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Abstract

We show that the commutator map on SU(3) has order 23 · 3 · 5. As an
application, we give an upper bound on the number of homotopy types of
gauge groups for principal SU(3)-bundles over an n-sphere.

1 Introduction

Let G be an H-group, defined as a homotopy associative H-space with a homo-
topy inverse. Let c : G × G −→ G be the map defined pointwise by c(x, y) =

xyx−1y−1. Consider the cofibration sequence G ∨ G −→ G × G −→ G ∧ G
δ

−→
ΣG ∨ ΣG. Observe that c is null homotopic when restricted to G ∨ G, implying
that c factors through a map c : G ∧ G −→ G. Since Σ(G × G) ≃ (ΣG ∨ ΣG) ∨
(ΣG ∧ G), the cofibration connecting map δ is null homotopic. Thus the homo-
topy class of c is uniquely determined by the homotopy class of c. Call the map c
the commutator of G.

If G is finite then, rationally, it is homotopy equivalent to a product of Eilenberg-
MacLane spaces as an H-space, implying that it is homotopy commutative. So,
rationally, c is trivial, which implies that the order of c is finite. A fundamental
problem is to determine the order of c. However, this is known only in extremely
simple cases. For example, consider the case of SU(n). If n = 2 then SU(2) ≃ S3

and the order of S3 ∧ S3 c
−→ S3 is 12, a consequence of Toda’s calculations [To].
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On the other hand, if n > 2 then the order of SU(n) ∧ SU(n)
c

−→ SU(n) is un-
known. It is not even clear what an upper bound should be. In this paper we
consider the case of SU(3) and show the following.

Theorem 1.1. The commutator SU(3) ∧ SU(3)
c

−→ SU(3) has order 120 = 23 · 3 · 5.

Theorem 1.1 can be used to help determine the homotopy types of certain
gauge groups. In general, if G is a topological group, X is a space, and P −→ X
is a principal G-bundle, then the gauge group G(P) of the bundle is the group
of G-equivariant automorphisms of P which fix X. Crabb and Sutherland [CS]
showed that if G is a compact, connected Lie group and X is a connected, fi-
nite CW-complex, then while there may be infinitely many distinct principal G-
bundles over X, their corresponding gauge groups have only finitely many dis-
tinct homotopy types. However, Crabb and Sutherland gave no upper bound
on the number of distinct gauge groups, and precise numbers have been worked
out only in a few cases of very low rank [K, HK, KKKT, Th]. We consider instead
the p-local homotopy types for a prime p, and produce explicit upper bounds
for the number of distinct p-local homotopy types of gauge groups in a more
restricted setting. The possible existence of a kind of Zabrodsky mixing of homo-
topy types means that it is not really clear how our p-local result relates to Crabb
and Sutherland’s integral result. For a prime p and an integer m, let νp(m) be the

largest integer r such that pr divides m but pr+1 does not divide m.

Theorem 1.2. Let G be a compact, connected Lie group and let Y be a space. Fix a
homotopy class [ f ] ∈ [ΣY, BG]. For an integer k, let Pk −→ ΣY be the principal G-
bundle induced by k f , and let Gk be its gauge group. If the order of the commutator

G ∧ G
c

−→ G is m, then the number of distinct p-local homotopy types for the gauge
groups {Gk} is at most νp(m) + 1.

When G = SU(3) then for any homotopy class [ f ] ∈ [ΣY, BSU(3)], Theo-
rems 1.1 and 1.2 imply that the number of distinct p-local homotopy types for the
gauge groups {Gk} is at most 4 if p = 2, 2 if p = 3 or p = 5, and 1 if p > 5.
These general upper bounds closely match known lower bounds. If Y = S3 and
[ f ] ∈ [S4, BSU(3)] represents an integral generator, then [HK] shows that there
are exactly four 2-types, two 3-types and one p-type for p ≥ 5. The advantage of
Theorem 1.2 is that it works for any space Y, not just Y = S3.

