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Abstract

Attaching to a compact ball Br in the quaternion field H and to analytic
functions in Weierstrass sense (slice regular functions on Br) some convolu-
tion operators, the exact orders of approximation in Br for these operators
are obtained. The results in this paper extend to quaternionic variables those
in the case of approximation of analytic functions of a complex variable in
disks by convolution operators of a complex variable, extensively studied
in the Chapter 3 of the book [5]. More in general, the results extend also to
the setting of analytic functions of paravector variable with coefficients in a
Clifford algebra.

1 Introduction and preliminaries

The noncommutative field H of quaternions consists of elements of the form
q = x1 + x2i + x3 j + x4k, xi ∈ R, i = 1, 2, 3, 4, where the imaginary units i, j, k 6∈ R

satisfy

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

Since, obviously, C ⊂ H, it extends the class of complex numbers. On H we

consider the norm ‖q‖ =
√

x2
1 + x2

2 + x3
3 + x2

4.
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Let us denote by S the unit sphere of purely imaginary quaternion, i.e.

S = {q = ix1 + jx2 + kx3, such that x2
1 + x2

2 + x3
3 = 1}.

Note that if I ∈ S, then I2 = −1. For this reason the elements of S are also
called imaginary units. For any fixed I ∈ S we define CI := {x + Iy; | x, y ∈
R}. It is immediate that CI can be identified with a complex plane, moreover
H =

⋃

I∈S CI . The real axis belongs to CI for every I ∈ S and thus a real
quaternion can be associated to any imaginary unit I. Any non real quaternion
q is uniquely associated to the element Iq ∈ S defined by Iq := (ix1 + jx2 +
kx3)/‖ix1 + jx2 + kx3‖ and q belongs to the complex plane CIq .

For our purposes we need some suitable concepts of analyticity of functions
of a quaternion variable.

Definition 1.1. ([10, Definition 1.1]) Let U be an open set in H and let f : U → H

be real differentiable. f is called left slice regular if for every I ∈ S, its restriction f I

to the complex plane CI = R + IR satisfies

∂I f (x + Iy) :=
1

2

(

∂

∂x
+ I

∂

∂y

)

f I(x + Iy) = 0, on U ∩ CI .

In this case, the so called left (slice) I-derivative of f at a point q = x + Iy is

given by ∂I f I(x + Iy) := 1
2

(

∂
∂x f I(x + Iy)− I ∂

∂y f I(x + Iy)
)

.

Analogously, one can give the notion of function right slice regular and its
right I-derivative, see [3]. Let us now introduce a suitable notion of derivative:

Definition 1.2. Let U be an open set in H, and let f : U → H be a slice regular
function. The slice derivative ∂s f of f is defined by:

∂s( f )(q) =











∂I( f )(q) if q = x + Iy, y 6= 0,

∂ f

∂x
(x) if q = x ∈ R.

The definition of slice derivative is well posed because it is applied only to

slice regular functions and thus ∂
∂x f (x + Iy) = −I ∂

∂y f (x + Iy), for all I ∈ S, and

therefore, analogously to what happens in the complex case, ∂s( f )(x + Iy) =
∂I( f )(x + Iy) = ∂x( f )(x + Iy). If f is a slice regular function, then also its slice

derivative is slice regular, in fact ∂I(∂s f (x + Iy)) = ∂s(∂ I f (x + Iy)) = 0, and
therefore

∂n
s f (x + Iy) =

∂n f

∂xn
(x + Iy).

We have the following result:

Theorem 1.3. ([10, Theorem 2.7]) Let BR = {q ∈ H; ‖q‖ < R}. A function
f : BR → H is left slice regular on BR if and only if it has a series representation of
the form

f (q) =
∞

∑
n=0

qn 1

n!

∂n f

∂xn
(0),

uniformly convergent on BR.
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Analogously, f is right slice regular if and only if it has a series representation
with the coefficients written on the left.
The equivalence established in Theorem 1.3, i.e. the fact that slice regular func-
tions can be expanded into power series, holds just when the domain of a slice
regular function is a ball with center at a real point. Indeed, the function f (q) =
(q − q0)

n is not slice regular when q0 ∈ H \ R. However, on balls with center at
the origin, as an alternative to Definition 1.1, we can present the following.

Definition 1.4. (see [6], [7]) One says that f : BR → H is left analytic in the
Weierstrass sense in BR (shortly left W-analytic) if f (q) = ∑

∞
k=0 ckqk, for all q ∈ BR,

where ck ∈ H for all k = 0, 1, 2, ...,. Also, f is called right W-analytic in BR if
f (q) = ∑

∞
k=0 qkck, for all q ∈ BR.

Here the convergence of the partial sums ∑
n
k=0 ckqk and ∑

n
k=0 qkck to f is un-

derstood uniformly in any closed ball Br = {q ∈ H; ‖q‖ ≤ r}, 0 < r < R, with
respect to the metric d(x, y) = ‖x − y‖.

If f (q) = ∑
n
k=0 ckqk ( f (q) = ∑

n
k=0 qkck) then f is called left (respectively right)

polynomial of degree ≤ n.

Remark 1.5. As we have already discussed, on balls with center at real points the
concept of right W-analytic function f coincides with that of left slice regular
function, and the concept of left W-analytic function coincides with that of right
slice regular function. Although there is this equivalence, for the purpose of this
paper, the terminology of W-analytic function is more suitable than that of slice
regular function. However, in our proofs we will use some general results on slice
regular functions. In the sequel, in order to avoid redundances, we will always
write slice regular, W-analytic and polynomial, instead of left slice regular, right
W-analytic, right polynomial, respectively.

Among the useful tools from the general theory on slice regular functions,
we recall the Cauchy theorem and the formula to compute the derivatives, see
[3, Theorems 4.5.3, 4.5.4] and the definition of axially symmetric s-domain, see
[3, Definitions 4.1.4, 4.3.1]. For our purposes, it is enough to know that balls in H

are examples of axially symmetric s-domains.
In Chapter 3 of the recent book [5], are introduced and studied the approxi-

mation properties of complex convolution operators acting on analytic functions
in compact disks with center at the origin. The operators considered are of the
form

Tn( f )(z) = αn

∫ b

a
f (zeiu)Kn(u)du, (here i2 = −1), (1.1)

where usually a = −π, b = π (or equivalently a = 0, b = 2π) and Kn(u) is a
positive, even, trigonometric kernel (i.e. a trigonometric polynomial), or a = −∞,
b = +∞ and Kn(u) is a positive, continuous kernel. Here αn > 0 is a constant that
may depend on n, but it is independent of f and it is chosen such that Tn(e0)(z) =
1, for all z, where e0(z) = 1, for all z.

The main purpose of this paper is to make a similar study for the approxima-
tion of W-analytic functions by convolution operators of a quaternion variable.
We will show how to generalize some definitions and results that hold in the com-
plex case to the non commutative setting of quaternions and Clifford algebras.
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The plan of the paper is the following: in section 2 we will introduce some prelim-
inaries and the convolutions operators of quaternion variable. In sections 3 and
4 we will discuss the case of approximation properties of the quaternionic con-
volution based on the de La Vallée Poussin kernel and of the Gauss-Weierstrass
kernel, respectively. Finally, in section 5 we discuss how to further generalize
these results to the setting of W-analytic functions of a paravector variable and
with values in a Clifford algebra.

2 Convolution operators of a quaternion variable

To introduce convolution operators of a quaternion variable, we need a suitable
exponential function of quaternion variable. For any I ∈ S, we choose the follow-
ing well-known definition for the exponential: eIt = cos(t) + I sin(t), t ∈ R, see
[11]. The Euler’s kind formula holds : (cos(t) + I sin(t))k = cos(kt) + I sin(kt),
and therefore we can write [eIt]k = eIkt.

