The order of the commutator on SU(3) and an
application to gauge groups

A. Kono S. Theriault

Abstract

We show that the commutator map on SU(3) has order 2% - 3-5. As an
application, we give an upper bound on the number of homotopy types of
gauge groups for principal SU(3)-bundles over an n-sphere.

1 Introduction

Let G be an H-group, defined as a homotopy associative H-space with a homo-
topy inverse. Let c: G Xx G — G be the map defined pointwise by ¢(x,y) =

xyx~ly~1. Consider the cofibration sequence GV G — G x G — GAG N
2G V XG. Observe that ¢ is null homotopic when restricted to G V G, implying
that ¢ factors through a map ¢: GA G — G. Since £(G x G) ~ (EG VEG) V
(2G A G), the cofibration connecting map ¢ is null homotopic. Thus the homo-
topy class of c is uniquely determined by the homotopy class of ¢. Call the map c
the commutator of G.

If G is finite then, rationally, it is homotopy equivalent to a product of Eilenberg-
MacLane spaces as an H-space, implying that it is homotopy commutative. So,
rationally, c is trivial, which implies that the order of c is finite. A fundamental
problem is to determine the order of c. However, this is known only in extremely
simple cases. For example, consider the case of SU(n). If n = 2 then SU(2) ~ S3

and the order of > A S -5 $Bis 12, a consequence of Toda’s calculations [To].
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On the other hand, if n > 2 then the order of SU(n) A SU(n) — SU(n) is un-
known. It is not even clear what an upper bound should be. In this paper we
consider the case of SU(3) and show the following.

Theorem 1.1. The commutator SU(3) A SU(3) — SU(3) has order 120 = 233 - 5,

Theorem 1.1 can be used to help determine the homotopy types of certain
gauge groups. In general, if G is a topological group, X is a space, and P — X
is a principal G-bundle, then the gauge group G(P) of the bundle is the group
of G-equivariant automorphisms of P which fix X. Crabb and Sutherland [CS]
showed that if G is a compact, connected Lie group and X is a connected, fi-
nite CW-complex, then while there may be infinitely many distinct principal G-
bundles over X, their corresponding gauge groups have only finitely many dis-
tinct homotopy types. However, Crabb and Sutherland gave no upper bound
on the number of distinct gauge groups, and precise numbers have been worked
out only in a few cases of very low rank [K, HK, KKKT, Th]. We consider instead
the p-local homotopy types for a prime p, and produce explicit upper bounds
for the number of distinct p-local homotopy types of gauge groups in a more
restricted setting. The possible existence of a kind of Zabrodsky mixing of homo-
topy types means that it is not really clear how our p-local result relates to Crabb
and Sutherland’s integral result. For a prime p and an integer m, let v, (m) be the

largest integer r such that p” divides m but p’ ™! does not divide m.

Theorem 1.2. Let G be a compact, connected Lie group and let Y be a space. Fix a
homotopy class [f] € [XY,BG]|. For an integer k, let P, — XY be the principal G-
bundle induced by kf, and let Gy be its gauge group. If the order of the commutator

GAG — G is m, then the number of distinct p-local homotopy types for the gauge
groups { Gy} is at most v,(m) + 1.

When G = SU(3) then for any homotopy class [f] € [2Y,BSU(3)], Theo-
rems 1.1 and 1.2 imply that the number of distinct p-local homotopy types for the
gauge groups {Gy} isatmost4if p = 2,2if p =3 o0orp = 5,and 1if p > 5.
These general upper bounds closely match known lower bounds. If Y = S3 and
[f] € [S* BSU(3)] represents an integral generator, then [HK] shows that there
are exactly four 2-types, two 3-types and one p-type for p > 5. The advantage of
Theorem 1.2 is that it works for any space Y, notjust Y = S°.

2 A lower bound on the order of ¢

Take homology with integer coefficients. Recall that H*(SU(3)) = A(x,y) where
|x| =3, |y| =5. Let1: ZCP?> — SU(3) be the canonical map which induces the
projection onto the generating set in cohomology. Since ¢ is the inclusion of the

7-skeleton of SU(3), whose next cell is in dimension 10, it follows that the map

SCP2 ASCP? %% SU(3) A SU(3) is the inclusion of the 10-skeleton.

In this section we will show that the composite

SCP2 A £CP? 2% SU(3) A SU(3) - SU(3)
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has order 120. This implies that the order of c must be at least 120. To do this we
use a method due to Hamanaka and the first author [HK].