2 A lower bound on the order of c

Take homology with integer coefficients. Recall that H∗(SU(3)) ∼= Λ(x, y) where
|x| = 3, |y| = 5. Let ı : ΣCP2 −→ SU(3) be the canonical map which induces the
projection onto the generating set in cohomology. Since ι is the inclusion of the
7-skeleton of SU(3), whose next cell is in dimension 10, it follows that the map

ΣCP2 ∧ ΣCP2 ı∧ı
−→ SU(3) ∧ SU(3) is the inclusion of the 10-skeleton.

In this section we will show that the composite

ΣCP2 ∧ ΣCP2 ı∧ı
−→ SU(3) ∧ SU(3)

c
−→ SU(3)
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has order 120. This implies that the order of c must be at least 120. To do this we
use a method due to Hamanaka and the first author [HK].

We begin with a preliminary lemma. For any integer k ≥ 0, let W3,k =
SU(3 + k)/SU(3). Let η be the stable generator of πn+1(S

n) ∼= Z/2Z.

Lemma 2.1. There are isomorphisms πi(W3,∞) ∼= Z for i ∈ {7, 9, 11}.

Proof. Since there are fibrations W3,k −→ W3,k+1 −→ S2k+7 for each k ≥ 0, by
stability we obtain πi(W3,∞) ∼= πi(W3,2) for i ∈ {7, 9} and π11(W3,∞) ∼= π11(W3,3).
Now consider W3,2. By definition, W3,2 = SU(5)/SU(3) so as a CW-complex
we have W3,2 = S7 ∪η e9 ∪ e16. The Hurewicz homomorphism then implies that

π7(W3,2) ∼= Z. As well, by connectivity πm(W3,2) ∼= πm(S7 ∪η e9) for 9 ≤ m ≤

11. The cofibration S8 η
−→ S7 −→ S7 ∪η e9 induces a long exact sequence of

homotopy groups

· · · −→ π9(S
8)

η∗

−→ π9(S
7) −→ π9(S

7 ∪η e9) −→ π9(S
9)

η∗

−→ π9(S
8) −→ · · · .

Observe that the first arrow is an isomorphism while the fourth arrow is an epi-
morphism. Thus π9(S

7 ∪η e9) ∼= Z. Similar exact sequence arguments show

that π10(S
7 ∪η e9) ∼= π11(S

7 ∪η e9) ∼= 0. Hence π9(W3,2) ∼= Z and π10(W3,2) ∼=
π11(W3,2) ∼= 0. Finally, the fibration W3,2 −→ W3,3 −→ S11 induces a long exact
sequence of homotopy groups

· · · −→ π11(W3,2) −→ π11(W3,3) −→ π11(S
11) −→ π10(W3,2) −→ · · · .

Since π10(W3,2) ∼= π11(W3,2) ∼= 0, we immediately obtain π11(W3,3) ∼= π11(S
11) ∼=

Z.

Consider the fibration sequence

ΩSU(∞)
Ωπ
−→ ΩW3,∞

δ
−→ SU(3) −→ SU(∞)

π
−→ W3,∞.

Since SU(∞) is an infinite loop space it is homotopy commutative. Thus the

commutator map SU(3) ∧ SU(3)
c

−→ SU(3) lifts through δ to a map

λ : SU(3) ∧ SU(3) −→ ΩW3,∞.

There may be many choices of such a lift. In [HK] a choice was made that sat-
isfies the statement of Lemma 2.2. To describe this, recall that H∗(SU(∞)) ∼=
Λ(x3, x5, . . .). The generating set may be chosen so that x2k+1 = σ(ck+1), where
ck+1 ∈ H2k+2(BSU(∞)) is the (k + 1)st Chern class and σ is the cohomology sus-
pension. Then H∗(W3,∞) ∼= Λ(x̄7, x̄9, . . .) where π∗(x̄2k+1) = x2k+1.

Lemma 2.2. The lift γ may be chosen so that

λ∗(a2k) = Σi+j=k+1xi ⊗ xj

where a2k = σ(x̄2k+1) ∈ H2k(ΩW3,∞).
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Each a2k ∈ H2k(ΩW3,∞) is represented by a map ΩW3,∞ −→ K(Z, 2k), which
we also label as a2k. Taking the product of such maps for k ≥ 3, we obtain a map

a = ∏
k≥3

a2k : ΩW3,∞ −→ ∏
k≥3

K(Z, 2k).

