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Abstract
In this paper, our main purpose is to establish the existence of nontrivial
weak solutions to the following systems:

—Dpu = AV(x)|u|"2u+ F,(x,u,0), x€Q,

—Apo =0V (x)[v| 20+ Fy(x,u,v), x€Q,

u=v=0 xe€dQ,
where Q) is a bounded domain in RN, A,0 > 0, Aqu = div(|Vul[*"2Vu) is
the s-Laplacian of u. We obtain the existence results in two cases: (i)1 < r <

p < N; (ii)1 < p < r < p*. The existence results of solutions are obtained by
variational methods.

1 Introduction

In this paper, we are interested in finding multiple nontrivial weak solutions to
the following quasilinear elliptic systems

—Npu = AV (x)|u|""2u + F,(x,u,0), x€Q,

—Apv =0V (x)v| 20+ Fy(x,u,0), x€Q, (1.1)
u=v=0, xe€d,
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where Q) is a bounded domain in RN, A, > 0,and 1 < r < p*, r # p,

p* = NN—_@ if p < N and p* = oo if p > N is the critical Sobolev exponent,

Asu = div(|Vu[*~2Vu) is the s-Laplacian of u.

Recently, more and more attention have been paid to the existence and mul-
tiplicity of nontrivial weak solutions for the elliptic problems involving concave-
convex nonlinearities and critical Soblev exponent. For p = 2, see [2,8,15-16,23],
and the references therein. For the quasilinear problems, the corresponding re-
sults can be found in [4,17,19,25-26]. By the results of the above papers we know
that the number of nontrivial solutions for problem (1.1) is affected by the concave-
convex nonlinearities.

If p=2,u=vand F, = |u|*> 2u, (1.1) can be reduced to

{ —Au = AV(x)|u|"2u+ [u* "2u, xeQ,

u=0 xe€d (1.2)

which is a normal Schrodinger equation and has been widely studied,
see[10,12,21].

The solutions of problem (1.2) corresponding to the critical points of the en-
ergy functional

1 A 1 :
I(u) = E/Q|Vu|2dx—?/QV(x)|u|rdx—§/Q|u|2 dx

defined on Wg’Z(Q). When r = 2, the pioneer result of Brezis-Nirenberg [8] stud-
ied problem (1.2) and showed that under some suitable conditions, probnlem
(1.2) possesses a positive solution in WS'Z(Q). For more results see [9,18] and
reference therein.

The typically difficulty in dealing with problem (1.2) is that the corresponding
functional I(u) doesn’t satisfy (PS) condition due to the lack of compactness of
the embedding: H} — L% (Q)). Hence we couldn’t use the standard variational
methods. However, if 1 < r < 2, the situation is quite different, see [6,24]. The
main essence is that when 1 < r < 2, the functional I(u) is sublinear, when A is
small enough, I(u) satisfies (PS). condition for ¢ < 0, so we can look for critical
points of negative critical values of I(u).

Many authors studied the following general p-Laplacian problem

{ —Dpu = AV (x)|u| "2u+ [ulP""2u, xe€Q,

u=0, xe€od), (1.3)

many results valid for problem (1.2) has been extended to problem (1.3). For
example, see [4,19,26]. The main difficulty in extending the results for problem
(1.2) to the corresponding results for problem (1.3) is that Wg P(Q) is not a Hilbert
space in general, then more analysis is needed.
We recall some results about problem (1.1) now. When V(x) = 1 and
F(x,u,v) = ﬁ lu|*|v|f, & + B = p*, (1.1) becomes the following case
—Dpu = Aul"2u+ Zglul*Pulvlf, xe€Q,
— Ao =0lo]" v+ %|u|”‘|v|ﬁ‘zv, xe, (1.4)
u=v=0, xe€a,
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when p = r = 2, Alves et al [2] considered (1.4) and proved the existence of
least energy solutions for any A,0 € (0,A;) and generalized the corresponding
results of [8] to the case of systems (1.4), here A; denote the first eigenvalue of op-
erator —A\. Subsequently, Han [15] considered the existence of multiple positive
solutions for(1.4) and in [17] T.S.Hsu studied systems (1.4) when1 < r < p <
N,« + B = p*, with the help of the Nehari manifold, he proved that problem (1.4)
has at least two positive solutions if the pair of the parameters (A, ) belongs to a
certain subset of R2. More results for problem (1.1) see [16,23,25] etc..

