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Abstract

In this paper, we will report on the developments carried out in Isabelle/
HOL, ACL2 and Coq/SSReflect on Computational Algebraic Topology, in
the frame of the ForMath European project. The aim is to illustrate, trough
concrete examples, the role of formalization technologies in Computational
Mathematics in general.

1 Introduction

Nowadays computer proof assistants are mature enough to undertake non-trivial
mathematical problems. To the well-known proof of the Four Color theorem [12]
and the efforts around the Kepler Conjecture [16], we could add the finishing
(September 2012) of the Coq formalization for the Feit-Thompson theorem, an
important step towards the mechanization of the simple finite group classifica-
tion, led by Georges Gonthier [14].

Due to these successes, the discipline is attracting some attention among math-
ematicians, but most of them look at it as an external field, unrelated to his or her
daily work.
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One possible reason for this situation is that the very name of the discipline
(formalization) reminds foundations of mathematics (and mathematicians, if they
do not work in logic, tend to scape from foundations. . . ). The three competing
schools one century ago [30], namely logicism, formalism and constructivism, are
somehow related to modern computer formalization (to signal only one aspect,
constructive methods have been very reinforced by type theory, theory underly-
ing the Coq proof assistant). However, an important difference of formalization
with respect to their ancient relatives is formalization is pragmatical: one can freely
change of tool and then of logic (first order or higher order, classical or construc-
tive) depending on the problem considered (this aspect will be illustrated later in
this paper). It is a remarkable point of separation from the standard view about
foundations (see in [30] a discussion on Bourbaki’s opinion about it). Making
short a complex question, we could say that in modern formalization the focus
has been moved from philosophy to engineering.

But, what is formalization of mathematics? This is the using of theorem prov-
ing technology to implement mathematical concepts and results on a computer.
Since theorem proving tools are also used with other aims (for instance, to verify
the correctness of hardware or non-mathematical software), we should narrow the
previous definition by saying that formalization has an emphasis in big theories
(linear algebra, group theory, etc.).

The objective of the paper is to show that, contrarily to the common beliefs,
formalization can be significant for “standard” mathematicians or, at least, for
those interested in computational mathematics. The reason is the following: when
using computers to make calculations in mathematics (both numerically or with
computer algebra facilities), the results obtained could require the application of
formal methods [35] to ensure their correctness, and this could imply a certain
amount of formalization of mathematics, in the previously introduced sense.

Let us anticipate our conclusions: formalization of mathematics could be in-
teresting where there are discrepancies among computer and theoretical results
(or when some computer results cannot be confirmed nor refuted by alternative
theoretical methods) as well as when mathematical software is applied to real-life
problems, where computer results should be provable reliable enough.

The paper explores these issues in the particular context of Computational
Algebraic Topology, within the frame of the ForMath European project. Since
the scope is large, most technical aspects will be skipped, to keep the paper size
reasonable; we hope the numerous references would be enough to guide the in-
terested reader towards a deeper knowledge about formalization.

2 Computer-based mathematical error detection

Roman Mikhailov and Jie Wu, in their very nice paper [34], apply different Alge-
braic Topology techniques to get concrete results about homotopy groups of sus-
pended classifying spaces. In particular, the last result in [34] claims
π4(ΣK(A4 , 1)) = Z4. In the previous expression A4 is the 4-alternating group,
K(A4, 1) is the first Eilenberg-MacLane space (a classifying space) for A4, Σ is the
suspension construction, π4(−) denotes the fourth homotopy group and Z4 is
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the cyclic group with four elements. We cannot explain here all these concepts
(the book [32] is a standard reference for simplicial topology, and we refer to it
for notations and concepts through the rest of the paper). We can simply say that
all these ingredients are available in the computer algebra system called Kenzo.

Kenzo [10] is a Common Lisp program created by Francis Sergeraert, and it is
in production since 1990. In 2010, Graham Ellis told to Ana Romero and the au-
thor of this paper (we were working then in computing with Kenzo the homology
of groups [44], [47]) that the paper [34] by Mikhailov-Wu contained some calcu-
lations which could be reproduced with the help of Kenzo (even if the techniques
used in the paper and in the program are radically different).