Observe that a is both a loop map and a rational homotopy equivalence. Since,
by Lemma 2.1, [ΣCP2 ∧ΣCP2, ΩW3,∞] is a free abelian group, we therefore obtain
the following.

Lemma 2.3. The induced map

a∗ : [ΣCP2 ∧ ΣCP2, ΩW3,∞] −→
⊕

k≥3

H2k(ΣCP2 ∧ ΣCP2)

is a monomorphism.

Applying the functor [ΣCP2 ∧ΣCP2, ] to the fibration sequence ΩSU(∞)
Ωπ
−→

ΩW3,∞
δ

−→ SU(3) −→ SU(∞) we obtain an exact sequence

K̃0(ΣCP2 ∧ΣCP2)
(Ωπ)∗
−→ [ΣCP2 ∧ΣCP2, ΩW3,∞]

δ∗−→ [ΣCP2 ∧ΣCP2, SU(3)] −→

K̃−1(ΣCP2 ∧ ΣCP2).

Since ΣCP2 ∧ ΣCP2 is a CW-complex with cells only in even dimensions, we

have K̃−1(ΣCP2 ∧ ΣCP2) = 0. Thus [ΣCP2 ∧ ΣCP2, SU(3)] is the cokernel of
(Ωπ)∗ . Let C be the cokernel of the composite a∗ ◦ (Ωπ)∗ , where a∗ is the map in
Lemma 2.3. Then we obtain a commutative diagram of exact sequences

K̃0(ΣCP2 ∧ ΣCP2)
(Ωπ)∗

// [ΣCP2 ∧ ΣCP2, ΩW3,∞]
δ∗

//

a∗
��

[ΣCP2 ∧ ΣCP2, SU(3)] //

b

��

0

K̃0(ΣCP2 ∧ ΣCP2)
a∗◦(Ωπ)∗

//
⊕

k≥3 H2k(ΣCP2 ∧ ΣCP2) // C // 0

where b is the induced map of cokernels. By Lemma 2.3, a∗ is a monomor-
phism. A diagram chase then implies that b is also a monomorphism. The

composite ΣCP2 ∧ ΣCP2 ı∧ı
−→ SU(3) ∧ SU(3)

c
−→ SU(3) represents an element

of [ΣCP2 ∧ ΣCP2, SU(3)]. Since c lifts through δ to the map λ, the composite
λ ◦ (ı ∧ ı) represents a lift of c ◦ (ı ∧ ı) through δ∗. The fact that b is a monomor-
phism then implies the following.

Lemma 2.4. The order of c ◦ (ı ∧ ı) is the order of the image of a∗(λ ◦ (ı ∧ ı)) in C.

Now we calculate the order of the image of a∗(λ ◦ (ı ∧ ı)) in C. To under-
stand the cokernel C of a∗ ◦ (Ωπ)∗ , we first consider the image of a∗ ◦ (Ωπ)∗.

Observe that a∗ ◦ (Ωπ)∗ is induced by the composite ΩSU(∞)
Ωπ
−→ ΩW3,∞

a
−→

∏k≥3 K(Z, 2k). The choice of the generating sets for H∗(SU(∞)) and H∗(ΩW3,∞)
implies that (Ωπ)∗(a2k) = c2k for k ≥ 3. Thus a ◦ Ωπ corresponds to ⊕k≥3k! chk
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where chk is the 2k-dimensional part of the Chern character. Hence for any

ξ ∈ K̃0(ΣCP2 ∧ ΣCP2) we have

a∗ ◦ (Ωπ)∗(ξ) = (3! ch3(ξ), 4! ch4(ξ), 5! ch5(ξ)) ∈ H6 ⊕ H8 ⊕ H10. (1)