For any q ∈ H \ R, let r := ‖q‖; then, see [11], there exists a unique a ∈ (0, π)
such that cos(a) := x1

r and a unique Iq ∈ S, such that

q = reIqa, with Iq = iy + jv + ks, y =
x2

r sin(a)
, v =

x3

r sin(a)
, s =

x4

r sin(a)
.

Now, if q ∈ R, then we choose a = 0, if q > 0 and a = π if q < 0, and as Iq

we choose an arbitrary fixed I ∈ S. So that if q ∈ R \ {0}, then again we can
write q = ‖q‖(cos(a) + I sin(a)) (but with a non unique I). The above is called
the trigonometric form of the quaternion number q 6= 0. For q = 0 we do not
have a trigonometric form for q (exactly as in the complex case). Analogously to
the case of complex variable in the formula (1.1), we can introduce the following.

Definition 2.1. Let Kn(u) and αn be under the hypothesis in the formula (1.1).
If f : BR → H is W-analytic on BR, then we can define the right convolution

operator of quaternion variable

Tn,r( f )(q) = αn

∫ b

a
f (qeIqu)Kn(u)du, q ∈ H \ R, q = reIqt ∈ BR,

Tn,r( f )(q) = αn

∫ b

a
f (qeIu)Kn(u)du, q ∈ R \ {0}, q = ‖q‖eIt ∈ BR, t = 0 or π,

(2.1)

where I ∈ S is fixed (arbitrary), and Tn,r( f )(0) = αn f (0)
∫ b

a Kn(u)du.
If f : BR → H is left W-analytic on BR, then we can define in an analogous

way the left convolution operator of quaternion variable by taking f (eIquq) in-
stead of f (qeIqu) in the integrals (2.1).

The integral in (2.1), for example, is understood to be in Riemann sense and it
is of the form

Tn,r( f )(q) =
∫ b

a
Pndu + i

∫ b

a
Qndu + j

∫ b

a
Rndu + k

∫ b

a
Sndu,
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where Pn, QnRn, Sn are real valued functions of the variables x1, x2, x3, x4, u, at
least continuous and

αn f (qeIqu)Kn(u) := Pn(x1, x2, x3, x4, u) + iQn(x1, x2, x3, x4, u)

+ jRn(x1, x2, x3, x4, u) + kSn(x1, x2, x3, x4, u).

We have :

Theorem 2.2. Let Kn(u) be a positive and even trigonometric kernel, a = −π, b = +π
and f : BR → H. If f is W-analytic, that is f (q) = ∑

∞
k=0 qkck, then Tn,r( f )(q) is a

W-analytic function given by the formula

Tn,r( f )(q) =
∞

∑
k=0

qkckAk,n, q ∈ BR,

where Ak,n = αn

∫ π
−π cos(ku)Kn(u)du ∈ R, k = 0, 1, ..., . An analogous statement

holds when f is left W-analytic.

Proof. (i) Suppose first that q is not real. Since the kernel Kn(u) is real valued, by
the trigonometric form q = r(cos(α) + Iq sin(α)), we easily get

αn f (qeIqu)Kn(u) = αn

∞

∑
k=0

[r(cos(α + u) + Iq sin(α + u))]kckKn(u)

= αn

∞

∑
k=0

rk cos(k(α + u))Kn(u)ck + Iqαn

∞

∑
k=0

rk sin(k(α + u))Kn(u)ck .

Since both of the last two series evidently are uniformly and absolutely conver-
gent with respect to the real variable u, they can be integrated term by term, so
that finally it easily follows

Tn,r( f )(q) =
∞

∑
k=0

rk

[

αn

∫ π

−π
cos(k(α + u))Kn(u)du

]

ck

+ Iq

∞

∑
k=0

rk

[

αn

∫ π

−π
sin(k(α + u))Kn(u)du

]

ck.

Since
∫ π
−π sin(ku)Kn(u)du = 0, we get

Tn,r( f )(q) =
∞

∑
k=0

rk cos(kα)Ak,nck + Iq

∞

∑
k=0

rk sin(kα)An,kck =
∞

∑
k=0

qkck Ak,n,

which proves the formula in (i) for q not real.

If q = 0, then f (0) = c0 and Tn,r( f )(0) = αnc0A0,n = αnc0

∫ b
a Kn(u)du.

Now, suppose that q ∈ R \ {0}. Then the proof follows as in the complex case.
Summarizing all the above cases, we get that the representation for Tn,r( f )(q) is
valid for all q ∈ BR. The proof in the case of left W-analytic functions is similar.

Remark 2.3. Similar formulas hold for the convolution operators of quaternion
variable, in the case when a = −∞, b = +∞ and Kn(u) is a continuous, positive,
even and bounded kernel on (−∞,+∞).
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3 Approximation by quaternion polynomial convolutions

It is well-known that the classical de la Vallée Poussin kernel

Kn(u) =
(n!)2

(2n)!

(

2 cos
u

2

)2n
= 1 + 2

n

∑
j=1

(n!)2

(n − j)!(n + j)!
cos(ju), u ∈ R

and the de la Vallée Poussin convolution trigonometric polynomials of real vari-
able attached to a 2π-periodic real function g, defined by

Vn(g)(x) =
1

2π

∫ π

−π
g(x − u)Kn(u)dt, x ∈ R, n ∈ N,

were introduced in [13] in order to give a constructive solution to the second
approximation theorem of Weierstrass, by proving there that limn→∞ Vn( f )(x) =
f (x), uniformly on R. A quantitative upper estimate of |Vn( f )(x)− f (x)| in terms
of the second order modulus of smoothness ω2( f ; 1/

√
n) was obtained in [2].

Replacing in the above integral the translation x − u ∈ R by the rotation ze−iu

or zeiu ∈ C, for an analytic function f in a disk DR, the complex convolution
polynomials defined by

Vn( f )(z) =
1

2π

∫ π

−π
f (zeit)Kn(t)dt, z ∈ DR, n ∈ N,

were firstly introduced and studied in [12], by proving that all Vn( f )(z), n ∈ N

preserve the spirallikeness and convexity of f in the unit disk. These nice shape
preserving properties do not hold for the partial sums of the Taylor’s expansion
of f . We will come back to this issue in the following Remark 3.7. On the other
hand, it was also natural to study the approximation properties of the complex
de la Vallée Poussin polynomials, see [5], pp. 182-187 for the details. At this
point, we should point out that the approximation by the partial sums of the Tay-
lor expansion provides a better upper estimate (of geometrical order) than the
approximation given by the de la Vallée Poussin complex polynomials. How-
ever, for the latter one, the exact order of approximation and a Voronovskaja-type
result can be obtained

The first goal of this section is to extend the approximation properties of the
de la Vallée Poussin polynomials of complex variable, to the case of quaternion
variable. Thus, taking in Definition 2.1 αn = 1

2π and Kn(u) the above kernel and
taking into account Theorem 2.2, the de la Vallée-Poussin convolution operator
of a quaternion variable for a W-analytic function f : BR → H, f (q) = ∑

∞
k=0 qkck,

will be

Pn,r( f )(q) =
n

∑
k=0

qkck
(n!)2

(n − k)!(n + k)!
, q ∈ BR. (3.1)

Here we used in Theorem 2.2, the formula Ak,n = (n!)2

(n−k)!(n+k)!
for 0 ≤ k ≤ n, and

Ak,n = 0 for k > n, formulas obtained in the complex case in [5], p. 182.
Defining ||| f |||d = sup{‖ f (q)‖; ‖q‖ ≤ d}, firstly upper estimates in approxi-

mation of f by Pn,r( f ) with explicit constants are presented.
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Theorem 3.1. Let R > 1, BR = {q ∈ H; ‖q‖ < R} and let us suppose that
f : BR → H is W-analytic in BR, that is we can write f (q) = ∑

∞
k=0 qkck, for all

q ∈ BR.
(i) Denoting Md( f ) = ∑

∞
k=1 ‖ck‖k2dk < ∞, for any d ∈ [1, R) we have

|||Pn,r( f )− f |||d ≤ Md( f )

n
, n ∈ N.