This was the case, but, surprisingly for us, Kenzo found the following result
(where s-k-A4-1 is a symbol pointing to an internal representation of the space
ΣK(A4, 1)):

> (homotopy s-k-A4-1 4)

Homotopy in dimension 4 :

Component Z/4Z

Component Z/3Z

Thus, there was a discrepancy between the fact published in [34] and the Kenzo
result, because an additional Z3 component was found by Kenzo. After our find-
ing, R. Mikhailov and J. Wu kindly recognized their statement was erroneous and
Kenzo was right (in fact, the error was a very minor one: simply forgetting a Z3

component in a short exact sequence). Details on this experience have been doc-
umented in [48]. Let us say that [48] contains also other groups found by means
of Kenzo which are not covered in Mikhailov-Wu’s paper [34]. What is the status
of these results? Can they be considered actually theorems as those published in
mathematical journals and books? Let us stress we are not suggesting that Kenzo
could be incorrect. After more than 20 years of successful testing (in quite compli-
cated test cases), Kenzo can be trusted as far as any other (not formally verified)
computer program can be. The question is that, in absence of other alternative
methods to check a concrete Kenzo result, only a (formal) proof of the program
correctness could give to its results the status of actual theorems.

Verifying Kenzo as a whole is an enormous task, and we had approached the
problem step by step, by modestly formalizing (some parts) of the (algorithms
supporting the) programs, as explained in the following sections.

3 Essential building blocks

In this section we explain briefly how Kenzo can compute the homotopy group
π4(ΣK(A4 , 1)). In fact, it computes this homotopy group as a homology group
of another space (simplicial set): K4. Symbolically, π4(ΣK(A4 , 1)) = H4(K4).
The space K4 is constructed by Kenzo in the same process to reach π4(−). Con-
cretely, K4 is the total space of a fibration with fiber K(Z6, 2) and base space
K3. Again, both K(Z6, 2) and K3 are constructed on-the-fly by Kenzo, Z6 being
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H3(K3) = π3(ΣK(A4 , 1)) and K3 constructed before as K4 now (this is the so-
called Whitehead tower method; see [42]). The space K4 is built as a twisted Carte-
sian product: K(Z6, 2)×τ K3 (see [32] for details).

Now, Kenzo provides the (effective) homology of K(Z6, 2), an iterated clas-
sifying space (thanks again to Ana Romero’s programs [47]), and the (effective)
homology of K3 is produced following the same steps we are explaining for K4.
Therefore, we are in a situation where the homology of the fiber and of the base
space of a fibration are known, and we need the homology of the total space.
This problem is approached classically by means of the Serre spectral sequence (see
[32]). To describe how an effective version of the Serre spectral sequence can be
obtained, we need the definition of a reduction, and the accompanying concept of
effective homology [51].

Definition 1. Given two chain complexes C := {(Cn, dn)}n∈Z and C′ := {(C′
n,

d′n)}n∈Z a reduction between them is ( f , g, h) where f : C → C′ and g : C′ → C
are chain morphisms, and h is a family of homomorphisms (called homotopy operator)
hn : Cn → Cn+1 satisfying (1) f ◦ g = 1, (2) d ◦ h + h ◦ d + g ◦ f = 1, (3) f ◦ h = 0,
(4) h ◦ g = 0, and (5) h ◦ h = 0.

A reduction is denoted by ( f , g, h) : C =⇒ C′. The importance of this concept
is that it induces a canonical isomorphism H(C) ∼= H(C′) between homology
groups. Even more, if we have a solution to any homological problem (see [53])
over the small chain complex C′, then it can be translated to a solution over the big
chain complex C (the contrary is also true, but in general homology problems are
harder over C than over C′). Now, it is well-known [11] that if C′ is of finite type,
all homological questions (in the sense of [53]) can be algorithmically solved. This
leads to the definition of effective homology

Definition 2. A chain complex C is with effective homology when it is described
together with a reduction C =⇒ C′, where C′ is of finite type.

For the purposes of this paper, the last definition is sufficient; for the general
definition we refer to [51] (the reader will find there the important notions of
effective and locally effective objects).

Very often, a result about reductions has a consequence about computing ef-
fective homology. Let us show it with the tensor product example.