We begin with a preliminary lemma. For any integer k > 0, let W3, =
SU(3+k)/SU(3). Let 7 be the stable generator of 7,,11(S") = Z/2Z.

Lemma 2.1. There are isomorphisms 11;(Ws o) = Z fori € {7,9,11}.

Proof. Since there are fibrations W3 — W34 — S%+7 for each k > 0, by
stability we obtain 7'[1'(W3,oo) = 7'[1'(W3,2) fori € {7,9} and 7'C11(W3,oo) = 7T11(W3/3).
Now consider W3,. By definition, W3, = SU(5)/SU(3) so as a CW-complex
we have W3, = §7 Uy ¢? U e!®. The Hurewicz homomorphism then implies that
7(W3p) & Z. As well, by connectivity 71,,(Ws2) = 7, (S7 Uy e?) for9 < m <
11. The cofibration S8 —» §7 — &7 Uy ¢ induces a long exact sequence of
homotopy groups

s 9(88) s 719(87) — 10(S7 Uy ) — 719(S°) L 71 (S8) — -+ - .

Observe that the first arrow is an isomorphism while the fourth arrow is an epi-
morphism. Thus 719(S” U, ¢’) = Z. Similar exact sequence arguments show

that 7T10(S7 Uy 69) = 7T11(S7 Uy 69) = 0. Hence 7T9(W3,2) = Z and 7T10(W3/2) =
m11(W32) = 0. Finally, the fibration W3, — W33 — S!'! induces a long exact
sequence of homotopy groups

e — 7T11(W3,2) — 7T11(W3/3) — nn(Sll) — 7T10(W3/2) — e

Since 7110(W3) = 7111(Ws) = 0, we immediately obtain 7ry1 (W3 3) = 7971 (S'!) 22
Z. [ ]

Consider the fibration sequence
QSU (o) 25 OWs 0 —25 SU(3) — SU(00) 5 W 0.

Since SU(0) is an infinite loop space it is homotopy commutative. Thus the
commutator map SU(3) A SU(3) —— SU(3) lifts through & to a map

A: SU(3) A SU(3) — OWs oo

There may be many choices of such a lift. In [HK] a choice was made that sat-
isfies the statement of Lemma 2.2. To describe this, recall that H*(SU(c0)) =
A(x3,x5,...). The generating set may be chosen so that xp1 = 0(cky1), where
ka1 € HHF2(BSU(00)) is the (k + 1)* Chern class and ¢ is the cohomology sus-
pension. Then H* (W3 ) = A(X7, X9, . ..) where m* (%pr11) = Xogr1-

Lemma 2.2. The lift v may be chosen so that
A" (k) = Ziyjks1%i @ Xj

where ay, = 0(Xop1) € H*F(QW3 ). ]
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Each ay, € H?*(QW3,,) is represented by a map QW3 ., — K(Z, 2k), which
we also label as ay;. Taking the product of such maps for k > 3, we obtain a map

a=]]ax: OW300 — [ [ K(Z,2k).
k>3 k>3

Observe that a is both a loop map and a rational homotopy equivalence. Since,
by Lemma 2.1, [ECP? A ZCP?, OW; ] is a free abelian group, we therefore obtain
the following.

Lemma 2.3. The induced map

a,: [ECP? AXCP?, QOW; 0] — P H*(ZCP* AZCP?)
k>3

is a monomorphism. n

Applying the functor [ZCP? A ZCP?, ] to the fibration sequence QSU () on

QW3 N SU(3) — SU(o0) we obtain an exact sequence

RO(=CcP2 AzCP?) ‘Y [5CP2 ASCP?, OWs 0] 25 [ECP2AECP?, SU(3)] —
K~ 1(=CP?> AZCP?).

Since CP? A ZCP? is a CW-complex with cells only in even dimensions, we

have K~1(ZCP2 A £CP?) = 0. Thus [ZCP? A £CP?,SU(3)] is the cokernel of
(Q71) . Let C be the cokernel of the composite a, o ((Q)77)., where a, is the map in
Lemma 2.3. Then we obtain a commutative diagram of exact sequences

~ Q * *
K9(ZCP? A ZCP?) (0, [ECP? A ZCP?, QOW; o] LN [XCP? AXCP?,SU(3)]—=0

~, «0(Q77) 4 l/ H
Rozer? nxerr] 2, H* (5CP2 A 5CP?) C 0

where b is the induced map of cokernels. By Lemma 2.3, a4, is a monomor-

phism. A diagram chase then implies that b is also a monomorphism. The

composite ZCP? A ZCP? 2 sU(3) A SU(3) - SU(3) represents an element

of [ZCP? A £CP?,SU(3)]. Since c lifts through 6 to the map A, the composite
Ao (1 A1) represents a lift of c o (1 A1) through .. The fact that b is a monomor-
phism then implies the following.