(ii) If 1 ≤ d < r1 < R and p ∈ N then we have

|||∂p
s Pn,r( f )− ∂

p
s f |||d ≤ r1p!Mr1

( f )

(r1 − d)p+1n
, n ∈ N,

where ∂
p
s denotes the slice derivative of order p.

Proof. (i) Denote ek(q) = qk. Since we can write ek(q)ck = ∑
∞
j=0 qjckaj with ak = 1

and aj = 0 for all j 6= k, by (3.1) it is immediate that

Pn,r(ekck)(q) = ek(q)ck
(n!)2

(n − k)!(n + k)!
= Pn,r(ek)(q)ck , for all 0 ≤ k ≤ n,

and that Pn,r(ek) = 0 for k > n. This implies Pn,r( f )(q) = ∑
∞
k=0 Pn,r(ek)(q)ck and

for all ‖q|| ≤ d we get

‖Pn,r( f )(q) − f (q)‖ ≤
∞

∑
k=1

‖ck‖ ‖Pn,r(ek)(q)− ek(q)‖

≤
n

∑
k=1

‖ck‖ ‖Pn,r(ek)(q)− ek(q)‖+
∞

∑
k=n+1

‖ck‖
k2

n
dk.

But by

Pn,r(ek)(q) = ek(q)
(n!)2

(n − k)!(n + k)!
= ek(q)Π

k
j=1

(

1 − k

n + j

)

, if k ≤ n,

for all 0 ≤ k ≤ n and ‖q‖ ≤ d we get

‖Pn,r(ek)(q)− ek(q)‖ ≤
∣

∣

∣

∣

1 − Πk
j=1

(

1 − k

n + j

)
∣

∣

∣

∣

dk ≤ kdk
k

∑
j=1

1

n + j
≤ k2dk

n
.

Here we used the inequality 1− Πk
i=1xi ≤ ∑

k
i=1(1− xi), for 0 ≤ xi ≤ 1, i = 1, ..., k.

In conclusion, for all ‖q‖ ≤ d we have

|||Pn,r(ek)(q)− ek(q)||| ≤
k2

n
dk, for all k, n ∈ N,

which implies the estimate in (i).
(ii) Let q be such that ‖q‖ ≤ d. By Theorems 4.5.3, 4.5.4 in [3], we can write

the Cauchy formula and integrate on a specific complex plane CI . Thus we can
choose I = Iq. Let γ be the circle of radius r1 > d and center 0 in the plane CIq .
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For any v ∈ γ, we have |v − q| ≥ r1 − d, and by the Cauchy’s formula it follows
that for all ‖q‖ ≤ d and n ∈ N, we have

‖∂
p
s Pn,r( f )(q)−∂

p
s f (q)‖

=
p!

2π

∥

∥

∥

∥

∫

γ
[S−1(v, q)(q − v)−1]p+1(q − v)(p+1)∗dvIq(Pn,r( f )(v) − f (v))

∥

∥

∥

∥

and since v and q commute we have

[S−1(v, q)(q − v)−1]p+1(q − v)(p+1)∗ = (v − q)−(p+1),

thus we obtain:

‖∂
p
s Pn,r( f )(q) − ∂

p
s f (q)‖ =

p!

2π

∥

∥

∥

∥

∫

γ
(v − q)−(p+1)dvIq(Pn,r( f )(v) − f (v))

∥

∥

∥

∥

≤ Mr1
( f )

n

p!

2π

2πr1

(r1 − d)p+1
,

which proves (ii) and the theorem.

We now present a Voronovskaja-type theorem for the quaternionic case.

Theorem 3.2. Let R > 1, BR = {q ∈ H; ‖q‖ < R} and let us suppose that
f : BR → H is W-analytic in BR, that is we can write f (q) = ∑

∞
k=0 qkck, for all

q ∈ BR. For any d ∈ [1, R) we have

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Pn,r( f )− f +
e2∂2

s f

n
+

e1∂s f

n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

d

≤ Ad( f )

n2
, n ∈ N

where Ad( f ) = ∑
∞
k=1 ‖ck‖k4dk < ∞, ek(q) = qk.

Proof. Since the left slice derivatives of a power series representing a W-analytic
function coincide with its formal derivatives (see e.g. [9] , p. 127), we can write
∂s f (q) = ∑

∞
k=1 qk−1ckk and ∂2

s f (q) = ∑
∞
k=2 qk−2ckk(k − 1).

Therefore, denoting

‖Ek,n(q)‖ =

∥

∥

∥

∥

∥

Pn,r(ek)(q)− ek(q) +
qkk(k − 1)

n
+

qkk

n

∥

∥

∥

∥

∥

,

for all ‖q‖ ≤ d we get

∥

∥

∥

∥

Pn,r( f )(q) − f (q) +
e2(q)∂

2
s f (q)

n
+

e1(q)∂s f (q)

n

∥

∥

∥

∥

≤
∞

∑
k=0

‖Ek,n(q)‖ ‖ck‖ =
n

∑
k=1

‖Ek,n(q)‖ ‖ck‖+
∞

∑
k=n+1

‖Ek,n(q)‖ ‖ck‖

=
n

∑
k=1

‖Ek,n(q)‖ ‖ck‖+
∞

∑
k=n+1

∥

∥

∥

∥

∥

−qk +
qkk(k − 1)

n
+

qkk

n

∥

∥

∥

∥

∥

‖ck‖.
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But for ‖q‖ ≤ d we have

∞

∑
k=n+1

‖ck‖
∥

∥

∥

∥

∥

−qk +
qkk(k − 1)

n
+

qkk

n

∥

∥

∥

∥

∥

=
∞

∑
k=n+1

‖ck‖dk

∥

∥

∥

∥

−1 +
k(k − 1)

n
+

k

n

∥

∥

∥

∥

≤

∞

∑
k=n+1

‖ck‖dk k2

n
≤

∞

∑
k=n+1

‖ck‖
k

n
dk k2

n
=

1

n2

∞

∑
k=n+1

‖ck‖k3dk ≤ 1

n2

∞

∑
k=n+1

‖ck‖k4dk.

(3.2)

Therefore, it remains to estimate ‖Ek,n(q)‖ for ‖q‖ ≤ d and 0 ≤ k ≤ n. Since it is
immediate that E0,n(q) = 0, it suffices to consider 1 ≤ k ≤ n. We obtain

‖Ek,n(q)‖ =

∥

∥

∥

∥

∥

qk (n!)2

(n − k)!(n + k)!
− qk +

qkk(k − 1)

n
+

qkk

n

∥

∥

∥

∥

∥

= ‖q‖k

∥

∥

∥

∥

(n!)2

(n − k)!(n + k)!
− 1 +

k2

n

∥

∥

∥

∥

. (3.3)

But by mathematical induction can be proved (see relationship (3.1), p. 184 in [5])

0 ≤ (n!)2

(n − k)!(n + k)!
− 1 +

k2

n
≤ k4

n2
, for all k = 1, 2, ..., n and n ∈ N. (3.4)

Replacing this inequality in (3.3) and using (3.2) we obtain the theorem.