Theorem 1. From A =⇒ A′ and B =⇒ B′, an algorithm constructs A ⊗ B =⇒
A′ ⊗ B′.

Corollary 1. If A and B are with effective homology, then A ⊗ B is with effective homol-
ogy.

Let us come back to our problem of computing the effective homology of a
twisted Cartesian product F ×τ B, where the effective homology of the fiber F
and of the base space B are known. [The effective homology of a simplicial K is
identified with that of C(K), its chain complex.] Thus two reductions C(F) =⇒
HF and C(B) =⇒ HB are available, where HF and HB are chain complexes of
finite type. Let us assume, in addition, that B is 1-reduced (it is a combinatorial
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way of ensuring that B is simply connected; see [32]). This condition holds in our
application case, because K3 is 1-reduced.

Now, the first building block of our construction is the Eilenberg-Zilber re-
duction, relating the chain complex of a Cartesian product and a tensor product.
Symbolically, EZ reduction: C(F × B) =⇒ C(F) ⊗ C(B).

A Cartesian product is a particular case of a fibration F → F × B → B, where
the total space is not “twisted”. What is the difference with respect to the general
twisted case F ×τ B? The difference is quite small (at least formally; the geometri-
cal consequences can be dramatic): from the set theoretical point of view, F ×τ B
is exactly equal to F × B; but faces in F ×τ B are slightly “perturbed” with respect
to those of the standard Cartesian product F × B. This “perturbation” translates
nicely to the chain complex level, giving an instance of the following definition.

Definition 3. Given a chain complex (C, d), a perturbation for it is a family ρ of group
homomorphisms ρn : Cn → Cn−1 such that (C, d + ρ) is again a chain complex (that is
to say: (d + ρ) ◦ (d + ρ) = 0).

Under good circumstances (we introduce later the concept of local nilpotency),
a reduction can be “perturbed” as a whole, giving rise to a new reduction. It is
the role of our second building block, the fundamental Basic Perturbation Lemma
(BPL, in short).

Theorem 2. Basic Perturbation Lemma: Let ( f , g, h) : (C, d) =⇒ (C′, d′) be a re-
duction and be ρ a perturbation for (C, d) which are locally nilpotent. Then there exists
a reduction ( f∞, g∞, h∞) : (C, d + ρ) =⇒ (C′, d′∞).

Note in particular that (C′, d′∞) is of finite type if (C′, d′) was.
The effective version of the Serre spectral sequence can now be outlined as

follows.

1. EZ application: C(F × B) =⇒ C(F)⊗ C(B).

2. BPL application: C(F ×τ B) =⇒ C(F) ⊗t C(B).

[The chain complex C(F) ⊗t C(B) is equal, from the group-theoretic point
of view, to C(F)⊗ C(B), but its differential has been perturbed.]

3. Tensor product application: C(F) ⊗ C(B) =⇒ HF ⊗ HB.

4. BPL application (B is 1-reduced): C(F) ⊗t C(B) =⇒ HF ⊗t′ HB

5. Composing (1) and (4): C(F ×τ B) =⇒ HF ⊗t′ HB.

6. Conclusion: The total space F ×τ B is with effective homology.

Therefore, H4(K4) = H4(K(Z6, 2) ×τ K3) can be computed and it is exactly
π4(ΣK(A4 , 1)) = Z4 ⊕ Z3. Thus, when investigating the correctness of this pro-
cedure, it is natural to start from studying the Eilenberg-Zilber theorem and the
Basic Perturbation Lemma.
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4 Formalization of the EZ theorem

Let us state as explicitly as possible the Eilenberg-Zilber theorem (in the state-
ment, the symbols ∂ and η are representing the faces and the degeneracy opera-
tors, respectively).