Lemma 2.4. The order of c o (1 \ 1) is the order of the image of a,(Ao (1 A1)) inC. =

Now we calculate the order of the image of a.(A o (1 A1)) in C. To under-

stand the cokernel C of a. o (7)., we first consider the image of a, o (Q7)s..
a

Observe that a, o (1), is induced by the composite QSU (o) o, OW3 0o —
[Tk>3 K(Z, 2k). The choice of the generating sets for H*(SU(c0)) and H*(QW3 )
implies that (Q71)* (ag) = cp for k > 3. Thus a o Q7 corresponds to Gy>3k! chy
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where chy is the 2k-dimensional part of the Chern character. Hence for any
& € K°%(ZCP? A ZCP?) we have

o (Q71)+ (&) = (3! chs(¢),4! chy(&),5! chs(¢)) € H* @ HS @ HY. (1)

Let x be a generator of K°(CP?) such that ch(x) = t+ & ~ for a generator
t € H?(CP?). Then K°(ZCP? A ZCP?) is a free abelian group generated by
2(x' @ xf) fori,j = 1,2. Let €;; = a, o (), (X%(x' ® x/)). Then (1) implies
that the image of a, o (7). is as follows. In the group Z¥?(t ® t) ® ZX2(t ®
2) ® Z32 (P @ t) © ZX*(t? ® t?) we have

€11 = (31,4!/2,41/2,5!/4)
€1 = (0,4,0,5!/2)
€12 = (0,0,4!,5!/2)
€2 = (O 0,0,5!).
(
o (

Next, consider the image of a.(A o (1 A1)). By Lemma 2.2 and (1) we have

a. (A

Finally, observe that 20e11 — 5(€12 + €21) + €22 = 5!(1,1,1,1) and no other
combination of €;;’s gives a smaller multiple of (1,1,1,1). Thatis, if y =
a,(A o (1A1)), then 5!y is in the image of a, o ((A7)+, and no smaller multiple
of y is in the image. Thus y passes to an element in the cokernel C of order 5!.
Lemma 2.4 therefore implies the following.

A1) =(1,1,1,1).

Proposition 2.5. The composite SCP* A SCP? 2 SU(3) A SU(3) - SU(3) has

order 5!. ]

3 The odd primary components of the order of ¢

The adjoint of the identity map on SU(3) is the evaluation map ev: £SU(3) =~

ev

YQBSU(3) — BSU(3). Let j be the composite j: Z2CP? REN rSu(3) —
BSU(3).

For the remainder of the section we localize all spaces and maps at an odd
prime p. By [MNT], SU(3) ~ S3 x S°, so restricting to 5-skeleta we also have
YCP? ~ $3 V S°. The following lemma is a special case of an argument in [Mc].

Lemma 3.1. There is a homotopy commutative diagram

»SU(3) —“~ BSU(3

i H

s2Cp2 ——~ BSU(3

where t is a left homotopy inverse for 1.



364 A. Kono - S. Theriault

Proof. Since SU(3) ~ S3 x S°, we have ZSU(3) ~ S*Vv S®V S% so ev can be
regarded as the wedge sum Xz + h for some map h: S° — BSU(3)). By [G],

the homotopy fibre of ev is the Hopf construction 2SU(3) A SU(3) £, XSU(3).
Observe that the restriction of u* to S° ~ £53 A S° — SU(3) A SU(3) is onto in
mod-p homology. Thus the equivalence for ZSU(3) can be chosen so that the S°
summand of XSU(3) factors through p*. Doing so, we obtain & ~ *. Hence ev
factors through j and the lemma follows. n

Note that the adjoint of the commutator SU(3) A SU(3) —— SU(3) is [ev, ev],
and the adjoint of the composite ZCP? A ZCP? AN SU(3) A SU(3) — SU(3) is
. J)-

Lemma 3.2. The maps SU(3) A SU(3) - SU(3) and £CP* A =CP* 2% SU(3) A
SU(3) — SU(3) have the same order.

