert space endowed with common inner product.
This paper is organized as follows. In the next section, we prove the exis-

tence and uniqueness of weak solution to the equation in a special space. We also
discuss the relation among the norms of weak solution, initial value and control
item. In section 3, we consider the optimal control problem and prove the exis-
tence of optimal solution. Finally in Section 4, conclusions are obtained.

2 Existence and uniqueness of weak solution

In this section, we prove the existence and uniqueness of weak solution for the
equation







ut + D4u − Dϕ(Du) = Bω̄,
Du(0, t) = Du(1, t) = D3u(0, t) = D3u(1, t) = 0,
u(x, 0) = u0(x),

(2.1)

where x ∈ (0, 1), t ∈ (0, T), Bω̄ ∈ L2(0, T; H) and a control ω̄ ∈ L2(Q0).
Now, we give the definition of the weak solution in the space W(0, T; V).

Definition 2.1. For all η ∈ V, t ∈ (0, T), a function u(x, t) ∈ W(0, T; V) is called
a weak solution to problem (2.1), if

(
d

dt
u, η) + (D2u, D2η) +

(

(Du)3 − Du, Dη
)

= (Bω̄, η). (2.2)

We shall give Theorem 2.2 on the existence and uniqueness of weak solution
to problem (2.1).

Theorem 2.2. Suppose u0 ∈ V, Bω̄ ∈ L2(0, T; H), then problem (2.1) admits a unique
weak solution u(x, t) ∈ W(0, T; V).

Proof. Galerkin method is applied to the proof.
Denote A = (−∂2

x)
2 as a differential operator, let {ψi}

∞
i=1 denote the eigen-

functions of the operator A = (−∂2
x)

2. For n ∈ N, define the discrete ansatz
space by

Vn = span{ψ1, ψ2, · · · , ψn} ⊂ V.

Let un = ∑
n
i=1 un

i (t)ψi(x) require un(0, ·) → u0 in H holds true.
By analyzing the limiting behavior of sequences of smooth function {un}, we

can prove the existence of a weak solution to problem (2.1).
Performing the Galerkin procedure for (2.1), we obtain

un,t + D4un − D
(

(Dun)
3 − Dun

)

= Bω̄, (2.3)
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with
Dun(x, t) = D3un(x, t) = 0, x = 0, 1, (2.4)

un(x, 0) = un,0(x). (2.5)

Eq.(2.3) is an ordinary differential equation and according to ODE theory,
there exists a unique solution to Eq.(2.3) in the interval [0, tn). What we should
do is to show that the solution is uniformly bounded when tn → T. We need also
to show that the times tn there are not decaying to 0 as n → ∞.

Then, we shall prove the existence of solution in the following steps.
Step 1, multiplying Eq.(2.3) by un, integrating with respect to x on (0, 1), we

deduce that

1

2

d

dt
‖un‖

2 + ‖D2un‖
2 + ‖Dun‖

4
4 = (Bω̄, un) + ‖Dun‖

2. (2.6)

Noticing that

‖Dun‖
2 = −

∫ 1

0
unD2undx ≤

1

2
‖D2un‖

2 +
1

2
‖un‖

2.

Therefore

d

dt
‖un‖

2 + ‖D2un‖
2 ≤ 2(Bω̄, un) + ‖un‖

2 ≤ 2‖un‖
2 + ‖Bω̄‖2.

Since Bω̄ ∈ L2(0, T; H) is the control item, we can assume ‖Bω̄‖ ≤ M, where M
is a positive constant. Then,

d

dt
‖un‖

2 + ‖D2un‖
2 ≤ 2‖un‖

2 + M2. (2.7)

Using Gronwall’s inequality, we obtain

‖un‖
2 ≤ e2t‖un,0‖

2 +
M2

2
≤ e2T‖un,0‖

2 +
M2

2
= c1, t ∈ [0, T]. (2.8)

Multiplying Eq.(2.3) by D2un, integrating with respect to x on (0, 1), we deduce
that

1

2

d

dt
‖Dun‖

2 + ‖D3un‖
2 + (D((Dun)

3 − Dun), D2un) = −(Bω̄, D2un),

which means

1

2

d

dt
‖Dun‖

2 + ‖D3un‖
2 + (D((Dun)

3), D2un)

=‖D2un‖
2 − (Bω̄, D2un).