In this paper, we will consider the existence and infinitely many weak solu-
tions of problem (1.1). Let us denote the Banach space H = Wé’p (Q) x Wé’p (Q)
throughout this paper, and for the functions V(x), F(x,u,v), we add the follow-
ing assumptions:

o
d1) Suppose V(x) € Lr'"(Q)) and V(x) > o > 0in ();
pPpo N
() F: OxRxR — RT isa C! function and F(x,tu,tv) = t¥ F(x,u,v)
(t >0),Yx € Q, (u,0) € R%
(d3) F(x,0,0) = F(x,u,0) = F,(x,0,0v) = F,(x,u,0) = 0, where u,v € R;
(dy4) F(x,u,v) is even respect to u, v;
(ds) there exist xp € Q and k > % such that

F(x0,1,1) = maxF(x,1,1) > 2N-*M

xeQ)

and
F(x,1,1) = F(x0,1,1) 4+ o(|x — xo|¥) as x — xo,

where M = MAaX (o )eOxRY xR+ 5P+ 171} F(x,s,t) > 0.
Then we have the following results:

Theorem 1.1 Assume 1 < r < p < N, and (d1) — (d4) hold. Then there is a
positive constant A* such that for any 0 < A +60 < A*, problem (1.1) possesses
infinitely many weak solutions in H.

Theorem 1.2 Assume 1 < r < p < N, (dy) — (d3) and (ds) hold. Then there
is a positive constant A** such that for any 0 < A 40 < A**, problem (1.1) pos-
sesses a nontrivial weak solutions in H.

Theorem 1.3. Assume 1 < p < r < p* and (d1) — (d3) hold. Then there is a
a positive constant A, such that for any (A +6) > A,, problem (1.1) possesses a
nontrivial weak solutions in H.

Remark 1.4. In [4], ].G.Azvrero and [.P.Aloson obtained that there exists a
nontrivial solution for (1.3) with V(x) = 1 by the Mountain Pass Lemma. In fact,

Theorem 1.3 is an extension of Theorem 3.2 in [4] to systems (1.1).

Remark 1.5. Assume 1 < p < N, Q) be a bounded domain in RY,

F(x,1,0) = fi()(uf[olf + [ulf[o]*) + fa()lu] T o],
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where a + B = p*, f; € C}(Q) and satisfy f;(xg) = max,cq fi(x),

fi(x) = fi(xo) +o(lx — x0*) as x — xo

for i = 1,2. Then it’s easy to see that F(x, u,v) satisfy (dz) — (ds), and it is not
contained in the previous works.

The present paper is organized as follows: in section 2, we give some prelim-
inary results; in section 3- 5, we will give the proofs of Theorem 1.1-1.3 respec-
tively.

2 Preliminaries results

Let H' be dual of H, (,) the duality paring between H' and H, the norm on H is
given by

<=

lzll = 1l (w, o)l = (lully + lIoll})
and the norm on LP(Q)) x LP(Q)) is given by

==

2| = |(w,0)] = (|uly + [0]})

where z = (1,v) € Hand || - ||, | - |, are the norm on W&’p(Q) and L?(Q)) respec-
tively, that is,

1 1
= VulPdx)v, :/ Pdx)r.
Jully = (| 1Fulrdx)?, Jul, = ([ |ulPdx)

Throughout this paper, we denote weak convergence by —, and denote strong
convergence by —, also we denote positive constants(possibly different) by C;.
From (d;), we have the so-called Euler identity

z-VF(x,z) = p*F(x,z) (2.1)

and
F(x,z) < Mlz|P" forall z € R?, (2.2)

where M is given in section 1.
As usually, we also denote by

p
S=  inf [
ueWg "\ {0} ( [, |ulP"dx)

S

*|

the best Sobolev constant for the embedding Wg P(Q) in LP"(Q). Tt is known that
S is independent of () and is never achieved except when Q) = RY. Define

p p
+
Sp:= inf { Hqu HUHP 5 :/P(x,u,v)dx>0}.
= Jo

(uv)eH (Jo F(x,u,v)dx) 7"
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According to (2.2) and the Minkowski inequality, we have

() o)) < M juldx)r (ol dx)r]

21

< Mpr \VulP 4 |Vo|Pdx.
S Jo

Then we obtain that ,
Sp>SM 7 > 0. (2.3)

By (2.1), the corresponding energy functional of problem (1.1) is defined by

E() = Ew,0) = (lully + [0l + 7 [ VAl +0fol)dx+ [ Flx,)dx
for z = (u,v) € H. Under the hypotheses of our theorems, it is obvious that E is a
C! functional. It is well known that any critical point of E in H is a weak solution
of problem (1.1). Hence, in order to obtain the nontrivial solutions of problem
(1.1), we only need to look for the nontrivial critical points of E in H.