Let x be a generator of K̃0(CP2) such that ch(x) = t + t2

2 for a generator

t ∈ H2(CP2). Then K̃0(ΣCP2 ∧ ΣCP2) is a free abelian group generated by
Σ2(xi ⊗ xj) for i, j = 1, 2. Let ǫi,j = a∗ ◦ (Ωπ)∗(Σ2(xi ⊗ xj)). Then (1) implies

that the image of a∗ ◦ (Ωπ)∗ is as follows. In the group ZΣ2(t ⊗ t) ⊕ ZΣ2(t ⊗
t2)⊕ ZΣ2(t2 ⊗ t)⊕ ZΣ2(t2 ⊗ t2) we have

ǫ1,1 = (3!, 4!/2, 4!/2, 5!/4)

ǫ2,1 = (0, 4!, 0, 5!/2)

ǫ1,2 = (0, 0, 4!, 5!/2)

ǫ2,2 = (0, 0, 0, 5!).

Next, consider the image of a∗(λ ◦ (ı ∧ ı)). By Lemma 2.2 and (1) we have

a∗(λ ◦ (ı ∧ ı)) = (1, 1, 1, 1).

Finally, observe that 20ǫ1,1 − 5(ǫ1,2 + ǫ2,1) + ǫ2,2 = 5!(1, 1, 1, 1) and no other
combination of ǫi,j’s gives a smaller multiple of (1, 1, 1, 1). That is, if y =
a∗(λ ◦ (ı ∧ ı)), then 5!y is in the image of a∗ ◦ (Ωπ)∗, and no smaller multiple
of y is in the image. Thus y passes to an element in the cokernel C of order 5!.
Lemma 2.4 therefore implies the following.

Proposition 2.5. The composite ΣCP2 ∧ ΣCP2 ı∧ı
−→ SU(3) ∧ SU(3)

c
−→ SU(3) has

order 5!.

3 The odd primary components of the order of c

The adjoint of the identity map on SU(3) is the evaluation map ev : ΣSU(3) ≃

ΣΩBSU(3) −→ BSU(3). Let j be the composite j : Σ2
CP2 Σı

−→ ΣSU(3)
ev
−→

BSU(3).
For the remainder of the section we localize all spaces and maps at an odd

prime p. By [MNT], SU(3) ≃ S3 × S5, so restricting to 5-skeleta we also have
ΣCP2 ≃ S3 ∨ S5. The following lemma is a special case of an argument in [Mc].

Lemma 3.1. There is a homotopy commutative diagram

ΣSU(3)
ev

//

t
��

BSU(3)

Σ2CP2
j

// BSU(3)

where t is a left homotopy inverse for Σı.
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Proof. Since SU(3) ≃ S3 × S5, we have ΣSU(3) ≃ S4 ∨ S6 ∨ S9, so ev can be
regarded as the wedge sum Σı + h for some map h : S9 −→ BSU(3)). By [G],

the homotopy fibre of ev is the Hopf construction ΣSU(3) ∧ SU(3)
µ∗

−→ ΣSU(3).
Observe that the restriction of µ∗ to S9 ≃ ΣS3 ∧ S5 −→ ΣSU(3) ∧ SU(3) is onto in
mod-p homology. Thus the equivalence for ΣSU(3) can be chosen so that the S9

summand of ΣSU(3) factors through µ∗. Doing so, we obtain h ≃ ∗. Hence ev
factors through j and the lemma follows.

Note that the adjoint of the commutator SU(3) ∧ SU(3)
c

−→ SU(3) is [ev, ev],

and the adjoint of the composite ΣCP2 ∧ ΣCP2 ı∧ı
−→ SU(3) ∧ SU(3)

c
−→ SU(3) is

[j, j].

Lemma 3.2. The maps SU(3) ∧ SU(3)
c

−→ SU(3) and ΣCP2 ∧ ΣCP2 ı∧ı
−→ SU(3) ∧

SU(3)
c

−→ SU(3) have the same order.