Theorem 3. Eilenberg-Zilber reduction: Given two simplicial sets F and B, there
exists a reduction

( f , g, h) : C(F × B) =⇒ C(F) ⊗ C(B)

with the maps f , g, and h defined as:

f (xn, yn) =
n

∑
i=0

∂i+1 . . . ∂nxn ⊗ ∂0 . . . ∂i−1yn

g(xp ⊗ yq) = ∑
(α,β)∈{(p,q)-shuffles}

(−1)sg(α,β)(ηβq
. . . ηβ1

xp, ηαp . . . ηα1
yq)

h(xn, yn)= ∑(−1)n−p−q+sg(α,β)(ηβq+n−p−q . . . ηβ1+n−p−qηn−p−q−1∂n−q+1 . . . ∂nxn,

ηαp+1+n−p−q . . . ηα1+n−p−q∂n−p−q . . . ∂n−q−1yn)

where a (p, q)-shuffle (α, β) = (α1, . . . , αp, β1, . . . , βq) is a permutation of the set

{0, 1, . . . , p + q − 1} such that αi < αi+1 and β j < β j+1, sg(α, β) = ∑
p
i=1(αi − i − 1),

and the third sum (which defines the homotopy operator h) is taken over all the indices
0 ≤ q ≤ n − 1, 0 ≤ p ≤ n − q − 1 and (α, β) ∈ {(p + 1, q)-shuffles}.

The maps f , g, and h are known respectively as the Alexander-Whitney (AW, in
short), Eilenberg-MacLane (EML), and Shih (SHIH) operators.

The formulas for AW and EML where classically known. The expression for
SHIH was given for the first time in [50] (it was experimentally found when pro-
gramming EAT [52], the predecessor of Kenzo). Then, it was formally proved by
Frédéric Morace and published as an appendix for a Pedro Real’s paper [43].

Several comments can be made about the expressions. First, they are essen-
tially unique ([40], [41]), so in some sense they are unavoidable. Second, due
to the occurrence of the shuffles their nature is exponential (at least if the dimen-
sion is considered as a size of the problem) and, in fact, this algorithm is one of
the reasons why Kenzo performance is dramatically decreased when dimensions
increase.

Even if EML and SHIH have an aspect quite frightening, in fact the expressions
are very well structured and of a combinatorial nature, and these features allow
us to devise a proof purely based on induction and rewriting (inspired at some
points by ideas from [43]). This proof has been fully formalized by using the
proof assistant ACL2 [26], which was precisely built to deal with induction and
rewriting. The main conceptual tool allowing us to complete the proof is the
notion of simplicial polynomial (see [27]). Thanks to simplicial polynomials, we
can enhance ACL2 with algebraic rewriting (essentially, a strategy to simplifying
expressions over rings), automating the most tedious and time-consuming parts
of the proof. Interestingly enough, ACL2 is not only a theorem prover, but also a
programming language, based on Common Lisp; as Kenzo is written in Common
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Lisp, we can compare the results of both programs (Kenzo and the ACL2 certified
version) on concrete instances, providing a kind of automated testing for Kenzo
(successful up to now!) [29].

The simplicial polynomials machinery was also previously used in the for-
malization of the so-called Normalization Theorem. Two different chain complexes

can be associated with a simplicial set K. The first one, let us denote it by Ĉ(K), is
generated by all the simplexes of K, while the second one, C(K), is only generated
by non-degenerate simplexes. The Normalization Theorem establishes an explicit

reduction Ĉ(K) =⇒ C(K). Let us stress that EZ formulas are true with the model

C(−) but they are not longer true with Ĉ(−); therefore, it was natural to deal
with the Normalization Theorem before the EZ Theorem. A report of a complete
ACL2 formalization of the Normalization Theorem has been published in [28].

As for the formalization effort, let us explain that the EZ Theorem needed
around 13000 lines of ACL2 code, while the Normalization Theorem needed
around 4500 lines (so, EZ can be considered three times more difficult than nor-
malization). These data must be however be tempered with the existence of 6000
lines of ACL2 code devoted to infrastructure (algebraic rewriting, new meta-
rules, macro and theory generating facilities, and so on; see [28] for details). This
infrastructure was prepared for the Normalization Theorem and then it has been
fully reused in the EZ formalization. Thus, the learned lesson is that paying at-
tention to a systematic development1 can be rewarding in mechanized theorem
proving (as it is in computer programming).

5 Formalization of the BPL

As in the case of the Eilenberg-Zilber theorem, let us introduce an explicit state-
ment of the Basic Perturbation Lemma; it needs a previous definition.