Now, we define the Palais-Smale(PS)-sequence, (PS)-value, and (PS)-conditions

in H for E as follows.

Definition 2.1. (I) For ¢ € R, a sequence {z,} € H is a (PS).-sequence for E if
E(zy) = c+o0(1) and E'(z,) = 0(1) strongly in H" as n — oo.

(IT) ¢ € Ris a (PS)-value for E if there exists a (PS).-sequence in H for E.

(IIT) E satisfies the (PS).-condition in H if every (PS).-sequence in H for E con-
tains a convergent sub-sequence.

Now we give some results for the proof of main results.

Lemma 2.2. Assume 1 < r < p*,r # pand (d1) — (d2) hold. If {z,} C Hisa
(PS). secquence for E, then {z, } is bounded in H.

Proof. Let z, = (un,vy) be a (PS), secquence for E. We argue by contradiction.
Assume that ||z, || — oo. Let

= — = Zn Up Un
Zn — (u ,’Z] ) == —_= ( ’ )
Tzl lzall Mz
Then ||z,|| = 1, we may assume thatz, — z = (%, ?) in H. Thus we have that

Uy, — U, 0y = 0 in L°(Q), 1<s<p*
and
/ AV (2)[7n] + 8V (x) [ dx = / AV [l +0V(x)[o'dx +o0(1).  (2.4)
0 0
Since {z,} C His a (PS). secquence for E and ||z, || — oo, we have

r—=p
1/ ywnypﬂvmpdx—m/ AV (x)[t,|" + 0V (x)|0,| dx—
pJa r Q

u%w“ﬂépuﬂmmmx=mn 25)
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and
/Q |V, |P + VO, |Pdx — ||zy]| 7 /Q)LV(x)Wn]r + 0V (x)[0,| dx—
Pzl [ ECeT, )i = 0(1). @6)

From (2.4)-(2.6), we can deduce that

(1) [ |Vil? + |VonlPdx =
p Q

*

E =)zl [ AVl + 60V (x)[oldx + o).
Since 1 < r < p*,r # p and ||z,|| — oo, we deduce that whenr < p
/Q |Viu,|P + |Vo,|Pdx — 0, asn — oo,
whenr > p
/Q |V, |P + |Vo,|Pdx — o0, asn — oo,
which is contrary to the fact ||z, || = 1.

Lemma 2.3. Assume 1 < r < p and (d;) — (d3) hold. If {z,} C H is a (PS).
secquence for E, then there exist z € H and B > 0 such that

E(z) > —B(A + )7,

where B will be given later.
Proof. By Lemma 2.2, we know that z, is bounded in H, there is a
z = (u,v) € H and a subsequence of {z,}, sitll denoted by {z,} such that

zn = (Un,vn) — (4,0) =2z, in H;

zn = (Un,vn) — (0,0) =2z, InL°(Q) x L5(Q), 1 <s < p*;
zn = (up,vy) — (u,0) =z, a.e. in
Vz, = (Vu,, Vv,) — (Vu, Vo) = Vz, ae.in Q.

Consequently, passing to the limit in (E'(z,), (¢, ¢)) as n — oo, together with
(d1) — (d3), we have

/ IVulP~2VuV pdx —/\/QV(x)|u|r_2uqbdx — /QFu(x, u,v)pdx =0
o)
and
/ |Vv|p_2VvV(pdx—9/{2V(x)|v|r_2v(pdx - /QFv(x,u,v)godx =0
o)

for all (¢, ¢) € H.
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It shows that z is a critical point of E, then we have (E’(z),z) = 0 and
I2]|” — / AV(x)|ul” + 0V (x)|ul"dx = p* / F(x,u,0)dx.
0 0

Thus,

1 1 1 1
Ez)=(———)|zlIF - (= ——= /AVx ul" + 60V (x)|v| dx.
(2) (p p*)llll (7 =2 J, AV @)l (x)[o]
By the Holder inequality, the Young inequality, and the Sobolev embedding the-
orem, we have

1 1 1
EG@) > —[llf — = vl L Al + 0ol
N rop = p p
> L - A - Dys vl . (o)l

Consider the following function,

g(x) =CixP —C(A+0)x", x>0

r

— %)Sq "|V(x)| ,» are positive constants. Itis easy to see

pr-r

where C; = %,Cz = (

==

( Cor(A40) ) ﬁ

the function obtains its absolute minimum(for x > 0) at point xo = Cip

then we have )
g(x) > g(xo) = —B(A +0)7~
p _r

where B = Cp rC’” ' (%) (11— %) > 0 is independent of A, 6. Then we obtain

E(z) > —B(A + 9)%5
In addition, we need the following version of the Brezis-Lieb lemmal7].