(2.9)

On the other hand, we have

(

D[(Dun)
3], D2un

)

= 3
∫ 1

0
|Dun|

2|D2un|
2dx ≥ 0.
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Therefore, by (2.9), we derive that

1

2

d

dt
‖Dun‖

2 + ‖D3un‖
2

≤‖Bω̄‖‖D2un‖+ ‖D2un‖
2 ≤

1

4
M2 + 2‖D2un‖

2

≤
1

4
M2 + 2‖Dun‖

2 +
1

2
‖D3un‖

2.

(2.10)

That is
d

dt
‖Dun‖

2 + ‖D3un‖
2 ≤

1

2
M2 + 4‖Dun‖

2.

Using Gronwall’s inequality, we obtain

‖Dun‖
2 ≤e4t‖Dun,0‖

2 +
M2

8
≤ e4T‖Dun,0‖

2 +
M2

8

=c′‖Dun,0‖
2 + c3, t ∈ [0, T].

(2.11)

Multiplying Eq.(2.3) by D4un, integrating with respect to x on (0, 1), we deduce
that

1

2

d

dt
‖D2un‖

2 + ‖D4un‖
2 + (D(Dun − (Dun)

3), D4un)dx = (Bω̄, D4un),

that is

1

2

d

dt
‖D2un‖

2 + ‖D4un‖
2

=‖D3un‖
2 + (D((Dun)

3), D4un) + (Bω̄, D4un).
(2.12)

On the other hand, by Nirenberg’s inequality, we obtain

‖Dun‖
8
8 ≤ ‖Dun‖

7(‖D4un‖
1
8 + ‖Dun‖

1
8 )8 ≤ ε‖D4un‖

2 + c

and
‖D2un‖

4
4 ≤ ‖Dun‖

7
3 (‖D4un‖

5
12 + ‖Du‖

5
12 )4 ≤ ε‖D4un‖

2 + c.

Hence

(D((Dun)
3), D4un) =3

∫ 1

0
|Dun|

2D2unD4undx

≤ε‖D4un‖
2 + c′1‖Dun‖

8
8 + c′2‖D2un‖

4
4

≤(1 + c′1 + c′2)ε‖D4un‖
2 + c.

(2.13)

We also have

‖D3un‖
2 = −

∫ 1

0
D2unD4undx ≤

1

4
‖D4un‖

2 + ‖D2un‖
2

and

(Bω̄, D4un) ≤ ‖Bω̄‖‖D4un‖ ≤
1

4
‖D4un‖

2 + M2.
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Summing up, we obtain

d

dt
‖D2un‖

2 + (1 − 2(1 + c′1 + c′2)ε)‖D4un‖
2 ≤ 2‖D2un‖

2 + 2c + 2M2,

where ε is small enough, it satisfies 1 − 2(1 + c′1 + c′2ε) > 0. Using Gronwall’s
inequality, we deduce that

‖D2un‖
2 ≤e2t‖D2un,0‖

2 + c + M2

≤e2T‖D2un,0‖
2 + c + M2 = c4, t ∈ [0, T].

(2.14)

Using Sobolev’s embedding theorem, we immediately obtain

‖Dun‖L∞ ≤ c5. (2.15)

Then, by (2.8), (2.11) and (2.14), we obtain

‖un(x, t)‖2
H2 ≤ c. (2.16)

Step 2, we prove a uniform L2(0, T; V ′) bound on a sequence {un,t}. Noticing
that

(D((Dun)
3 − Dun), η) = (Dun, Dη)− ((Dun)

3, Dη)

≤ ‖Dun‖‖Dη‖+ sup
x∈[0,1]

|Dun|
2 · ‖Dun‖‖Dη‖ ≤ c‖Dun‖‖η‖V ,

(Bω̄, η) ≤ ‖Bω̄‖‖η‖ ≤ ‖Bω̄‖‖η‖V .