Proof. Since c o (1 A1) factors through ¢, its order can be no larger than the or-
der of ¢. To prove the converse, suppose that c o (1 A1) has order m. Then
adjointing, the composite [ev,ev] o (X1 A1) has order m. That is, [j,j] has or-
der m. Observe that [}, j] is homotopic to the composite ¥>CP? A CP? — ZCP?V
z2¢cp? 1Y, BSU(3), so [j,j] having order m implies that (m -jV j) extends to a
map u: X?CP? x ¥2CP?> — BSU(3). Lemma 3.1 therefore implies that there
is a map 7: XSU(3) x £SU(3) — BSU(3) which restricts to (m - ev V ev) on
YSU(3) VESU(3). Thusif m’ = (m-jVj), then the composite ESU(3) ASU(3) —
¥SU(3) v SU(3) - BSU(3) is null homotopic. But this composite is homotopic

to m - [ev, ev]. Thus [ev, ev] has order m, implying that its adjoint ¢ also has order
m. ]

By Proposition 2.5 we know the order of c o (1 A 7). Thus Lemma 3.2 immedi-
ately implies the following.

Proposition 3.3. The commutator SU(3) A SU(3) — SU(3) satisfies:

(a) localized at 3, ¢ has order 3;
(b) localized at 5, c has order 5;

(c) localized at p for p > 7, c is null homotopic. -

4 The 2-component of the order of ¢

Throughout this section we localize all spaces and maps at 2. We will use a result

of Mimura to reduce the calculation of the order of SU(3) A SU(3) — SU(3)

to calculating the order of the composite XCP? A ©CP? 2 SU(3) ASU(3) -

SU(3).

Recall from Section 2 that the map ZCP? A £CP? 2% SU(3) A SU(3) is the in-
clusion of the 10-skeleton. The following theorem incorporates this skeletal iden-
tification with Mimura’s [M] description of the cell structure of SU(3) A SU(3).
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Recall that 77: S"*1 — S represents the stable generator of 7, 1(S") & Z /2Z.
For a space X, let X;, be the n-skeleton of X and let V: X V X — X be the fold
map.

Theorem 4.1. There is a homotopy equivalence
SU(3) ASU(3) ~ BV XCP? v x°CP?
where B satisfies the following:
(@) B= (ZCP?> ACP?)Ue'%;
(b) B/S® ~ (S8 x S8) U el®, where ] = n x n;
Now we begin the reduction procedure.

Lemma 4.2. The group [Z?CP?, SU(3)] has order < 8.

Proof. The cofibration S — ¥7CP?2 — S!3 induces an exact sequence
[S13,S5U(3)] — [Z°CP?,SU(3)] — [S'},SU(3)]. By [MT], 11 (SU(3)) = Z/4AZ
and 7113(SU(3)) = Z/27Z. Thus, by exactness, [ZCP?, SU(3)] has order at most 8.

u

Corollary 4.3. If the composite B —s SU(3) A SU(3) — SU(3) has order < 8 then
¢ has order < 8.

Proof. By Theorem 4.1, SU(3) A SU(3) ~ BV £°CP? v £°CP?. By Lemma 4.2, the
restriction of c to either copy of °CP? has order < 8. Therefore, if the restriction
of ¢ to B also has order < 8, then ¢ has order < 8. n

Lemma 4.4. The map (2CP? A XCP?)/S® — B/S® has a left homotopy inverse after
suspending, implying there is a homotopy equivalence B/ S® ~ (£2CP> A CP?)/S% v
st7.

Proof. By Theorem 4.1 (b) , B/S® = (S® x S®) Uy e!®. This implies that there is
an inclusion S8 x $® —s B/S® with the property that the pinch map B/S® —
S'6 to the top cell extends the pinch map S® x S® — S, After suspending,

(S8 x 88) ~ 8% v S? v S'7. Thus the top cell splits off B/S°. The lemma now
follows since by Theorem 4.1 (a), YB/S6 = (ZZCP2 A ZCPZ)/S6 Uel?, ]

In what follows we will have to distinguish between power maps and degree
maps. In general, if X is an H-space let k: X — X be the k'"-power map and if
Y is a co-H-space let k: Y — Y be the map of degree k.

Lemma 4.5. If the composite SCP?> A XCP> — B — SU(3) A SU(3) — SU(3)
has order < 8 then the composite B —s SU(3) A SU(3) —— SU(3) has order < 8.

Proof. The proof of the lemma takes several steps.

Step 1. Let f be the composite B — SU(3) A SU(3) — SU(3). Let A = ZCP? A
YCP? and let i: A — B be the inclusion. Leti: A/S® — B/S°® be the map
induced by pinching out the bottom cell common to both A and B. By [HK], the
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composite S® — A BLINY SN SU(3) has order 2. Thus there is a homotopy
commutative diagram

A—t gL su@)
T
A/S6 —=B/s6 —+5U(3)

for some map g.