Lemma 24. Assume that G € C'(Q, R?) with G(x,0,0) = 0 and |2 (2)],

] v( z)| < C|z|*~! for some 1 < s < o0. Let z,, be a bounded sequence in LS(Q) X
L*(Q), and such that z, — z in H. Then, as n — oo,

/QG(x,zn)dx:/QG(x,zn—z)dx—l—/QG(x,z)dx—i—o(l).

Lemma 2.5. Assume 1 < r < p and (dq) — (d3) hold. Then E satisfies the (PS),
condition with ¢ satisfying

1 _P N v
c < N(S}:p* )P —B(A+0)P- (2.7)
Proof. Suppose {z, = (un,vy)} C H is a (PS). sequence of E with
14
< B(Sep™ 7)) —B(A+ )77, ie,

E(zn) = c+o0(1),E'(zn) = 0(1),
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by Lemma 2.2, we may assume there exist a subsequence of {z,,} and z = (u,v) €
H such that z;, — zin H. By the argument in Lemma 2.3, we have

/QAV(x)|un|r+GV(x)|vn|fdx=/QAV(x)|u|f+QV(x)|v|rdx+o(1)

and
(E'(z),z) = 0.
Let v, = u, —u,0, = v, —v and z, = (U, V). Then by Lemma 2.4, we
deduce that

1ZallP = [lzall” = lIz[[" +o(1).

(2.8)
Since (dp) and (d3) hold, it follows from Lemma 2.4 that
/Q F(x, 20 )dx = /Q F(x,Z,)dx + /Q F(x,2)dx +o(1). (2.9)
From E(z,) = ¢+ 0(1), E'(z4) = 0(1) and (2.8),(2.9), we obtain
%HEHHP — /QF(x,En)dx =c—E(z) +0(1) (2.10)
and
Eall? = p* /Qp(x,zn)dx — o(1). (2.11)

From (2.11), we may suppose that

- - l
ZalP = 1, /QF(x,zn)dx—>

%7

if | = 0, then we have z, — z in H, we complete the proof. On the contrary, we
ssume | > 0, by the definition of Sr, we have

=~ ~ £
2] = S( || Flx,2)d)7,
then as n — oo we obtain that

P

L= (Spp™ 77)7.

=z

On the other hand, from (2.10) and Lemma 2.3, we have that

LV EG) > S )Y — Bt 0)7
Cc = ———* Z -z — F — 77’,
PP N
PN r
which contradicts ¢ < & (Spp* 7")? — B(A+0)7—.

The following is the classical Deformation Lemma:

Lemma 2.6.(see[1]) Let f € C!(X,R) and satisty (PS) condition. If ¢ € R
and N is any neighborhood of K. = {u € X|f(u) = ¢, f'(u) = 0}, there exist
n(t,x) =n(x) € C([0,1] x X, X) and constants € > € > 0 such that
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(1) no(x) = xforall x € X,

(2) nt(x) = x forall x € f_l[c —€,c+¥€,

(3) 17¢(x) is a homeomorphism of X onto X forall t € [0,1],

(4) f(nr(x)) < f(x) forallx € X,t € [0,1],

(5) 11(Acte — N) C Acye, where A, = {x € X|f(x) < c} foranyc € R,
(6) if K. =0, 171(AC+5) C Ac—e,

(7) if f is even, 1; is odd in x.

Remark 2.7. Lemma 2.6 is also true if f satisfies (PS). condition for ¢ < ¢y for
some ¢y € R.

At the end of this section, we recall some concepts in minimax theory.

Let X be a Banach space, and

Y={ACX\{0}|Aisclosed, —A = A},

and
Yy ={A€Z[v(A) >k},

where (A) is the Z; genus of A, that is

inf{n : there exist odd, continuous h : A — R"\ {0}},
v(A) = ¢ +oo, if it doesn’t exist odd, continuous h: A — R"\ {0},Vn € Z,
0, if A=0.

The main properties of genus are contained in the following lemma.

Lemma 2.8.(see[20]) Let A, B € X. Then

(1) If there exists f € C(A, B), odd, then y(A) < (B).