Therefore, by (2.15), we have

‖un,t‖V ′ + ‖D4un‖V ′ ≤ ‖Bω̄‖+ c‖Dun‖ ≤ M + c.

Hence, we get

‖un,t‖L2(0,T;V) ≤ (M + c)T = c6. (2.17)

Adding (2.16) and (2.17) together gives

‖un(x, t)‖W(0,T;V) ≤ c.

Collecting the previous we get:
(1) For every t ∈ [0, T], the sequence {un}n∈N is bounded in L2(0, T; V) by a

constant which is independent of the dimension of ansatz space n.
(2) For every t ∈ [0, T], the sequence {un,t}n∈N is bounded in L2(0, T; V ′) by a

constant which is independent of the dimension of ansatz space n.
By the above discussion, we obtain u(x, t) ∈ W(0, T; V). It’s easy to check

that W(0, T; V) is continuously embedded into C(0, T; U) which denote the space
of continuous functions. We concludes convergence of a subsequences, again
denoted by {un} weak into W(0, T; V), weak-star in L∞(0, T; U) and strong in
L2(0, T; U) to functions u(x, t) ∈ W(0, T; V). Since the proof of uniqueness is
easy, we omit it.

Then, Theorem 2.2 is proved.



Optimal control of fourth-order parabolic equation 553

Now, we shall discuss the relation among the norm of weak solution and ini-
tial value and control item.

Theorem 2.3. Suppose Bω̄ ∈ L2(0, T; H), u0 ∈ V, then there exists positive constants
C′ and C′′ such that

‖u‖2
W(0,T;V) ≤ C′(‖u0‖

2
V + ‖ω̄‖2

L2(Q0)
) + C′′. (2.18)

Proof. Clearly, (2.18) means

‖u‖2
L2(0,T;V) + ‖ut‖

2
L2(0,T;V ′) ≤ C′(‖u0‖

2
V + ‖Bω̄‖2

L2(0,T;H)) + C′′. (2.19)

Passing to the limit in (2.6), (2.9), (2.12), we have

‖u‖2 ≤ c(‖u0‖
2 + ‖Bω̄‖2), ‖Du‖2 ≤ c(‖Du0‖

2 + ‖Bω̄‖2),

and

‖Du‖L∞ ≤ c5, ‖D2u‖L2(H) ≤ c‖D2u0‖
2 + ‖Bω̄‖2 + c. (2.20)

Hence

‖u‖2
L2(H) ≤ cT‖u0‖

2 + c‖Bω̄‖2
L2(H), (2.21)

‖Du‖2
L2(H) ≤ cT‖Du0‖

2 + c‖Bω̄‖2
L2(H), (2.22)

and

‖D2u‖2
L2(H) ≤ cT‖D2u0‖

2 + ‖Bω̄‖2
L2(H) + cT. (2.23)

Adding (2.21), (2.22) and (2.23) together gives

‖u‖2
L2(0,T;V) ≤ c7(‖Bω̄‖2

L2(0,T;H) + ‖u0‖
2
V) + c8. (2.24)

On the other hand, by (2.20), we have

(D((Du)3 − Du), η) = −(Du, Dη) + ((Du)3, Dη)

≤ ‖Du‖‖Dη‖+ sup
x∈[0,1]

|Du|2 · ‖Du‖‖Dη‖ ≤ c‖Du‖‖η‖V ,

(Bω̄, η) ≤ ‖Bω̄‖‖η‖ ≤ ‖Bω̄‖‖η‖V .