Definition 4. A reduction ( f , g, h) : (C, d) → (C′, d′) and a perturbation ρ for (C, d)
are locally nilpotent if ∀x ∈ Cn, ∃m ∈ N such that (h ◦ ρ)m(x) = 0.

Theorem 4. Basic Perturbation Lemma: Let ( f , g, h) : (C, dC) =⇒ (C′, dC′) be a re-
duction and ρ : C → C a perturbation of the differential dC satisfying the local nilpotency
condition with respect to the reduction ( f , g, h). Then, a new reduction
( f∞, g∞, h∞) : (C, dC + ρ) =⇒ (C′, d∞) can be obtained, where the underlying graded
groups C and C′ remain unchanged, but the differentials are perturbed: dC + ρ and
d∞ = dC′ + ρC′ , where ρC′ = f ρψg; f∞ = f φ; g∞ = ψg; h∞ = hφ, being
φ = ∑

∞
i=0(−1)i(ρh)i , and ψ = ∑

∞
i=0(−1)i(hρ)i .

A key point in the statement is the occurrence of the series φ and ψ. The local
nilpotency condition implies that the series are pointwise finite sums. Neverthe-
less, the BPL does not seem amenable to a combinatorial treatment (let us say,
there is something “analytical” in it). In addition, the groups appearing in the
statement are general (there is no constraint related to the cardinality or the finite-
ness type of them). As a conclusion, a direct approach using ACL2 (similar to that

1Recall: 6000 lines in front of “only” 4500 devoted to the “real” objective; a wrong accounting
would compare 10500 lines for normalization with 13000 lines for EZ.
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of Eilenberg-Zilber theorem) was not considered possible. A formalization of the
BPL was completed by Jesús Aransay in the proof assistant Isabelle/HOL [38] in
2008 (prior to the ForMath European project). The characteristics of this formal-
ization were: it is applicable to any case, but it is stated in an ungraded setting (in
other words, it was proved for differential groups instead of for chain complexes).
The formalization was documented in [1]. One of the drawbacks of using Is-
abelle/HOL (based on classical logic) is that proofs do not produce automatically
executable algorithms. Since in our context of certified Computer Algebra it is
an important feature, some contributions about code generation were produced,
and published in [2].

Once the constructiveness of the proof of the BPL was verified, we planned to
move to Coq [4], a proof assistant based on constructive type theory. In [9], a for-
malization in Coq of a variant of the BPL due to César Domı́nguez is described.
In this case, only the bicomplex case is covered (it is a particular case, but sufficient
for most of the applications of the BPL in Kenzo [10]), but the whole constructive
path is included: effective and locally effective objects are worked together, pro-
ducing an effective homology algorithm. Some experiences about executing code
inside Coq, in the infinite case, were presented in [8].

The previous formalization was carried out in the frame of the ForMath project.
Much effort in the project is devoted to the SSReflect library [15], an extension
of Coq for finite structures, allowing an efficient and automated way of doing
proofs. Thus, our next challenge related to the BPL was to implement a proof
of it in Coq/SSReflect. This has been achieved recently [39], producing a proof
working only in the finitely generated case and with coefficients over Z2. These
constraints are not harmful, because this version of the BPL is applied to the pro-
cessing of digital images, following ideas from Ana Romero and Francis Serg-
eraert’s paper [49]. In fact, the SSReflect formalization of the BPL is based on a
shorter and brand new proof of BPL due to Sergeraert [54], inspired by the notion
of discrete vector field (DVF, in short). Let us explain as DVFs are related to digital
imaging, according to [49].

6 Discrete vector fields

Let us first introduce the concept of discrete vector field (DVF) by means of an
example. Figure 1 displays a simplicial complex, where some edges are “col-
lapsed”. For instance, in the upper right corner, since the north edge is free (that
is to say, it is a face of only one triangle), the whole upper right triangle can be
erased without changing the homotopy type of the simplicial complex. This op-
eration can be applied to other triangles, edges and vertices. At some point, the
simplicial structure can be lost, but anyway, from the algebraic point of view, the
homology groups continue unchanged. Thus, at the end, we conclude that, from
the homological point of view, the initial simplicial complex is equivalent to a
circumference.
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Figure 1: A discrete vector field in action.