(2)If A C B, then y(A) < 9(B).

(3) If there exists an odd homeomorphism between A and B, then y(A) =
7(B).

(4) If SN~ is the sphere in RV, then 7(SN~1) = N.

(5) Y(AUB) < v(A) +7(B).

6) If y(A) < oo, then v(A — B) > y(A) — y(B).

(7) If A is compact, then 7(A) < oo, and there exists § > 0 such that y(A) =
7(Ns(A)), where Ns(A) = {x € X|d(x, A) < 5}.

(8) If Xy is a subspace of X with codimension k, and y(A) > k, then AN Xy #
)

3 Proof of Theorem 1.1

We will prove the existence of infinitely many solutions for systems(1.1) in this
section. We try to use Lusternik-Schnirelman’s theory for Z;—invariant func-
tional (see [20]). But since the functional E(z) defined in section 2 is not bounded
from below, so we following [4] to consider a truncated functional E«(z) which
will be constructed later.
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At first, let’s consider the functional E(z), using the Sobolev’s inequality with
the hypothesis 1 < r < p < N, we obtain

1 1
E(z) — EHzHP_;/Q/\V(x)]u]r—i—OV(xﬂqux—/QF(x,z)dx
1oy 1o r <
> EHZH =S V)| (A+0)lzl[, = Sp "Iz
p¥—r
= Cslz[|P — Ca(A +6)|z]|" — Cs|z]|”
_z .
where C3 = %,C4: 1s7¥|V(x)| » ,C5 =Sy " areall positive constants.
p*—r

We now consider function
h(x) = CaxP — C4(A 4 60)x" — CsxP', x >0

by the hypothesis 1 < r < p < p*, we easily know that there exists a A* > 0 such
that for any 0 < (A +6) < A*, we have the following results hold:
(a) h(x) reaches its positive maximum;

_2 N P
(b) 5 (Spp* 7")¥ —B(A+0) = > 0, where B is given in Lemma 2.3.
From the structure of h(x), we see that there are two positive solutions
Ry < Ry of h(x) = 0. Then we can easily know that

<0, x € (0,Ry) U (R, 0),
h(x){ > 0, ie ERl,Ilz)z).( e (31)

Welet 7: RT™ — [0,1] be C* and nonincreasing function such that
T(x) =1, ifx € (0,Ry),

T(x) =0, if x € (Rp, ).

Let ¢(z) = 7(||z||), we consider the truncated functional

Ea(a) = Slall = 1 [ AVl +0v (ol dx = [ F(x,2)0()ix

similar as above, we consider the function
(x) = C3xP — C4(A + 0)x" — Csx” 7(x),
and have that B
Eeo(z) = h(]|z]))- (3.2).

By further analysis, we can see that i(x) > h(x), for all x € (0,0); and h(x) =
h(x), for x € (0,Ry]; and h(x) > 0, for x € [Rp, ). So we have that E(z) = E«(2)
when ||z € (0, Ry], and since T € C®, we get E(z) € C'(H, R). Also we obtain
the following results.
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Lemma 3.1. (1) If E(z) < 0, then ||z|| € (0,R;), and E(w) = E«(w) for all w
in a small enough neighborhood of z.

(2) There exists a A* > 0, such that when 0 < (A +0) < A*, Eo(z) satisfies
the (PS). condition for ¢ < 0.

Proof. We prove (1) by contradiction, assume Ew(z) < 0 and ||z|| € [Ry, ).
Then if ||z|| € [R1, Rz, by (3.1),(3.2), we see that

Eeo(2) > h([|zl]) = R(|lz[l) > ©.
If ||z|| € (Rp, ), by (3.2) and above analysis, we also have that
Ew(z) > h(]lz]l) > 0.

Thus ||z|| € (0,Ry), (1) holds.

Now, we prove (2), let A* as above. If ¢ < 0 and {z,} C H is a (PS), se-
quence of Ee, then we may assume that Ee(z,) < 0 and E,(z,) = 0(1), by (1),
|zn|| € (0, Ry), hence E(z,) = Eco(z4) and E'(z,) = EL(zn). Since (b) hold when
0 < (A +0) < A*, By Lemma 2.5, E(z) satisfies the (PS). condition for ¢ < 0.
Thus E«(z) satisfies the (PS), condition for ¢ < 0, (2) holds. n

Now we prove our main result via genus.