Therefore, by (2.1), we have

‖ut‖V ′ + ‖D4u‖V ′ ≤ ‖Bω̄‖+ c‖Du‖ ≤ c(‖Bω̄‖+ (‖Du0‖
2 + ‖Bω̄‖2)

1
2 ).

Hence, we get

‖ut‖
2
L2(0,T;V ′) ≤ c9(‖Bω̄‖2

L2(0,T;H) + ‖u0‖
2
V). (2.25)

By (2.24), (2.25) and the definition of extension operator B, we obtain (2.19). Then,
Theorem 2.3 is proved.
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3 Optimal control problem

In this section, we consider the optimal control problem associated with the
fourth-order parabolic equation and prove the existence of optimal solution bas-
ing on Lions’ theory (see [3]).

In the following, we suppose L2(Q0) is a Hilbert space of control variables
and we also suppose B ∈ L(L2(Q0), L2(0, T; H)) is the controller and a control
ω̄ ∈ L2(Q0), consider the following control system







ut + D4u − D((Du)3 − Du) = Bω̄,
Du(0, t) = Du(1, t) = D3u(0, t) = D3u(1, t) = 0,
u(0) = u0, x ∈ (0, 1).

(3.1)

Here in (3.1), it is assume that u0 ∈ V. By virtue of Theorem 2.2, we can define
the solution map ω̄ → u(ω̄) of L2(Q0) into W(0, T; V). The solution u is called
the state of the control system (3.1). The observation of the state is assumed to be
given by Cu. Here C ∈ L(W(0, T; V), L2(Q0)) is an operator, which is called the
observer. The cost functional associated with the control system (3.1) is given by

J(u, ω̄) =
1

2

∫

Q0

(Cu − zd)
2dxdt +

δ

2

∫

Q0

|ω̄|2dxdt, (3.2)

where zd ∈ L2(Q0) is a desired state and δ > 0 is fixed. An optimal control
problem about problem (3.1) is

min J(u, ω̄). (3.3)

Let X = W(0, T; V)× L2(Q0) and Y = L2(0, T; V)× H. We define an operator
e = e(e1, e2) : X → Y, where

{

e1 = G = (∆2)−1(ut + D4u − D((Du)3 − Du)− Bω̄),
e2 = u(x, 0)− u0.

Here ∆2 is an operator from V to V ′. Then, we write (3.3) in following form

min J(u, ω̄) subject to e(u, ω̄) = 0.

Theorem 3.1. Suppose Bω̄ ∈ L2(0, T; H), u0 ∈ V, then there exists an optimal control
solution (u∗, ω̄∗) to the problem (3.1).

Proof. Suppose (u, ω̄) satisfy e(u, ω̄) = 0. In view of (3.2), we deduce that

J(u, ω̄) ≥
δ

2
‖ω̄‖2

L2(Q0)
.

By Theorem 2.3, we obtain

‖u‖W(0,T;V) → ∞ yields ‖ω̄‖L2(Q0)
→ ∞.

Therefore,

J(u, ω̄) → ∞, when ‖(u, ω̄)‖X → ∞. (3.4)
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As the norm is weakly lower semi-continuous, we achieve that J is weakly
lower semi-continuous. Since for all (u, ω̄) ∈ X, J(u, ω̄) ≥ 0, there exists λ ≥ 0
defined by

λ = inf{J(u, ω̄)|(u, ω̄) ∈ X, e(u, ω̄) = 0},

which means the existence of a minimizing sequence {(un, ω̄n)}n∈N in X such
that

λ = lim
n→∞

J(un, ω̄n) and e(un, ω̄n) = 0, ∀n ∈ N.