Now we are in position to obtain the exact degree of approximation by
Pn,r( f )(q). Firstly, we present a lower estimate of the approximation error in The-
orem 3.1, (i).

Theorem 3.3. Let R > 1, BR = {q ∈ H; ‖q‖ < R} and let us suppose that
f : BR → H is W-analytic in BR, that is we can write f (q) = ∑

∞
k=0 qkck, for all

q ∈ BR. If f is not a constant function, then for any d ∈ [1, R) we have

|||Pn,r( f )− f |||d ≥ Cd( f )

n
, n ∈ N,

where the constant 0 < Cd( f ) < ∞ depends only on f and d.

Proof. For all q ∈ BR and n ∈ N we have

Pn,r( f )(q) − f (q) =

1

n

{

−[q2∂2
s f (q) + q∂s f (q)] +

1

n

[

n2

(

Pn,r( f )(q) − f (q) +
q2∂2

s f (q)

n
+

q∂s f (q)

n

)]}

.

We will apply to this identity the following obvious property :

|||F + G|||d ≥ | |||F|||d − |||G|||d | ≥ |||F|||d − |||G|||d .

It follows

|||Pn,r( f )− f |||d

≥ 1

n

{

∣

∣

∣

∣

∣

∣

∣

∣

∣
e2∂2

s f + e1∂s f
∣

∣

∣

∣

∣

∣

∣

∣

∣

d
− 1

n

[

n2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Pn,r( f )− f +
e2∂2

s f

n
+

e1∂s f

n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

d

]}

.
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Taking into account that by hypothesis f is not a constant function in BR, we get
|||e2∂2

s f + e1∂s f |||d > 0. Indeed, supposing the contrary it follows that q2∂2
s f (q) +

q∂s f (q) = 0 for all q ∈ Br. By using the uniqueness of the power series for f (see
e.g. [10], Theorem 2.7) and by identifying the coefficients in the above equation,
it easily follows that ck = 0 for all k ≥ 1. This means that f (q) = c0, for all q ∈ Bd,
which contradicts the hypothesis. Theorem 3.2 implies that

n2
∣

∣

∣

∣

∣

∣

∣

∣

∣
Pn,r( f )− f +

e2

n
∂2

s f +
e1

n
∂s f

∣

∣

∣

∣

∣

∣

∣

∣

∣

d
≤ Ad( f ).

Therefore, there exists an index n0 depending only on f and d, such that for all
n ≥ n0 we have

∣

∣

∣

∣

∣

∣

∣

∣

∣
e2∂2

s f + e1∂s f
∣

∣

∣

∣

∣

∣

∣

∣

∣

d
− 1

n

[

n2
∣

∣

∣

∣

∣

∣

∣

∣

∣
Pn,r( f )− f +

e2

n
∂2

s f +
e1

n
∂s f

∣

∣

∣

∣

∣

∣

∣

∣

∣

d

]

≥ 1

2

∣

∣

∣

∣

∣

∣

∣

∣

∣
e2∂2

s f + e1∂s f
∣

∣

∣

∣

∣

∣

∣

∣

∣

d
,

which immediately implies

|||Pn,r( f )− f |||d ≥ 1

2n

∣

∣

∣

∣

∣

∣

∣

∣

∣
e2∂2

s f + e1∂s f
∣

∣

∣

∣

∣

∣

∣

∣

∣

d
, ∀n ≥ n0.

For n ∈ {1, ..., n0 − 1} we obviously have |||Pn,r( f )− f |||d ≥ Md,n( f )
n with Md,n( f ) =

n|||Pn,r( f )− f |||d > 0, which finally implies |||Pn,r( f )− f |||d ≥ Cd( f )
n for all n, where

Cd( f ) = min{Md,1( f ), . . . , Md,n0−1( f ), 1
2

∣

∣

∣

∣

∣

∣e2∂2
s f + e1∂s f

∣

∣

∣

∣

∣

∣

d
}. This completes the

proof.

By Theorem 3.3 and Theorem 3.1, (i), we immediately get the following result,
in which the equivalence an ∼ bn, n ∈ N means that there exist two constants
c1, c2 > 0 independent of n, such that c1bn ≤ an ≤ c2bn for all n ∈ N.

Theorem 3.4. Let R > 1, BR = {q ∈ H; ‖q‖ < R} and let us suppose that
f : BR → H is W-analytic in BR. If f is not a constant function in BR, then for
any d ∈ [1, R) we have

|||Pn,r( f )− f |||d ∼ 1

n
, n ∈ N,

where the constants in the equivalence ∼ depend only on f and d.

In the case of approximation by the slice derivatives of Pn,r( f )(q) we have

Theorem 3.5. Let BR = {q ∈ H; ‖q‖ < R} be with R > 1 and let us suppose that
f : BR → H is W-analytic in BR, i.e. f (q) = ∑

∞
k=0 qkck, for all q ∈ BR. Also, let

1 ≤ d < r1 < R and p ∈ N be fixed. If f is not a polynomial of degree ≤ p − 1, then
we have

|||∂p
s Pn,r( f )− ∂

p
s f |||d ∼ 1

n
,

where the constants in the equivalence ∼ depend on f , d, r1 and p.

Proof. Reasoning as in the proof of Theorem 3.1, let q 6= 0 be such that ‖q‖ ≤ d
and consider the complex plane CI∗q . Let γ be the circle of radius r1 > d ≥ 1 and
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center 0 in the plane CI∗q . For any v ∈ γ, we have |v − q| ≥ r1 − d, and by the

Cauchy’s formula it follows that for all ‖q‖ ≤ d and n ∈ N, we have

∂
p
s Pn,r( f )(q)−∂

p
s f (q) =

=
p!

2π

∫

γ
[S−1(v, q)(q − v)−1]p+1(q − v)(p+1)∗dvI∗q (Pn,r( f )(v) − f (v)),

where I∗q := Iq for q not real, and I∗q = I arbitrary in S for q ∈ R \ {0}.
Taking into account Theorem 3.1, (ii), we just have to prove the lower estimate

for |||∂p
s Pn( f ) − ∂

p
s f |||d. For this purpose, as in the proof of Theorem 3.3, for all

v ∈ γ and n ∈ N we have
Pn,r( f )(v) − f (v) =

1

n

{

−[v2∂2
s f (v) + v∂s f (v)] +

1

n

[

n2

(

Pn,r( f )(v) − f (v) +
v2

n
∂2

s f (v) +
v∂s f (v)

n

)]}

,

which can be replaced in the above Cauchy’s formula. Since v and q belong to the
same complex plane we have:

∂
p
s Pn,r( f )(q) − ∂

p
s f (q) =

1

n

{

p!

2π

∫

γ
−(v − q)p+1dvI∗q [v

2∂2
s f (v) + v∂2

s f (v)]

+
1

n

p!

2π

∫

γ
(v − q)p+1dvI∗q

[

n2

(

Pn,r( f )(v) − f (v) +
v2

n
∂2

s f (v) +
v

n
∂s f (v)

)]}

=
1

n

{

∂
p
s

[

−q2∂2
s f (q)− q∂s f (q)

]

+
1

n

p!

2π

∫

γ
(v − q)p+1dvI∗q

[

n2

(

Pn,r( f )(v) − f (v) +
v2

n
∂2

s f (v) +
v

n
∂s f (v)

)]}

.

By taking the norm ||| · |||d it follows

|||∂p
s Pn,r( f )− ∂

p
s f |||d ≥ 1

n

{
∣

∣

∣

∣

∣

∣

∣

∣

∣
∂

p
s

[

e2∂2
s f + e1∂s f

]
∣

∣

∣

∣

∣

∣

∣

∣

∣

d

− 1

n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p!