Proof of Theorem 1.1. Let Xy = {A C H—{(0,0)},A isclosed, A = —A,
Y(A) > k}, ¢ = infaey, sup,. 4 Ew(2), Ko = {z € H| Ew(z) = ¢,El(z) = 0},
and suppose that 0 < (A +6) < A*, A* is as above.

We claim that if k,/ € N are such thatc = ¢x = ¢k = -+ = ¢k, then

In fact, we assume

Eof ={z € H| Ex(z) < —¢},
we will show for any k € N, there exist an € = ¢(k) > 0, such that

7(Es'(2)) = k.

Fix k € N, denote Hy be an k-dimensional subspace of H, choose z = (u,v) € Hy,
with ||z|| =1, for 0 < p < Ry, we have

r
E(pz) = Ex(pz) = %pp - %/Q/\V(x)]u]r + 0V (x)|v|"dx — ¥ /QF(x,z)dx.

(3.3)
For Hj is a finite dimension space, all the norms in Hy are equivalent. So we can
define

Ny = sup{]z|5*| z € Hy, ||z|| = 1} < oo, (3.4)
Pr = inf{|z[}| z € H, ||z =1} >0, (3.5)
from (3.3)-(3.5), we have
: r
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Forany e > 0and an 0 < p < R; such that Ex(pz) < —eforz € Hy, ||z]| =1,
let S, = {z € H| ||z|| = p}, then S, N Hy C EL*. By Lemma 2.8, we obtain that

V(Es'(2)) = v(Sp N Hy) = k. (3.6)

Since Eo is continuous and even, with (3.6), we have E_f € X and ¢ = ¢, <
—e < 0. As E is bounded from below, we see that ¢ = ¢, > —oo(This is the main
reason that we consider Eo instead of E). Then by Lemma 3.1 E satisfies (PS).
condition and it is easy to see that K, is a compact set.

Now we prove our claim by contradiction, suppose on the contrary v (K.) < I.
By Lemma 2.8, there is a closed and symmetric set U with K. C U and y(U) < I.
Since ¢ < 0, we also can assume that the closed set U C E2.. By Lemma 2.6, there
exists an odd homeomorphism

n: H—H

such that #(E$S® — U) C ES forsome 0 < § < —c.
From the definition of ¢ = ¢ ;, we know that there is an A € X ; such that

sup Ew(z) < c+9,
z€A

ie., A C ES, and
7(A—U) Cy(ES’ —U) CELY,

that’s meaning
sup Ex(z) <c—6. (3.7)
zen(A-U)

Again by Lemma 2.8, we have
r((A=U)) = v(A-U) =2 v(A) —7(U) = k.

Thus we have (A — U) € Lrandsup, ., 577 Eeo(2) > ¢ = ¢, which contradicts
to (3.7). So we have proved our claim.

Now let’s complete the proof of Theorem 1.1. If for all k € N, we have ¥4, 1 C
Y, Ck < Cpy1 < 0. If all ¢ are distinct, then ¥ (K., ) > 1, and we see that {c,} is a
sequence of distinct negative critical values of E; if for some ko, thereisal > 1
such that ¢ = cx, = ¢xy41 = - -+ = k41, then by the claim, we have

which shows that K. contains infinitely many distinct elements.
By Lemma 3.1, we know E(z) = Ew(z) when Ex(z) < 0, so we show that
there are infinitely many critical points of E(z). Theorem 1.1 is proved. m
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4 Proof of Theorem 1.2.

In this section, we will prove Theorem 1.2 by the following general version of the
Mountain Pass Lemma(see[3]).

Lemma 4.1. Let I be a functional on a Banach space H, I € C!(H,R). Let us
assume that there exists p, R > 0 such that

(i) I(z) > p, Vz € H with ||z|| = R.

(i) I(0) = 0, and I(wp) < p for some wy € H, with ||wy|| > R.

Let us define I' = {y € C([0,1], H)| 7(0) = 0,(1) = wp}, and

= inf max I(7(t)). 4.1
p = inf max 1(7(t)) (41)

Then there exists a sequence {z,} C H, such that I(z,) — p, and I'(z,) — 0 in
H’ (dual of H) as n — co.
Define, for 7 > 0,

N—p

Ny (x)
(77T + |x — xo77)

uy(x) = Np’
14

where ¢(x) € C°(B(xp,2dp)) is such that 0 < ¢(x) < 1, ¢p(x) = 1 on B(xo, o)
and |Vy| < C for some positive constant C.
After a detailed calculation, we have the following estimate