Proof. Since c ◦ (ı ∧ ı) factors through c, its order can be no larger than the or-
der of c. To prove the converse, suppose that c ◦ (ı ∧ ı) has order m. Then
adjointing, the composite [ev, ev] ◦ (Σı ∧ ı) has order m. That is, [j, j] has or-
der m. Observe that [j, j] is homotopic to the composite Σ2CP2 ∧CP2 −→ ΣCP2 ∨

Σ2CP2 j∨j
−→ BSU(3), so [j, j] having order m implies that (m · j ∨ j) extends to a

map µ : Σ2CP2 × Σ2CP2 −→ BSU(3). Lemma 3.1 therefore implies that there
is a map µ : ΣSU(3) × ΣSU(3) −→ BSU(3) which restricts to (m · ev ∨ ev) on
ΣSU(3)∨ΣSU(3). Thus if m′ = (m · j∨ j), then the composite ΣSU(3)∧SU(3) −→

ΣSU(3) ∨ SU(3)
m′

−→ BSU(3) is null homotopic. But this composite is homotopic
to m · [ev, ev]. Thus [ev, ev] has order m, implying that its adjoint c also has order
m.

By Proposition 2.5 we know the order of c ◦ (ı ∧ ı). Thus Lemma 3.2 immedi-
ately implies the following.

Proposition 3.3. The commutator SU(3) ∧ SU(3)
c

−→ SU(3) satisfies:

(a) localized at 3, c has order 3;

(b) localized at 5, c has order 5;

(c) localized at p for p ≥ 7, c is null homotopic.

4 The 2-component of the order of c

Throughout this section we localize all spaces and maps at 2. We will use a result

of Mimura to reduce the calculation of the order of SU(3) ∧ SU(3)
c

−→ SU(3)

to calculating the order of the composite ΣCP2 ∧ ΣCP2 ı∧ı
−→ SU(3) ∧ SU(3)

c
−→

SU(3).

Recall from Section 2 that the map ΣCP2 ∧ ΣCP2 ı∧ı
−→ SU(3) ∧ SU(3) is the in-

clusion of the 10-skeleton. The following theorem incorporates this skeletal iden-
tification with Mimura’s [M] description of the cell structure of SU(3) ∧ SU(3).
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Recall that η : Sn+1 −→ Sn represents the stable generator of πn+1(S
n) ∼= Z/2Z.

For a space X, let Xn be the n-skeleton of X and let ∇ : X ∨ X −→ X be the fold
map.

Theorem 4.1. There is a homotopy equivalence

SU(3) ∧ SU(3) ≃ B ∨ Σ9
CP2 ∨ Σ9

CP2

where B satisfies the following:

(a) B = (ΣCP2 ∧ CP2) ∪ e16;

(b) B/S6 ≃ (S8 × S8) ∪η e10, where η = η × η;

Now we begin the reduction procedure.

Lemma 4.2. The group [Σ9CP2, SU(3)] has order ≤ 8.

Proof. The cofibration S11 −→ Σ9CP2 −→ S13 induces an exact sequence
[S13, SU(3)] −→ [Σ9CP2, SU(3)] −→ [S11, SU(3)]. By [MT], π11(SU(3)) ∼= Z/4Z

and π13(SU(3)) ∼= Z/2Z. Thus, by exactness, [Σ9CP2, SU(3)] has order at most 8.

Corollary 4.3. If the composite B −→ SU(3) ∧ SU(3)
c

−→ SU(3) has order ≤ 8 then
c has order ≤ 8.

Proof. By Theorem 4.1, SU(3) ∧ SU(3) ≃ B ∨ Σ9CP2 ∨ Σ9CP2. By Lemma 4.2, the
restriction of c to either copy of Σ9

CP2 has order ≤ 8. Therefore, if the restriction
of c to B also has order ≤ 8, then c has order ≤ 8.

Lemma 4.4. The map (ΣCP2 ∧ ΣCP2)/S6 −→ B/S6 has a left homotopy inverse after
suspending, implying there is a homotopy equivalence ΣB/S6 ≃ (Σ2CP2 ∧ CP2)/S6 ∨
S17.