2π

∫

γ
(v − q)p+1dvI∗q

[

n2

(

Pn( f )(v) − f (v) +
v2

n
∂2

s f (v) +
v

n
∂s f

)]
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

d

}

,

and using Theorem 2.2 we obtain

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p!

2π

∫

γ
(v − q)p+1dvI∗q

[

n2

(

Pn,r( f )(v) − f (v) +
v2

n
∂2

s f (v) +
v

n
∂2

s f

)]∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

d

≤ p!

2π

2πr1n2

(r1 − d)p+1

∣

∣

∣

∣

∣

∣

∣

∣

∣
Pn,r( f )− f +

e2

n
∂2

s f +
e1

n
∂2

s f
∣

∣

∣

∣

∣

∣

∣

∣

∣

r1

≤ Ar1
( f )p!r1

(r1 − d)p+1
.

The hypothesis on f implies that
∣

∣

∣

∣

∣

∣∂
p
s

[

e2∂2
s f + e1∂s f

]
∣

∣

∣

∣

∣

∣

d
> 0. Indeed, suppos-

ing the contrary it follows that q2∂2
s f (q) + q∂s f (q) = Qp−1(q), for all q ∈ Br,

where Qp−1(q) = ∑
p−1
j=1 Ajq

j necessarily is a polynomial of degree ≤ p − 1, van-

ishing at q = 0. Denoting ∂s f (q) = g(q) the above differential equation becomes
q2∂sg(q) + qg(q) = Qp−1(q), for all q ∈ Bd. Let us now look for a W-analytic
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solution of the form g(q) = ∑
∞
j=0 qjαj: by replacing in the differential equation,

and by the identification of coefficients we easily obtain that g(q) necessarily is a
polynomial of degree ≤ p − 2. Thus f (q) necessarily is a polynomial of degree
≤ p − 1, in contradiction with the hypothesis. Finally, reasoning exactly as in the
proof of Theorem 3.3, we immediately get the desired conclusion.

Remark 3.6. Similar results could be easily adapted for the left convolution oper-
ator of the de la Vallée-Poussin type, Pn,l( f )(q) attached to left W-analytic func-
tions. Also, in a similar way, approximation results for other choices of the trigono-
metric kernel Kn(u) can be obtained, like for those of Fejér, Riesz-Zygmund, Jack-
son and Beatson (see them in e.g. Chapter 3 of the book [5], where the correspond-
ing complex convolutions were studied).

Remark 3.7. Using Lemma 4.1.7, p. 117 (Splitting Lemma), Corollary 4.3.4, p. 121
and Corollary 4.3.6, p. 121, all in [3], it is not difficult to prove that for quater-
nionic W-analytic functions with all the coefficients real (this subclass is denoted
by N ), the de la Vallée Poussin polynomials of quaternion variable given by
(3.1) preserve some geometric properties, like what happens in the complex case.
More precisely, the de la Vallée Poussin quaternion polynomials given by (3.1)
preserve the starlikeness and the convexity of f ∈ N , where for f : B1 → H nor-
malized by f (0) = 0 and ∂s( f )(0) 6= 0, the starlikeness (convexity) is understood
in the sense that for all 0 < r ≤ 1, f (Br) are starlike (convex, respectively) sets in
R

4. We recall here that A ⊂ R
4 is called starlike with respect to the origin 0, if for

any point p ∈ A, the Euclidean segment determined by 0 and p entirely belongs
to A and that A ⊂ R4 is called convex if for all p, q ∈ A, the Euclidean seg-
ment joining p and q entirely belongs to A. In other words, because we can easily
find many examples of starlike (or convex) functions f ∈ N by simply replacing
z ∈ C with q ∈ H in the Taylor’s expansion with all the coefficients real numbers,
of a starlike (convex, respectively) function of complex variable, by (3.1) we can
easily construct polynomials of quaternion variable with nice geometric proper-
ties, if these polynomials are interpreted as transformations from R4 to R4. More
details on these geometrical aspects will be given in the forthcoming paper [8].

4 Approximation by nonpolynomial quaternion convolutions

In this section we deal in details with the approximation properties of the convo-

lution based on the classical Gauss-Weierstrass kernel given by Kt(u) = e−u2/(2t),
u ∈ R. Note that here t > 0 is a real parameter which replaces the natural param-
eter n ∈ N in the definition of the trigonometric kernels.

Replacing in the formula (2.1) for the convolution operator in Definition 2.1,

a = −∞, b = +∞, αn by αt = 1√
2πt

, and Kn(u) by Kt(u) = e−u2/(2t), for a

W-analytic function f : BR → H, BR = {q ∈ H; ‖q‖ < R}, we obtain the right
Gauss-Weierstrass convolution operator of quaternion variable

Wt,r( f )(q) =
1√
2πt

∫ +∞

−∞
f (qeIqu)e−u2/(2t)du, q ∈ H \ R, q = reIqa ∈ BR,
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Wt,r( f )(q) =
1√
2πt

∫ +∞

−∞
f (qeIu)e−u2/(2t)du, q ∈ R \ {0}, q = reIa ∈ BR, a = 0 or π,

(4.1)
Wt,r( f )(0) = f (0),

where I ∈ S is fixed (but arbitrary).
Reasoning exactly as in the proof of Theorem 2.2, for f (q) = ∑

∞
k=0 qkck and

taking into account that Ak,t =
1√
2πt

∫ +∞

−∞
e−u2/(2t) cos(ku)du = e−k2t/2, we have

Wt,r( f )(q) =
∞

∑
k=0

qkck Ak,t =
∞

∑
k=0

qkcke−k2t/2, q ∈ BR, t > 0. (4.2)

Theorem 4.1. Let R > 1, BR = {q ∈ H; ‖q‖ < R} and let us suppose that
f : BR → H is W-analytic in BR, that is we can write f (q) = ∑

∞
k=0 qkck, for all

q ∈ BR.
(i) For any d ∈ [1, R) we have

|||Wt,r( f )− f |||d ≤ t

2
Md( f ), t > 0,

where Md( f ) = ∑
∞
k=1 ‖ck‖k2dk < ∞.

(ii) If 1 ≤ d < R and p ∈ N, then for all I ∈ S we have

|||∂p
s Wt,r( f )− ∂

p
s f |||d ≤ t

2
Md,p( f ), t > 0,

where Md,p( f ) = ∑
∞
k=p dk−p‖ck‖k3(k − 1)...(k − p + 1) < ∞.

Proof. (i) By (4.2), for all ‖q‖ ≤ d we have (since ‖ · ‖ is a multiplicative norm)

‖Wt,r( f )(q) − f (q)‖ ≤
∞

∑
k=0

‖qk‖ ‖ck‖
∣

∣

∣
e−k2t/2 − 1

∣

∣

∣
≤

∞

∑
k=0

dk ‖ck‖
∣

∣

∣
e−k2t/2 − 1

∣

∣

∣
.

Now, denoting h(t) = e−k2t/2, and since h(0) = 1, by the mean value theorem,
there exists a point ξ ∈ (0, t) such that

∣

∣

∣
e−k2t/2 − 1

∣

∣

∣
= |h′(ξ)|t = t

2
k2e−k2ξ/2 ≤ t

2
k2,

which replaced above implies

‖Wt,r( f )(q) − f (q)‖ ≤ t

2

∞

∑
k=0

rk‖ck‖k2.