In that way we have greatly reduced the size of the objects where homology
can be computed. For instance, the number of edges in the first simplicial com-
plex equals 32, while the final object has only one edge. Not surprisingly, there is
a reduction connecting the chain complexes of both objects. It is a general result,
which needs some previous definitions to be introduced.

Definition 5. Let C∗ = (Cp, dp)p∈Z a free chain complex with distinguished Z-basis
βp ⊂ Cp. A discrete vector field V on C∗ is a collection of pairs V = {(σi; τi)}i∈I

satisfying the conditions:

• Every σi is some element of βp, in which case τi ∈ βp+1. [The degree p depends on
i and in general is not constant.]

• Every component σi is a regular face of the corresponding τi.

• Each generator (cell) of C∗ appears at most once in V.

The cells do not belonging to the DVF are called critical cells. A DVF is called
admissible if, roughly speaking, it contains no cycle (we refer to [49] for a more
precise definition). Admissibility of a DVF is related to local nilpotency in the case
of the BPL (and, to a certain extend, to the simple connectedness in the Serre spectral
sequence): all these concepts allow controlling termination in iterative processes.
The main result relating DVFs to homology computation is the next one.

Theorem 5. DVF Reduction Theorem: Let C∗ = (Cp, dp)p∈Z be a free chain complex
and V = {(σi; τi)}i∈I be an admissible discrete vector field on C∗. Then the vector field
V defines a canonical reduction ( f , g, h) : (Cp, dp) =⇒ (Cc

p, d′p) where Cc
p = Z[βc

p] is
the free Z-module generated by the critical p-cells.

In [49] there are two different proofs of this theorem. Both have been formal-
ized in Coq/SSReflect. The formalization of the first proof was published in [24].
The second one uses the BPL. The SSReflect formalization of the BPL evoked at
the end of the previous section allowed us to formalize the second proof, which
is shorter and more elegant [39].

7 Biomedical image processing

The previous formalizations of the DVF Reduction Theorem are subject to certain
constraints (as the last mentioned formal proof of the BPL): coefficients are taken
over Z2 and all groups are of finite type. These restrictions allowed us to use the
full power of the SSReflect library dealing with finite-dimensional vector spaces
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Figure 2: A neuron marked with synapsina and basoon.

(in fact, due to a clever design decision by Georges Gonthier, this means essen-
tially working with matrices [13]). Furthermore, this environment is enough to
our aim of formally processing digital images, and more concretely biomedical
images.

Thanks to our collaboration with a biologists team at CIBIR (Centro de Inves-
tigación Biomédica de La Rioja [36]), we have found a field where homological
digital processing can be helpful: studying the synaptic density evolution in neu-
rons. Synapses are the points of connection between neurons, and their relevance
comes from their relation with the computational capabilities of the brain. Thus,
procedures to modify the synaptic density may be an important asset in the treat-
ment of neurological diseases, as Alzheimer. Miguel Morales’s team at CIBIR
has patented some substances (peptides) which could be an influence in synap-
tic evolution. Since many test cases are needed before producing experimental
evidence of that influence, an automated and reliable method to study synaptic
density is necessary.

We have written a plug-in called SynapCountJ [31], devoted to this task. Let
us briefly explain how it works. First, a neuron injected with a peptide is marked
with two antibodies (namely, synapsina and basoon) which with microscopical
devices produce two images in green and red channels. Figure 2 shows the over-
lapping of both images. Areas of yellow color (= green + red) are signaling synap-
tic contacts (they look like brighter areas, if you are seeing it as a black and white
picture). If the structure of the neuron is drawn in blue (Figure 3; the thick new
area in the greyscale version), then the white areas are synapses. By switching
colors, we get a black and white picture (Figure 4). In that picture the number
of connected components is equal to the number of (marked) synapses. Thus,
since the number of connected components is exactly the rank of the 0-homology
group of a simplicial set canonically associated with the picture (see [21]), we
have reduced a biomedical problem to a homological one. Several formal devel-
opments in ACL2 and Coq/SSReflect about this process have been documented
at [20, 21, 24].
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Figure 3: Neuron structure.

Figure 4: A black and white picture.
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As a conclusion, let us state that this could be another benefit of formalization
in Computational Mathematics: to ensure the correctness of processes (or of part
of processes) related to “real-life” questions (as biomedical imaging).