Jq IVuy|Pdx
r

(Ja lug | dx)r

Now we show that (4.2) is valid. Indeed, we have

N—
= S+O(17PT{7), n — 0. (4.2)

2-p

N— _ _ p—1
V”’?(x):”p(pj)( I vy PM_N—f lex L XL )-
(7 4 Jx=xolr 1) 7 P (T = xo[ )

=|z

Let x = x¢ + 1y, by the definition of ), we obtain

_P_
N— _ -1 N-—
[ivugprar = gt [ TRy o
o O (571 + |z — xol TN
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and

% N_ P
[hwlrar = g [ —— P
0 0 (7 4 x = xp TN

N—p

_pP_
where U(x) = (1+ |x|7~1)" 7 € WLP(RN) satisfies

WUVZP(RN) . ’v”|m RN)
= S = inf 7.
Ul (RN) ueWLP(RN)\ {0} |u|Lp (RY)

A direct calculation, we deduce that (4.2) holds.

Proof of Theorem 1.2. By the analysis in section 3, see (a), we know that when
A+ 6 < A* there exist R, p > 0 such that

E(z) > p, forall |z|| =R

On the other hand, since F is positive homogenous of degree p* and 1 <r < p <
p*, for any zg € H, it’s easy to see that

lim E(tZO) = —O00.
t—o0

Choose ty > 0 large enough such that E(t9zo) < p and ||tozo|| > R, set wy = fozo,
then we know that the functional E has the mountain pass geometry.
From (2.7) and (4.1), we only need to show

P N
Vp

p< %(SFP* )

_r
4

— B(A+6)r- (4.3)

then Lemma 4.1 and Lemma 2.5 give the existence of the critical point of E.
Let we take z; = (uy, uﬁ), and

g(t) = J(tzy) = /]Vuﬂpdx—tp /F(x,1,1)|u77|iﬂ*dx.

2 Jo \Vu,ﬂpdx )p*l_p

p* [ F(x,1,1)u dx
Using the definition of u; and F, we obtain t;, < co. We also have

sup J(tzy) = J(tyzy) = ®(n) + ¥(n),

t>0

We can easily see that g(t) attains its maximum at t,;, = (
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where

2t) : .
@) = IV~ Fao L 18 [ a7,

¥(n) =t / (F(x0,1,1) — F(x,1,1)) u, " dx.
(@]
We deduce from (2.3) and (4.2) that

1 ._N 2 Vu,|Pdx
o) < g F(eim 1) 2Ty
fQ|u,7|? dx)?
1 ._N _N-p M
= Nt T (Exo,11) 7 (28)7 + 0@y )
1 P N 7;9
< N(SFP* )P+ 0T,

N
here we use the assumption that 2¥-? M < F(xo,1,1).
It follows from (ds) that there exists pg € (0, dp) such that

0 < F(x0,1,1) — F(x,1,1) < |xo — x| forall x € B(xo,po).

From k > %, noticing that t;, < oo, we have

(F(xo,1,1) = F(x, 1, 1))¢"" |

_P_
-1

P
¥y = oy [

P
(777" [x — xo| 71N
< ¢ ’7”1/ : 2F(x,1,1) v
RN\B(x0.00) (1771 4 |x_x0|p )N
_ k
17,7;71/ P ’x xo’ 2 dx
B(x0,00) (Uﬁ + |x—x0|ﬁ)N
< 2t nll F(xo,1 1)/ |x —x |_;_£V1dx+
> (] — A0
RN\B (x0,00)
Pt (N-1)
v _pv-
11 |x—x0|k T dx
N B(x0,00)
x N +o0 0o _N-p
= Nwn2t, nPNlF(xo,l,l)/ dr + w tpqp 1/0 k13 T dr
©0 0
N _ N (p—l)th,’;* N-p ; N-p
= — Dwn2th n7-1F(x,1,1 T p-1 p-1
(p — D)wn2ty 1771 F(x0,1,1)p0 TN+ P
N-p
= O@rt),
N
where wy = Nr ( ) denotes the volume of the unit ball B(0,1) C RY.
Then we have
1 _ P N N-p
sup J(tzy) < L (Sep™ ") 7 +0(177T)

t>0
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By the definition of E(z) and u,;, and (d1), (d2), we have

1 ‘
"3

2
E(tzy) < ;ﬂ’/ IV, |Pdx = —tp[|VU|Lp 2 o).

Then there exista T € (0,1) and é; > 0 such that for A + 6 < é;