Passing to supremum after ‖q‖ ≤ d, the estimate in the statement follows.
(ii) Taking into account the formula for the slice derivative of the quaternion

power series (see e.g. [9], p. 127) by (4.2), reasoning as above we get

‖∂
p
s Wt,r( f )(q) − ∂

p
s f (q)‖ = ‖

∞

∑
k=p

qk−pckk(k − 1)...(k − p + 1)(e−k2t/2 − 1)‖

≤ t

2

∞

∑
k=p

dk−pk3(k − 1)...(k − p + 1),

which proves the theorem.
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Also, the following exact estimate holds.

Theorem 4.2. Let R > 1, BR = {q ∈ H; ‖q‖ < R} and let us suppose that
f : BR → H is W-analytic in BR, that is we can write f (q) = ∑

∞
k=0 qkck, for all

q ∈ BR. If f is not constant function for j = 0 and not a polynomial of degree ≤ j − 1
for j ∈ N, then for all I ∈ S we have

|||∂j
sWt,r( f )− ∂

j
s f |||d ∼ t,

where the constants in the equivalence depend only on f , d and j. Here the equivalence
a(t) ∼ b(t) means that there exists two absolute constants C1 > 0 and C2 > 0 such that
0 ≤ C1a(t) ≤ b(t) ≤ C2a(t), for all t > 0.

Proof. Taking into account the upper estimate in Theorem 4.1, (i), it remains to

prove a lower estimate for |||∂j
sWt,r( f )− ∂

j
s f |||d .

For this goal, consider the trigonometric form of q 6= 0, q = ‖q‖eIq ϕ (see the
Introduction) and choose a q := deIq ϕ and p ∈ N

⋃{0}. Let j ∈ N
⋃{0}. We get

1

2π
e−Iqpϕ[∂

j
s f (q)− ∂

j
sWt,r( f )(q)]

=
1

2π

∞

∑
k=j

dk−jeIq ϕ(k−j−p)ckk(k − 1)...(k − j + 1)[1 − e−k2t/2].

Integrating from −π to π, with some computations, we obtain

1

2π

∫ π

−π
e−Iq pϕ[∂

j
s f (q)− ∂

j
sWt,r( f )(q)]dϕ

=
1

2π

∞

∑
k=j

dk−j
∫ π

−π
eIq ϕ(k−j−p)dϕckk(k − 1)...(k − j + 1)[1 − e−k2t/2]

= dpcj+p(j + p)(j + p − 1)...(p + 1)[1 − e−(j+p)2t/2].

Taking into account that ‖eIq ϕ‖ = 1 and passing above to ‖ · ‖, we easily obtain

‖aj+p‖(j + p)(j + p − 1)...(p + 1)dp[1 − e−(j+p)2t/2] ≤ |||∂j
s f − ∂

j
s( f )|||d .

First consider j = 0 and denote Vt = inf1≤p(1 − e−p2t/2). We get Vt = 1 − e−t/2

and by the mean value theorem applied to h(x) = e−x/2 on [0, t] there exists
η ∈ (0, t) such that for all t ∈ (0, 1] we have

Vt = h(0)− h(t) = (−t)h′(η) = (t/2)e−η/2 ≥ (t/2)e−t/2 ≥ e−1/2

2
t ≥ t/4.

By the above lower estimate for |||Wt,r( f ) − f |||d, for all p ≥ 1 and t ∈ (0, 1] it
follows

4‖Wt,r( f )− f |||d
t

≥ |||Wt,r( f )− f |||d
Vt

≥ |||Wt,r( f )− f |||d
1 − e−p2t/2

≥ ‖cp‖dp.
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This implies that if there exists a subsequence (tk)k in (0, 1] with limk→∞ tk = 0

and such that limk→∞

|||Wtk,r( f )− f |||d
tk

= 0, then cp = 0 for all p ≥ 1, that is f is

constant on Bd.

Therefore, if f is not a constant then inft∈(0,1]
|||Wt,r( f )− f |||d

t > 0, which implies

that there exists a constant Cd( f ) > 0 such that
|||Wt,r( f )− f |||d

t ≥ Cd( f ), for all
t ∈ (0, 1], that is

|||Wt,r( f )− f |||d ≥ Cd( f )t, for all t ∈ (0, 1].

Now, consider j ≥ 1 and denote Vj,t = infp≥0(1 − e−(p+j)2t/2). Evidently that we

have Vj,t ≥ infp≥1(1 − e−p2t/2) ≥ t/4.
Reasoning as in the case of j = 0 we obtain

4|||∂j
sWt,r( f )− ∂

j
s f |||d

t
≥ |||∂j

sWt,r( f )− ∂
j
s f |||d

Vj,t
≥ ‖cj+p‖

(j + p)!

p!
dp,

for all p ≥ 0 and t ∈ (0, 1].
This implies that if there exists a subsequence (tk)k in (0, 1] with limk→∞ tk = 0

and such that limk→∞

|||∂j
sWtk,r( f )−∂

j
s f |||d

tk
= 0 then cj+p = 0 for all p ≥ 0, that is f is a

polynomial of degree ≤ j − 1 on Bd.

Therefore, inft∈(0,1]
|||∂j

sWt,r( f )−∂
j
s f |||d

t > 0 when f is not a polynomial of de-

gree ≤ j − 1, which implies that there exists a constant Cd,j( f ) > 0 such that

|||∂j
sWt,r( f )−∂

j
s f |||d

t ≥ Cd,j( f ), for all t ∈ (0, 1], that is

|||∂j
sWt,r( f )− ∂

j
s f |||d ≥ Cd,j( f )t, for all t ∈ (0, 1],

which proves the theorem.

Let Ar(BR) be the quaternionic right Banach space of the W-analytic functions
on BR, continuous on BR. The space Ar(BR) is endowed with the uniform norm
given by ||| f |||R = max{‖ f (u)‖; u ∈ BR}. To conclude this section we prove that
the right Gauss-Weierstrass convolution of quaternion variable defines a contrac-
tion semigroup on the quaternionic right Banach space with respect to the uni-
form norm on Ar(BR).

Theorem 4.3. Let f ∈ Ar(BR), f (q) = ∑
∞
k=0 qkck, q ∈ BR.

(i) For all t > 0, Wt,r( f ) ∈ Ar(BR) and

Wt,r( f )(q) =
∞

∑
k=0

qkcke−k2t/2, for all q ∈ BR.

(ii) For all q ∈ BR, t > 0, the following estimate holds :

‖Wt,r( f )(q) − f (q)‖ ≤ CRω1( f ;
√

t)
BR

,

where
ω1( f ; δ)

BR
= sup{‖ f (u) − f (v)‖; ‖u − v‖ ≤ δ, u, v ∈ BR}.
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and CR > 0 is a constant independent of t and f .
(iii) We have :

‖Wt,r( f )(q) − Ws,r( f )(q)‖ ≤ Cs|
√

t −
√

s|, for all q ∈ BR, t ∈ Vs ⊂ (0,+∞),

where Cs > 0 is a constant depending on f , independent of q and t and Vs is any neigh-
borhood of s.

(iv) The operator Wt,r : Ar(BR) → Ar(BR) is contractive, that is

|||Wt,r( f )|||R ≤ ||| f |||R , for all t > 0, f ∈ Ar(BR).

(v) (Wt,r, t ≥ 0) is a (C0)-contraction semigroup of linear operators on the real Ba-
nach space (Ar(BR), ||| · |||R) and the unique solution u(t, q) (that belongs to Ar(BR),
for each fixed t > 0) of the Cauchy problem (for a kind of heat equation in t and ϕ)

∂u

∂t
(t, q) =

1

2

∂2u

∂ϕ2
(t, q), (t, q) ∈ (0,+∞)× BR, q = heIq ϕ, q 6= 0, h = ‖q‖,

u(0, q) = f (q), q ∈ BR, f ∈ Ar(BR),

is given by u(t, q) = Wt,r( f )(q).