8 Formalization of homological computing

In the previous application, the final calculation can be identified with the com-
putation of a homology group. How can it be formalized? If a chain complex is
of finite type (as in the case of digital images), the homology groups can be de-
termined by diagonalizing the matrices representing the differential morphism.
A very well-known process is obtaining the Smith normal form [37]. This has been
formalized in Coq/SSReflect inside the ForMath project [5].

Once a certified version of the Smith normal form computation is available
to us, it is not difficult to continue obtaining homology groups. The correspond-
ing formalization in Coq/SSReflect has been reported in [18]. There the empha-
sis was put on the applications to biomedical image processing. As a proving
assistant is not a computer algebra tool, it is the case that the performance of
the diagonalization procedure implemented in Coq/SSReflect is not compara-
ble with other systems (even with Kenzo, a program not specially designed to be
efficient in the last step of the calculation, namely the diagonalization of matri-
ces). In a nutshell, here is where the benefits of the DVF reduction process are
made explicit: some matrices coming from real biomedical images (obtained in
the CIBIR by neuronal culturing) cannot be processed by the Coq/SSReflect code
for homology, but are quickly solved (25 CPU seconds) inside Coq after the DVF
reduction. Since, as explained before, the DVF method has been fully formalized
in Coq/SSReflect [24], we have, at the end, a complete certified path from digital
images to their homology groups.

9 Interoperability

We have shown in previous sections that we are using different theorem provers
in our project. Namely, ACL2 when we want to be near the Common Lisp Kenzo
code, Isabelle/HOL when constructiveness is not ensured and Coq/SSReflect
when the objective is to execute higher order programs in a certified environ-
ment. Thus, a natural question is: could several proof assistants collaborate in a
same formalization?

The literature about interoperability and integration of proof assistants is large
(see, just as an example, [25]). Let us simply explain our approach to the prob-
lem. One major difficulty when making several tools cooperate is the difference
among the underlying logics. For instance, Isabelle/HOL (as Coq) is based on
higher-order logic, while ACL2 is based on a (restricted) first order logic. To
overcome this barrier we chose an application domain which is essentially first
order: matrix manipulation. In this way, even if we use a higher-order tool (as
Isabelle/HOL) we know that, in principle, a translation to first order logic is pos-
sible.
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Our concrete case study was the computation of the Hermite form (a diagonal
form, less strict than the Smith normal form, but sufficient to compute homology;
it is not a canonical form, it is so different from the triangular Hermite normal
form; see [37]). A complete Isabelle/HOL formalization for it was developed by
Jose Divasón and Jesús Aransay [3]. The challenge was to translate in an auto-
mated way the Isabelle specifications (not proofs nor definitions: only statements)
to ACL2. The idea behind this shallow translation is that the set of statements pro-
vides a kind of draft of a proof (a roadmap). The final step of this study is to
analyze whether the ACL2 schema can be completed to a full Hermite formal-
ization, and to compare the process with a from scratch ACL2 proof (comparison
from several points of view: time of design, time of development, numbers of
code lines, and so on); this is still on-going work.

To export specifications from Isabelle to ACL2 (in the concrete case of matrix
manipulation, let us insist at that point) we have used as an intermediary lan-
guage OCL, the Object Constraint Language for UML [55]. This rather uncommon
choosing allows us to implement a “programming free” strategy: most of the
translations steps have been accomplished by using already-built tools. This is
got by using XML technologies through the Eclipse platform [33]. A report about
the whole exporting path can be found at [7].

10 Persistent homology

The efforts around interoperability are related to our objective to get the best of
each proof assistant, and to try to reuse formalized libraries not only inside a
tool, but among different tools, too. Since some formalizations have been already
done, one could wonder why this issue is so interesting. The reason is that our
formalization developments continue and then we would like not to starting from
scratch in any convenient tool.