Proof. By Theorem 4.1 (b) , B/S6 = (S8 × S8) ∪η e10. This implies that there is

an inclusion S8 × S8 −→ B/S6 with the property that the pinch map B/S6 −→
S16 to the top cell extends the pinch map S8 × S8 −→ S16. After suspending,
Σ(S8 × S8) ≃ S9 ∨ S9 ∨ S17. Thus the top cell splits off ΣB/S6 . The lemma now
follows since by Theorem 4.1 (a), ΣB/S6 = (Σ2CP2 ∧ ΣCP2)/S6 ∪ e17.

In what follows we will have to distinguish between power maps and degree
maps. In general, if X is an H-space let k : X −→ X be the kth-power map and if
Y is a co-H-space let k : Y −→ Y be the map of degree k.

Lemma 4.5. If the composite ΣCP2 ∧ ΣCP2 −→ B −→ SU(3) ∧ SU(3)
c

−→ SU(3)

has order ≤ 8 then the composite B −→ SU(3) ∧ SU(3)
c

−→ SU(3) has order ≤ 8.

Proof. The proof of the lemma takes several steps.

Step 1. Let f be the composite B −→ SU(3) ∧ SU(3)
c

−→ SU(3). Let A = ΣCP2 ∧
ΣCP2 and let i : A −→ B be the inclusion. Let i′ : A/S6 −→ B/S6 be the map
induced by pinching out the bottom cell common to both A and B. By [HK], the
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composite S6 →֒ A
i

−→ B
f

−→ SU(3) has order 2. Thus there is a homotopy
commutative diagram

A
i

//

��

B
f

//

��

SU(3)

2
��

A/S6 i′
// B/S6

g
// SU(3)

(2)

for some map g.
Step 2. The lemma asserts that if 8 ◦ f ◦ i is null homotopic then so is 8 ◦ f . We
claim that it suffices to show that if 4 ◦ g ◦ i′ is null homotopic then so is 4 ◦ g.
To see this, suppose that 8 ◦ f ◦ i is null homotopic. Consider the cofibration se-

quence S6 −→ A
π

−→ A/S6 −→ S7. Since 8 ◦ f ◦ i ≃ ∗, the homotopy commuta-
tivity of the outer rectangle in (2) implies that 4 ◦ g ◦ i′ ◦π is null homotopic. Thus
4 ◦ g ◦ i′ extends through the cofibre of π to a map S7 −→ SU(3). But by [MT],
π7(SU(3)) ∼= 0. Thus 4 ◦ g ◦ i′ is null homotopic. We assume that this condition
implies that 4 ◦ g is null homotopic. But then the homotopy commutativity of the
right square in (2) implies that 8 ◦ f is null homotopic.
Step 3. It remains to show that if 4 ◦ g ◦ i′ is null homotopic then so is 4 ◦ g. In gen-
eral, for a space X, let E : X −→ ΩΣX be the suspension map. Applying the James
construction [J] to the map g, we obtain an H-map g : ΩΣ(B/S6) −→ SU(3) such
that g ◦ E ≃ g. Let A′ = A/S6. By Lemma 4.4 there is a homotopy equivalence
e : ΣA′ ∨ S17 −→ ΣB/S6 where the restriction of e to ΣA′ is Σi′. Consider the
diagram

A′ i′
//

i1
��

B/S6

E
��

A′ ∨ S16 E
// Ω(ΣA′ ∨ S17)

Ωe
// ΩΣ(B/S6)

g
// SU(3) 4

// SU(3)

where i1 is the inclusion of the left wedge summand. The rectangle homotopy
commutes since the restriction of e to ΣA′ is Σi′ and E commutes with suspen-
sions. Since g ◦ E ≃ g, the upper direction around the diagram is homotopic to
4 ◦ g ◦ i′, which we are assuming is null homotopic. Thus the lower direction
around the diagram is also null homotopic. In addition, by [MT], π16(SU(3)) ∼=
Z/4Z⊕Z/2Z, so in fact the entire bottom row of the diagram is null homotopic.
On the other hand, since A′ and S16 are suspensions, the bottom row is homotopic
to the composite

A′ ∨ S16 4
−→ A′ ∨ S16 E

−→ Ω(ΣA′ ∨ S17)
Ωe
−→ ΩΣB/S6 g

−→ SU(3).