Proof. (i) The fact that Wt,r( f ) is W-analytic in BR follows from the relationship
(4.2). It remains to prove the continuity in BR. For this purpose, let q0, qn ∈ BR

be such that lim
n→∞

qn = q0, that is limn→∞ ‖qn − q0‖ = 0.

Suppose first that q0 is not a real quaternion. Then, without loss of generality,
we may suppose that qn are not real quaternions, for all n ∈ N. In this case,

denoting qn = rneIqn an and q0 = r0eIq0
a0 , by the definition of trigonometric form it

easily follows that as n → ∞, we get an → a0 and ‖Iqn − Iq0‖ → 0.
Now, since

‖qneIqn u − q0eIq0
u‖ = ‖(qn − q0) cos(u) + (qn Iqn − q0 Iq0) sin(u)‖

≤ ‖qn − q0‖+ ‖qn Iqn − q0 Iq0‖ = ‖qn − q0‖+ ‖qn Iqn − qn Iq0 + qn Iq0 − q0 Iq0‖
≤ ‖qn − q0‖+ ‖qn‖‖Iqn − Iq0‖+ ‖qn − q0‖‖Iq0‖

= 2‖qn − q0‖+ ‖qn‖‖Iqn − Iq0‖,

we easily get

‖Wt,r( f )(qn)− Wt,r( f )(q0)||

≤ 1√
2πt

∫ +∞

−∞
‖ f (qneIqn u)− f (q0eIq0

u)‖e−u2/(2t) du

≤ 1√
2πt

∫ +∞

−∞
ω1( f ; ‖qneIqn u − q0eIq0

u‖)
BR

e−u2/(2t) du

≤ 1√
2πt

∫ +∞

−∞
ω1( f ; 2‖qn − q0‖+ ‖qn‖‖Iqn − Iq0‖)BR

e−u2/(2πt) du

= ω1( f ; 2‖qn − q0‖+ ‖qn‖‖Iqn − Iq0‖)BR
.
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Passing to limit with n → ∞ and taking into account that it is easy to show that
ω1( f ; δ)

BR
keeps all the usual properties of a modulus of continuity for a real-

valued functions of real variable, including the property that if f is continuous
on its compact domain of definition then limδց0 ω1( f ; δ)

BR
= 0, it follows that

Wt,r( f )(qn) converges to Wt,r( f )(q0), as n → ∞.

Now, let us suppose that q0 ∈ R \ {0} and assume firstly q0 > 0.

If all qn are real quaternions, then clearly we can suppose that qn > 0 for all
n ∈ N and writing q0 = ‖q0‖(cos(0) + I sin(0)), qn = ‖qn‖(cos(0) + I sin(0)),
with arbitrary I ∈ S, we immediately obtain

‖qneIu − q0eIu‖ = ‖(qn − q0) cos(u)‖ = |qn − q0|,

which implies

‖Wt,r( f )(qn)− Wt,r( f )(q0)||

≤ 1√
2πt

∫ +∞

−∞
‖ f (qneIu)− f (q0eIu)‖e−u2/(2t) du

≤ 1√
2πt

∫ +∞

−∞
ω1( f ; ‖qneIu − q0eIu‖)

BR
e−u2/(2t) du

=
1√
2πt

∫ +∞

−∞
ω1( f ; ‖qn − q0‖)BR

e−u2/(2πt) du = ω1( f ; ‖qn − q0‖)BR
.

This again implies limn→∞ Wt,r( f )(qn) = Wt,r( f )(q0).

If all the qn are not real quaternions, we can write qn = rneIqn an and
q0 = q0(cos(0) + I sin(0)), with arbitrary I ∈ S. Therefore, we can choose
I = Iqn and write q0 = q0(cos(0) + Iqn sin(0)) = q0eIqn 0 and in the definition
of Wt,r( f )(q0) we can choose I = Iqn , which implies

‖qneIqn u − q0eIqn u‖ = ‖qn − q0‖ ‖eIqn u‖ = ‖qn − q0‖,

and reasoning as above, it follows

‖Wt,r( f )(qn)− Wt,r( f )(q0)|| ≤ 1√
2πt

∫ +∞

−∞
‖ f (qneIqn u)− f (q0eIqn u)‖e−u2/(2t) du

≤ ω1( f ; ‖qn − q0‖)BR
.

Therefore, in this case too we obtain limn→∞ Wt,r( f )(qn) = Wt,r( f )(q0).

If q0 < 0, we reason exactly as above, with the only difference that we can
write q0 = ‖q0‖(cos(π) + I sin(π)), with arbitrary I ∈ S.

In conclusion, Wt,r( f ) is continuous at any q0 ∈ BR, since f is continuous on BR.
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(ii) For ‖q‖ ≤ R, q non real quaternion, we easily obtain

||Wt,r( f )(q) − f (q)|| ≤ 1√
2πt

∫ +∞

−∞
‖ f (qeIqu)− f (q)‖e−u2/(2t) du

≤ 1√
2πt

∫ ∞

−∞
ω1( f ; R‖1 − eIqu‖)

BR
e−u2/(2t) du

=
1√
2πt

∫ +∞

−∞
ω1

(

f ; 2R

∣

∣

∣

∣

sin
u

2

∣

∣

∣

∣

)

BR

e−u2/(2t) du

≤ 2R + 1√
2πt

∫ +∞

−∞
ω1( f ; |u|)

BR
e−u2/(2t) du

≤ 2R + 1√
2πt

∫ +∞

−∞
ω1( f ;

√
t)

BR

( |u|√
t
+ 1

)

e−u2/(2t) du

= (2R + 1)

[

ω1( f ;
√

t)
BR

+
ω1( f ;

√
t)

BR√
t
√

2πt

∫ ∞

0
2ue−u2/(2t) du

]

.

Since
∫ ∞

0 2ue−u2/(2t)du = 2t
∫ ∞

0 e−v dv = 2t, we infer

‖Wt,r( f )(q) − f (q)‖

≤ (2R + 1)

[

ω1( f ;
√

t)
BR

+
(

ω1( f ;
√

t)
BR

) 2t

t
√

2π

]

≤ CRω1( f ;
√

t)
BR

.

Now, for ‖q‖ ≤ R, q ∈ R \ {0}, we fix an arbitrary I ∈ S and we can write

||Wt,r( f )(q) − f (q)|| ≤ 1√
2πt

∫ +∞

−∞
‖ f (qeIu)− f (q)‖e−u2/(2t) du

and reasoning exactly as in the case of q non real, we arrive at the same upper
estimate. Finally, for q = 0 we get ||Wt,r( f )(q) − f (q)|| = 0, which all together
imply the estimate in (ii) for all q ∈ BR.

(iii) From the definition of Wt,r( f )(q) in (4.1), for all q ∈ BR we easily get

‖Wt,r( f )(q) − Ws,r( f )(q)‖ ≤ ||| f |||R√
2π

∫ +∞

−∞

∣

∣

∣

∣

∣

e−u2/t

√
t

− e−u2/s

√
s

∣

∣

∣

∣

∣

du.

First, let us denote
√

t = a,
√

s = b. Applying now the mean value theorem,
there exists a value c ∈ (a, b), such that

∣

∣

∣

∣

∣

e−u2/a2

a
− e−u2/b2

b

∣

∣

∣

∣

∣

= |a − b|e−u2/c2
[

2u2

c4
− 1

c2

]

,

which together with the fact that
∫ +∞

−∞
e−u2/(2c) < ∞ ,

∫ +∞

−∞
u2e−u2/(2c) < ∞, it

immediately implies the desired inequality for Wt,r.