Step 2. The lemma asserts that if 8 o f oi is null homotopic then so is 8 o f. We
claim that it suffices to show that if 4 o ¢ o i’ is null homotopic then so is 4 o g.
To see this, suppose that 8 o f o i is null homotopic. Consider the cofibration se-

quence S® — A 5 A/S® — §7. Since 8 o f oi ~ *, the homotopy commuta-
tivity of the outer rectangle in (2) implies that4 o g o i’ o 7t is null homotopic. Thus
40 g o i’ extends through the cofibre of 77 to a map S” — SU(3). But by [MT],
7t7(SU(3)) = 0. Thus 4 o g o i’ is null homotopic. We assume that this condition
implies that 4 o g is null homotopic. But then the homotopy commutativity of the
right square in (2) implies that 8 o f is null homotopic.

Step 3. It remains to show that if 4 o g o’ is null homotopic then sois 4 o g. In gen-
eral, for a space X, let E: X — QXX be the suspension map. Applying the James
construction [J] to the map g, we obtain an H-map g: Q¥(B/S®) — SU(3) such
that o E ~ g. Let A’ = A/S°. By Lemma 4.4 there is a homotopy equivalence
e: TA'V S17 — ¥.B/S® where the restriction of e to XA’ is ¥i’. Consider the
diagram

A’ B/S°

! lE

Al v §16 —E-(zar v §17) L2 03B/ S6) =5~ sU(3) —~ SU(3)

where 17 is the inclusion of the left wedge summand. The rectangle homotopy
commutes since the restriction of e to XA’ is i’ and E commutes with suspen-
sions. Since g o E ~ g, the upper direction around the diagram is homotopic to
40 g oi’, which we are assuming is null homotopic. Thus the lower direction
around the diagram is also null homotopic. In addition, by [MT], 7r14(SU(3)) =
Z /47 ® Z./27Z, so in fact the entire bottom row of the diagram is null homotopic.
On the other hand, since A’ and S'¢ are suspensions, the bottom row is homotopic
to the composite

Alvste Ay aryste By qmaiy sy 2 axpyst £ su).
Therefore we have a string of homotopies
x* ~40g0(eoE~goeoEo4~goeo(N¥40E

where the last homotopy is due to the naturality of E. A consequence of the James

construction is that the homotopy class of an H-map ()>X L> Y is determined
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by the homotopy class of f o E. In our case, the null homotopy for goQeo ()34 o E
implies that § o Qe o (334 is null homotopic.
Step 4. By the Hilton-Milnor Theorem, there is a homotopy equivalence

QXA v SY) ~ QA" x QST x Q(ZOZA’ A QSY).

Observe that as A’ is 7-connected, Q(ZQZA’ A QS'7) is 23-connected. The dis-
tributivity formula (see [C, §4], for example), therefore implies that the 4/-power
map on Q(ZA’V S§7) is homotopic to Q¥4 through dimension 23. Thus in di-
mensions < 23, there is a string of homotopies

*x2goeoN¥4~g00Neod~40g500

where the first homotopy is by Step 3 and last is due to the 4"-power map com-
muting with H-maps.

Step 5. We now have 4 0 g o Q)e =~ * in dimensions < 23. Since e is a homotopy
equivalence, we can compose on the right with Qe~! to obtain 4 0 g ~ x in di-
mensions < 23. As B/S° is 16-dimensional, we therefore obtain 4 o goE ~ x
without any dimensional restriction. But § was defined so that g o E ~ g. Hence
4 o g is null homotopic, as required. n

Combining Lemma 4.5 and Corollary 4.3 immediately implies the following.

Proposition 4.6. If the composite SCP2 A S.CP2 2% SU(3) A SU(3) == SU(3) has

order < 8, then ¢ has order < 8. [ ]

Now we can combine the results of the previous three sections to prove The-
orem 1.1.

Proof of Theorem 1.1. Let m be the order of the commutator SU(3) A SU(3) ——
SU(3). By Proposition 4.6, the 2-component of the order of ¢ equals the 2-compo-
nent of the order of ¢ o (1 A 1), which by Proposition 2.5 is 8. By Proposition 3.3,
the 3-component of m is 3, the 5-component of m is 5, and the p component of m
for p > 7is 1. Thus m = 23-3.5 = 120. n

5 Counting gauge groups

In this section we revert to assuming that spaces and maps have not yet been
localized. We begin by stating a general criterion proved in [Th] for determining
when certain fibres are homotopy equivalent.