Therefore we have a string of homotopies

∗ ≃ 4 ◦ g ◦ Ωe ◦ E ≃ g ◦ Ωe ◦ E ◦ 4 ≃ g ◦ Ωe ◦ ΩΣ4 ◦ E

where the last homotopy is due to the naturality of E. A consequence of the James

construction is that the homotopy class of an H-map ΩΣX
f

−→ Y is determined
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by the homotopy class of f ◦E. In our case, the null homotopy for g ◦Ωe ◦ΩΣ4 ◦E
implies that g ◦ Ωe ◦ ΩΣ4 is null homotopic.

Step 4. By the Hilton-Milnor Theorem, there is a homotopy equivalence

Ω(ΣA′ ∨ S17) ≃ ΩΣA′ × ΩS17 × Ω(ΣΩΣA′ ∧ ΩS17).

Observe that as A′ is 7-connected, Ω(ΣΩΣA′ ∧ ΩS17) is 23-connected. The dis-
tributivity formula (see [C, §4], for example), therefore implies that the 4th-power
map on Ω(ΣA′ ∨ S17) is homotopic to ΩΣ4 through dimension 23. Thus in di-
mensions ≤ 23, there is a string of homotopies

∗ ≃ g ◦ Ωe ◦ ΩΣ4 ≃ g ◦ Ωe ◦ 4 ≃ 4 ◦ g ◦ Ωe

where the first homotopy is by Step 3 and last is due to the 4th-power map com-
muting with H-maps.

Step 5. We now have 4 ◦ g ◦ Ωe ≃ ∗ in dimensions ≤ 23. Since e is a homotopy
equivalence, we can compose on the right with Ωe−1 to obtain 4 ◦ g ≃ ∗ in di-
mensions ≤ 23. As B/S6 is 16-dimensional, we therefore obtain 4 ◦ g ◦ E ≃ ∗
without any dimensional restriction. But g was defined so that g ◦ E ≃ g. Hence
4 ◦ g is null homotopic, as required.

Combining Lemma 4.5 and Corollary 4.3 immediately implies the following.

Proposition 4.6. If the composite ΣCP2 ∧ ΣCP2 ı∧ı
−→ SU(3) ∧ SU(3)

c
−→ SU(3) has

order ≤ 8, then c has order ≤ 8.

Now we can combine the results of the previous three sections to prove The-
orem 1.1.

Proof of Theorem 1.1. Let m be the order of the commutator SU(3) ∧ SU(3)
c

−→
SU(3). By Proposition 4.6, the 2-component of the order of c equals the 2-compo-
nent of the order of c ◦ (ı ∧ ı), which by Proposition 2.5 is 8. By Proposition 3.3,
the 3-component of m is 3, the 5-component of m is 5, and the p component of m
for p ≥ 7 is 1. Thus m = 23 · 3 · 5 = 120.

5 Counting gauge groups

In this section we revert to assuming that spaces and maps have not yet been
localized. We begin by stating a general criterion proved in [Th] for determining
when certain fibres are homotopy equivalent.

Lemma 5.1. Let X be a space and Y be an H-space with a homotopy inverse. Let X
f

−→
Y be a map of order m, where m is finite. Let Fk be the homotopy fibre of the composite

X
f

−→ Y
k

−→ Y. If (m, k) = (m, k′) then Fk and Fk′ are homotopy equivalent when
localized rationally or at any prime.
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In order to use this to help count gauge groups, we need a context in which
gauge groups arise as homotopy fibres. Let G be a topological group, let X be
a space, and let P −→ X be a principal G-bundle with gauge group G(P). Let
BG and BG(P) be the classifying spaces of G and G(P) respectively. In [AB] it
was shown that there is a homotopy equivalence BG(P) ≃ MapP(X, BG), where
MapP(X, BG) is the component of the space of continuous maps from X to BG
which are freely homotopic to the map inducing P. Moreover, there is a fibration

Map∗
P(X, BG) −→ MapP(X, BG)

ev
−→ BG

where Map∗
P(X, BG) is the component of the space of continuous maps from X to

BG which are based homotopic to the map inducing P, and ev evaluates a map at
the basepoint.