(iv) Since 1√
2πt

∫ +∞

−∞
e−u2/(2t)du = 1, we deduce

‖Wt,r( f )(q)‖ ≤ 1√
2πt

∫ +∞

−∞
‖ f (qeI∗q u)‖e−u2/(2t)du ≤ ||| f |||R , q ∈ BR,
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where I∗q := Iq if q is not real, and I∗q := I-arbitrary in S if q ∈ R \ {0}. Together

with Wt,r( f )(0) = f (0) all these easily imply |||Wt,r( f )|||R ≤ ||| f |||R .

(v) Let f ∈ Ar(BR), that is, f (q) = ∑
∞
k=0 qkak, q ∈ BR. If q ∈ BR, q = deIq ϕ,

0 < d < R, then by (i), we can write Wt,r( f )(q) = ∑
∞
k=0 dkekIq ϕcke−k2t/2. It eas-

ily follows that Wt+s,r( f )(q) = Ws,r[Wt,r( f )](q), for all t, s > 0. If q is on the
boundary of BR, then we may take a sequence (qn)n∈N of points in BR such that
limn→∞qn = q and we apply the above relationship and the continuity property
from (i). Furthermore, denoting Wt,r( f )(q) by T(t)( f )(q), it is easy to check that
the property limtց0 T(t)( f ) = f , the continuity of T (·) and its contraction prop-
erty follow from (ii), (iii) and (iv), respectively. Finally, all these facts together
show that (Wt,r, t ≥ 0) is a (C0)-contraction semigroup of linear operators on
Ar(BR).

Consequently, since the above series representation for Wt,r( f )(q) is uniformly
and absolutely convergent in any compact ball included in BR, it can be differen-
tiated term by term, with respect to t and ϕ. We then easily obtain that

∂Wt,r( f )(q)

∂t
=

1

2

∂2Wt,r( f )(q)

∂ϕ2
.

Finally, from the same series representation, it is easy to check that

W0,r( f )(q) = f (q), q ∈ BR.

We also note that in the differential equation we must take q 6= 0 simply because
q = 0 has not polar representation, that is, q = 0 cannot be represented as a
function of ϕ. This completes the proof of the theorem.

Remark 4.4. Similar results can easily be adapted for the left convolution operator
of Gauss-Weierstrass type, Wn,l( f )(q) attached to left W-analytic functions.

Moreover, one may obtain similar results by choosing different kernels, like

the Picard kernel Kt(u) = e−|u|t, the Poisson-Cauchy kernel Kt(u) = 1
u2+t2 , and

many others (see them in e.g. Chapter 3 of the book [5], where the corresponding
complex convolutions were studied).

5 Approximation by convolution operators of a paravector vari-

able

We now discuss how the results obtained in the preceding sections can be ex-
tended to a more general setting. Let us consider the real Clifford algebra Rn

over n imaginary units e1, . . . , en satisfying the relations eiej + ejei = −2δij. An
element in the Clifford algebra will be denoted by ∑A eAxA where A = i1 . . . ir,
iℓ ∈ {1, 2, . . . , n}, i1 < . . . < ir is a multi-index and eA = ei1ei2 . . . eir , e∅ = 1. As
it is well known, R1 = C, R2 = H; for n ≥ 3, Rn contains zero divisors. In the
Clifford algebra Rn, we can identify the element (x0, x1, . . . , xn) ∈ Rn+1 with a
so called paravector in the Clifford algebra x = x0 + x1e1 + . . . + xnen. Given an
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element a = ∑A aAeA ∈ Rn we define its norm as ‖a‖ = (∑A a2
A)

1
2 . The norm is

not multiplicative, in fact for any two elements a, b ∈ Rn we have

‖ab‖ ≤ Cn‖a‖ ‖b‖ (5.1)

where Cn is a constant depending only on the dimension of the Clifford alge-
bra Rn. Moreover, we have Cn ≤ 2n/2. The norm is however multiplicative for
example when a is a paravector or, in particular, a real number.

One can extend a notion generalizing holomorphy to functions defined on
open sets U ⊆ R

n+1 (with the above identification) and with values in a Clifford
algebra. The most studied notion of (hyper)holomorphy in this setting leads to
the so-called monogenic functions, see [1]. However, the set of monogenic func-
tions does not contain the power of the paravector variable xm not even for m = 1.
The set of slice monogenic functions, see [4, Definition 2.1] and [3], includes
power series. Roughly speaking, a real differentiable function
f : U ⊆ Rn+1 → Rn is slice monogenic if its restriction complex plane CI is in
the kernel of the corresponding Cauchy-Riemann operator. Here I is an element
in the sphere of unit 1-vectors. For the class of slice monogenic functions we can
repeat, with suitable modifications, the results mentioned in section 1 on slice
regular functions. Let BR = {x ∈ Rn+1 | ‖x‖ < R}. We say that f : BR → Rn

is (right) W-analytic in BR if f (x) = ∑
∞
k=0 xkck, where ck ∈ Rn, for all k, for all

x ∈ BR. Such a function f is slice monogenic in BR.

Given a W-analytic function f on BR, we can define the right convolution
operator of paravector variable by mimicking Definition 2.1. Then we can con-
sider the de la Vallée-Poussin convolution operator of a paravector variable for a
W-analytic function f as above.

One can prove the generalization of Theorem 3.1 to this setting by noting that
it is based on the validity of the Cauchy formula, on inequalities on norms and
(5.1). Similarly, we can state and prove also the following Voronovskaja-type
theorem, see Theorem 3.2, in which, as a consequence of (5.1), the inequality we
obtain is:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Pm,r( f )− f +
e2 · ∂2

s f

m
+

e1∂s f

m

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

d

≤ Cn
Ad( f )

m2
, m ∈ N,

where Cn is a constant depending on the dimension of Rn. Most importantly, we
can obtain the analogue of Theorem 3.5. It is crucial to note that its proof is based
on lower estimates. Thus one has to verify that the fact the norm in Rn is not
multiplicative has no influence.

One may also consider the approximation properties of the convolution ob-
tained by using the Gauss-Weierstrass kernel. With the techniques illustrated in
section 4, it is possible to show that the analogues of Theorem 4.2 and 4.3 hold
also in this setting. Note, once more, that the fact that in the Clifford algebra Rn,
n ≥ 3 one has lesser properties than H does not hinder the extension of the proofs
given in the quaternion case. This is not assured, in general.
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2011.

[4] F. Colombo, I. Sabadini, D.C. Struppa, Slice monogenic functions, Israel J.
Math., 171 (2009), 385–403.

[5] S.G. Gal, Approximation by complex Bernstein and convolution-type operators,
World Scientific Publ. Co, Singapore-Hong Kong-London-New Jersey, 2009.

[6] S.G. Gal, Approximation by quaternion q-Bernstein polynomials, q > 1, Adv.
Appl. Clifford Alg., 22 (2012), 313-319.

[7] S.G. Gal, Voronovskaja-type results in compact disks. for quaternion q-Bernstein
operators, q ≥ 1, Compl. Anal. Oper. Theory, 6 (2012), 512–527.

[8] S.G. Gal, I. Sabadini, Starlike, convex and spirallike slice regular functions of
quaternion variable in the unit ball, in preparation.

[9] G. Gentili, C. Stoppato, Power series and analyticity over the quaternions, Math.
Ann., 352 (2012), 113-131.

[10] G. Gentili, D.C. Struppa, A new theory of regular functions of a quaternionic
variable, Adv. Math., 216 (2007), 279–301.
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