1 _P N r
sup E(tzﬂ) —(Spp™ 7 )r —B(A+0)r-
0<t<T N
Fort > T, we have
supE(tzy) = suplJ(tzy) ——/ AV () 1ty | + OV (x) |y |"dlx]

t>T t>T

1 2 N N-p T"
< L(Spp* )T +0(nTT) — o(A 9—/ rdx.
< s FFrouh o0 [ e

Let 7 € (0, o], then we have

u,|"dx = VP((IZ:%) 1 dx
/B(xo,éo) ] 1 /B(xoﬁo) (,7% + |x — xo|7- 1)r(Np_p)
S L
B(x0,d0) (250W) (Np p)
_ o
where Cg = fB(xo,zSo) de.
Then for any 0 < 1 < ép, we have
1 _P N Nop Tr riN—p
sup E(tzy) < L (Sep™ )7 +0(1771) = Ceo—(A + 0)y 1)

t>T

For any positive constants C7,Cg and any A,6 > 0, choose 7 < min{J,

(p
(CS%JFG))( - '}, we have

r(pr) r(N ”> (p=r)(N—p)
— 2C8(/\ + 9)17 ) < 5 plp (C717 plp-1)  — 2C8(/\ + 9))
r(N—=p)

< —Csol" V(A +0),

Np
=

C717

which implies that there exist 770 > 0 and C9 > 0 such that for all A,6 > 0 and
0<n<no,

r N—p)

N—
o) - c601(A 1 0) P < —Co(A +6).
Then there exists J, > 0 such that when A 4+ 0 < §,, we have

_r
4

—Co(A+6) < —B(A +0)7-
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Then for any # € (0,72), A +6 € (0,62), we have

1 _P N
sup E(tz;) < = (Sgp™ ¥77)7
t£>T N

— B(A+0)7.

Set A** = min{dy,dp, A*}, then forall A + 60 € (0, A**) and 17 € (0,179), we have

sup E(tz,) < l(Spp*_i’ﬂ*)% — B(A+ 9)%
£>0 N
Then we obtain (4.3). This completes the proof of theorem 1.2. n

5 Proof of Theorem 1.3.

We will study the case 1 < p < r < p* and prove theorem 1.3 in this section.
Similar to Lemma 2.5 in section 2, we have the following result.

Lemma 5.1. Assume 1 < p < r < p* and (dy) — (d3) hold. Then E satisfies
the (PS). condition with c satisfying

1 S *_L*
— P
C<N( FP )

=z

(5.1)

Proof. By Lemma 2.3, we know that z, is bounded in H, thereisaz = (1,v) €
H and a subsequence of {z,}, sitll denoted by {z,} such that z, — z. A standard
argument shows that z is a critical point of E, this implies that (E’(z),z) = 0 and

l|z]|? —p*/QF(x,z)dx = /QAV(x)|u|r + 0V (x)|v|"dx.

Thus,

*

E@) = - plallr + (& -

1) /Q F(x,z)dx.

For p < r < p*, we deduce that E(z) > 0 for any A, 6 > 0, the following is similar
to lemma 2.5. we omit it here. [ ]

Now we give the proof of Theorem 1.3.

Proof of Theorem 1.3. From (4.1) and (5.1), we only need to show

P N

1 i— L
p< o (Sep )Y, (52)

then Lemma 4.1 and Lemma 5.1 give the existence of the critical point of E.
To obtain (5.2), Let us choose zg = (ug, up) € H, with

/ F(x,1,1)ul dx > 0, lim E(tzg) = —co,
0O t—o0
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then there exists a fgy > 0 such that sup,., E(tz9) = E(tprz0) holds, and then ty,
satisfies B

-1 _ *—1 *
0=t ||zo||p_(A+9)tgml/QV(x)moyrdx—,g*tgA /QF(x,l,l)ug dx,
then we get
(/\—|—9)/QV(x)|uo|rdx:tg;r||zo||p—p*tgA_r/QF(x,l,l)ug dx,

from p <r < p*, we gettgy — 0as (A +6) — oo. Then there exists A, > 0 such
that for any (A +6) > A,, we have

1 x— e
sup E(fzg) < N(Spp )
£>0

=S|z

Now we take wy = tyzg with ¢ large enough to verify E(wp) < 0, we get

< E(vo(t)),
“—E‘[oa,ﬁ (70(t))

where 7o (t) = twy. Therefore,

1 _E N
u <supE(twg) < —(Spp™ 7")7.
t>0 N
then we have proved (5.2). The proof of Theorem 1.3 is completed. [ ]
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