Now specialize to X = ΣY. Observe that the components of Map(ΣY, BG)
and Map∗(ΣY, BG) are in one-to-one correspondence with the homotopy classes
of maps [ΣY, BG]. Fix a homotopy class [ f ] ∈ [ΣY, BG]. For an integer k, let
Pk −→ ΣY be the principal G-bundle classified by the homotopy class of k f . Note
that if [ f ] has infinite order then the bundles Pk −→ ΣY are distinct, but if [ f ] has
order m then there are bundle equivalences between Pms+k −→ ΣY and Pk −→
ΣY for every integer s. Let Gk be the gauge group of the principal G-bundle
Pk −→ ΣY. Then there is a homotopy equivalence BGk = Mapk f (ΣY, BG). In the

pointed case, the pointed exponential law implies that Map∗(ΣY, BG) is homo-
topy equivalent to the loop space ΩMap∗(Y, BG), and in general the components
of a homotopy-associative H-space are homotopy equivalent. Explicitly in our
case, the existence of a pointed wedge product ΣY −→ ΣY ∨ ΣY lets us define a

map −k f : Map∗
k f (ΣY, BG) −→ Map∗

0(ΣY, BG). by sending g ∈ Map∗
k f (ΣY, BG)

to the composite ΣY −−→ ΣY ∨ ΣY
g∨−k f
−−→ BG ∨ BG

∇
−−→ BG, where ∇ is the

fold map. Since the wedge product on ΣY is associative, it follows that k f ◦ −k f
takes a map g ∈ Map∗

k f (ΣY, BG) to itself, implying that Map∗
k f (ΣY, BG) retracts

off Map∗
0(ΣY, BG). A similar argument shows that Map∗

0(ΣY, BG) retracts off
Map∗

k f (ΣY, BG), so in fact the two are homotopy equivalent. Therefore the eval-

uation fibration determines a homotopy fibration sequence

G
∂k−→ Map∗

0(ΣY, BG) −→ BGk
ev
−→ BG (3)

which defines the map ∂k. In [L] it was shown that the adjoint ΣY ∧ G −→ BG of
∂k is homotopic to the Whitehead product [k f , ev]. As the Whitehead product is
linear, we have [k f , ev] ≃ k[ f , ev], implying that ∂k ≃ k ◦ ∂1. Hence the fibration
sequence (3) implies that Gk is the homotopy fibre of the map k ◦ ∂1.

Observe that the classifying space BG is rationally homotopy equivalent to a
product of Eilenberg-MacLane spaces. That is, BG is rationally homotopy equiv-
alent to an H-space. Therefore the adjoint of ∂1 - the Whitehead product [ f , ev] -
is rationally trivial. This implies that ∂1 has order m f , where m f is finite. Now we
can apply Lemma 5.1 to obtain the following.

Proposition 5.2. If (m f , k) = (m f , k′) then there is a homotopy equivalence Gk ≃ Gk′

after localizing rationally or at any prime.
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Now we relate the order of [ f , ev] to that of the commutator c to prove Theo-
rem 1.2.

Proof of Theorem 1.2. We are given that the order of the commutator G ∧ G
c

−→ G
is m. The adjoint of c is the Whitehead product [ev, ev], so [ev, ev] has order m. By
definition, the order of [ f , ev] is m f . Since [ f , ev] factors through [ev, ev], we must
have m f dividing m. Thus (m f , k) divides (m, k) for each k. So if (m, k) = (m, k′)
then (m f , k) = (m f , k′) for each k. Proposition 5.2 therefore implies that there is a
p-local homotopy equivalence Gk ≃ Gk′ .

Localized at p, we only need be concerned with the p-component of the in-
tegers (m, k). These p-components range from 0 to νp(m). Thus the number of
distinct p-local homotopy types of the gauge groups {Gk} is bounded above by
νp(m) + 1.
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