Let us illustrate this point with a real example. When talking about biomedi-
cal processing, we indicate that in some step (illustrated in Figure 3) we need to
mark the structure of a neuron. At this moment, SynapCountJ needs human help
to perform this task. So, to increase the automation of the procedure we need to
recognize the structure of a neuron in a noisy picture. And, even prior to that,
we need to recognize the neuron itself in a noisy picture. Because neurons are
3D (three dimensional) objects, microscopical devices approximate the 3D struc-
ture by means of a stack of layers with 2D pictures. When locating a neuron in
a picture, we can take profit of the whole stack of layers (previous figures were
only displaying a maximal projection of the stack). We observed that an algo-
rithm to locate neurons can be interpreted in terms of a (well-known) technique
in Computational Topology: persistent homology. See [22] for details.

Persistent homology computation has been formalized in Coq/SSReflect [23],
by using the previous library for standard homological computing [18].

But let us insist once more that a proof assistant is not a computer algebra
tool, so performance is quite poor, and real biomedical images cannot be handled
inside Coq to obtain persistent homology information. Could Kenzo be in charge
of that task? The answer is affirmative (and this put again some pressure towards
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an ACL2 formalization, and therefore towards interoperability).
The reason why Kenzo can easily compute persistent information is due to the

very definition of persistent homology. We cannot introduce here the definition
(we refer to one of the standard books on the topic: [11]), but it is enough to
say that to define persistence we need a filtration of a simplicial object (as the
iterated projections in a stack of pictures). And from a filtration, another well-
known tool in homological algebra can be defined: a spectral sequence. In 2006,
Ana Romero enhanced Kenzo to compute spectral sequences of filtered spaces
[46]. Now, with a small modification of the same programs, persistent homology
can be computed with Kenzo [45], and it can be, in particular, used to our neuron
location problem.

11 Another mathematical error

Since persistence and spectral sequences can be obtained from the same datum
(namely, a filtration) it is clear there would be theoretical relations between both
concepts, and this fact was remarked by several researchers [11], [56]. Concretely,
in the book [11], page 171, Edelsbrunner and Harer stated the following property
called Spectral sequence theorem:

The total rank of the groups of dimension p + q in the level r ≥ 1 of the
associated spectral sequence equals the number of points in the (p + q)-th
persistence diagram whose persistence is r or larger, that is,

n

∑
p=1

rankEr
p,q = card{a ∈ Dgmp+q( f )|pers(a) ≥ r}.

However, when using this result to test Ana Romero’s programs, we have
found experimentally that the statement is false: in the left side of the formula
there can be more elements than in the right one and the relation is in fact an in-
equality. In addition, in [45] we were able to get a closed formula relating persis-
tence and spectral sequences, that this time is coherent with all the experimental
results found with the help of Kenzo.

This last example tries to show that, since computer algebra (in Algebraic
Topology in particular) is increasing its power, it can question established theo-
retical results. Therefore, increasing confidence in computer programs is a must.

12 Conclusions and further work

Under our perspective, formalized mathematics are a tool for verifying (com-
puter algebra) programs. In the paper, from that general setting, we have illus-
trated two benefits of formalization in Computational Mathematics:

• Test the correctness of mathematical results.

• Verification of real-life programs.
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More generally, the conclusions of our work are intimately related to those
of the ForMath European project [6]. The project is devoted to the building of
formalized libraries for mathematical algorithms. It is organized in four work
packages:

• Infrastructure to formalize mathematics in constructive type theory.

• Linear Algebra library.

• Real numbers and differential equations.

• Algebraic Topology.

In the specific case of Algebraic Topology, the paper roughly overview on all
the tasks foreseen in the project (we annotate the listing with documents report-
ing on the corresponding ForMath developments):

• Representation of simplicial complexes [19, 24, 20, 21].

• Certified computation of homology groups [18, 23].

• Representation of the Basic Perturbation Lemma [8, 9, 39].

• Integration with other proofs systems [20, 21, 17, 27, 28, 3, 7].

• Applications to medical imagery [24, 39, 22].

As for future work, let us say that even if we have presented contributions
in any task in the previous list, all of them continue open. To signal only one
transversal line we should advance in moving from certified computing to effi-
cient certified computing, improving the performance of both the running envi-
ronments inside proof assistants and the algorithms formalized. Another impor-
tant field is related to the applications of formalization; in our concrete case, we
should explore for more Topology in biomedical applications and for more veri-
fication in Topology, because let us stress that the programs correcting the faulty
statements shown in the paper are still not fully verified.
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