From (3.4), there exists an element (u∗, ω̄∗) ∈ X such that when n → ∞,

un → u∗, weakly, u ∈ W(0, T; V), (3.5)

ω̄n → ω̄∗, weakly, ω̄ ∈ L2(Q0). (3.6)

Using (3.5), we get

lim
n→∞

∫ T

0
(un

t (x, t)− u∗
t , ψ(t))V ′ ,Vdt = 0, ∀ψ ∈ L2(0, T; V). (3.7)

Based on the definition of W(0, T; V), we can derive that Dun → Du∗ strongly
in L2(0, T; L∞) as n → ∞. We can also deduce that Dun → Du∗ strongly in
C(0, T; H) when n → ∞.

Since sequence {Dun}n∈N converge weakly and {un} is bounded in W(0, T; V),
based on the embedding theorem, we can obtain {Dun}L2(0,T;L∞) is also bounded.

Because Dun → Du∗ strongly in L2(0, T; L∞) as n → ∞, we know that ‖Du∗‖L2(L∞)
is bounded too.

Using (3.6) again, we derive that
∣

∣

∣

∣

∫ T

0

∫ 1

0
(Bω̄ − Bω̄∗)ηdxdt

∣

∣

∣

∣

→ 0, n → ∞, ∀η ∈ L2(0, T; H). (3.8)

By (3.5), we deduce that
∣

∣

∣

∣

∫ T

0

∫ 1

0
(D((Dun)3 − (Du∗)3)ηdxdt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ T

0

∫ 1

0
((Dun)3 − (Du∗)3)Dηdxdt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ T

0

∫ 1

0
(Dun − Du∗)(|Dun|2 + DunDu∗ + |Du∗|2)Dηdxdt

∣

∣

∣

∣

≤
∫ T

0
‖(Dun)2 + DunDu∗ + (Du∗)2‖L∞‖Dun − Du∗‖H‖Dη‖Hdt

≤‖(Dun)2 + DunDu∗ + (Du∗)2‖L2(L∞)‖Dun − Du∗‖C(H)‖Dη‖L2(H)

→0, n → ∞, ∀η ∈ L2(0, T; U),

(3.9)

and
∣

∣

∣

∣

∫ T

0

∫ 1

0
(D2un − D2u∗)ηdxdt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ T

0

∫ 1

0
(un − u∗)D2ηdxdt

∣

∣

∣

∣

≤‖un − u∗‖C(H)‖η‖L2(V) → 0, n → ∞, ∀η ∈ L2(0, T; V).

(3.10)
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Hence we have u = u(ω̄) and therefore

J(u, ω̄) ≤ lim
n→∞

J(un, ω̄n) = λ.

In view of the above discussions, we get

e1(u
∗, ω̄∗) = 0, ∀n ∈ N.

Noticing that u∗ ∈ W(0, T; V), we derive that u∗(0) ∈ H. Since un → u∗

weakly in W(0, T; V), we can infer that un(0) → u∗(0) weakly when n → ∞.
Thus, we obtain

(un(0)− u∗(0), η) → 0, n → ∞, ∀η ∈ H,

which means e2(u
∗, ω̄∗) = 0. Therefore, we obtain

e(u∗, ω̄∗) = 0, in Y.

So, there exists an optimal solution (u∗, ω̄∗) to problem (3.1).
Then, Theorem 3.1 is proved.

4 Conclusions

The fourth-order parabolic equation in epitaxial growth of nanoscale equation is
an important mathematical physical equation that has many practical meanings.
Because of the complexity of nonlinear parts of the equation, there has been no
research on the optimal control and boundary control of this equation. In this
paper, we study the distributed optimal control problem for problem (1.1)-(1.3)
using a series of mathematical estimates. Our research is motivated by the study
of the optimal control problem for the viscous Degasperis-Procesi equation, vis-
cous Camassa-Holm equation [8, 9], and the existence theory of optimal control
of distributed parameter systems. We also prove the existence of an optimal solu-
tion to problem (1.1)-(1.3). In order to realize optimal solutions of optimal control
problems in practice one must be able to recompute the optimal solutions in the
presence of disturbances in real time unless one gives up optimality. We will
use mathematical theory and related numerical methods to solve that problem
numerically, which is our intention in the future.
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