Lemma 5.1. Let X be a space and Y be an H-space with a homotopy inverse. Let X 7,

Y be a map of order m, where m is finite. Let Fy be the homotopy fibre of the composite

x Ly 5y If (m,k) = (m,k") then Fy and Fy are homotopy equivalent when

localized rationally or at any prime. n
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In order to use this to help count gauge groups, we need a context in which
gauge groups arise as homotopy fibres. Let G be a topological group, let X be
a space, and let P — X be a principal G-bundle with gauge group G(P). Let
BG and BG(P) be the classifying spaces of G and G(P) respectively. In [AB] it
was shown that there is a homotopy equivalence BG(P) ~ Map,(X, BG), where
Map, (X, BG) is the component of the space of continuous maps from X to BG
which are freely homotopic to the map inducing P. Moreover, there is a fibration

Map} (X, BG) — Mapp(X, BG) - BG

where Mapj, (X, BG) is the component of the space of continuous maps from X to
BG which are based homotopic to the map inducing P, and ev evaluates a map at
the basepoint.

Now specialize to X = LY. Observe that the components of Map(XY, BG)
and Map* (XY, BG) are in one-to-one correspondence with the homotopy classes
of maps [2Y, BG]. Fix a homotopy class [f] € [ZY,BG]|. For an integer k, let
P, — XY be the principal G-bundle classified by the homotopy class of kf. Note
that if [f] has infinite order then the bundles P, — XY are distinct, but if [f] has
order m then there are bundle equivalences between P,; y — XY and P, —
XY for every integer s. Let Gy be the gauge group of the principal G-bundle
P, — XY. Then there is a homotopy equivalence BG; = Map, £ (XY, BG). In the

pointed case, the pointed exponential law implies that Map* (XY, BG) is homo-
topy equivalent to the loop space QMap* (Y, BG), and in general the components
of a homotopy-associative H-space are homotopy equivalent. Explicitly in our
case, the existence of a pointed wedge product Y — XY V ZY lets us define a
map —kf: Mapy (XY, BG) — Mapg(ZY, BG). by sending ¢ € Map; (XY, BG)

to the composite XY — XY VXY gﬂ{ BGV BG —» BG, where V is the
fold map. Since the wedge product on XY is associative, it follows that kf o —kf
takes a map g € Mapy (XY, BG) to itself, implying that Mapy (XY, BG) retracts
off Map; (XY, BG). A similar argument shows that Map; (XY, BG) retracts off
Mapy (XY, BG), so in fact the two are homotopy equivalent. Therefore the eval-
uation fibration determines a homotopy fibration sequence

G % Map( (XY, BG) — BGy -2 BG 3)

which defines the map 0. In [L] it was shown that the adjoint 2Y A G — BG of
dx is homotopic to the Whitehead product [kf, ev]. As the Whitehead product is
linear, we have [kf, ev] ~ k[f, ev], implying that 0y =~ k o d;. Hence the fibration
sequence (3) implies that Gy is the homotopy fibre of the map k o 9.

Observe that the classifying space BG is rationally homotopy equivalent to a
product of Eilenberg-MacLane spaces. That is, BG is rationally homotopy equiv-
alent to an H-space. Therefore the adjoint of 9; - the Whitehead product [f, ev] -
is rationally trivial. This implies that d; has order m r where m ¥ is finite. Now we
can apply Lemma 5.1 to obtain the following.

Proposition 5.2. If (ms, k) = (my, k') then there is a homotopy equivalence Gy ~ G
after localizing rationally or at any prime. n
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Now we relate the order of [f, ev] to that of the commutator ¢ to prove Theo-
rem 1.2.

Proof of Theorem 1.2. We are given that the order of the commutator GA G —— G
is m. The adjoint of ¢ is the Whitehead product [ev, ev], so [ev, ev] has order m. By
definition, the order of [f, ev] is m¢. Since [f, ev] factors through [ev, ev], we must
have my dividing m. Thus (m, k) divides (m, k) for each k. So if (m, k) = (m, k')
then (mg, k) = (my, k') for each k. Proposition 5.2 therefore implies that there is a
p-local homotopy equivalence Gy =~ Gy.

Localized at p, we only need be concerned with the p-component of the in-
tegers (m, k). These p-components range from 0 to v,(m). Thus the number of
distinct p-local homotopy types of the gauge groups {G} is bounded above by
vp(m) + 1. ]
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