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Abstract

In this paper, our main purpose is to establish the existence of nontrivial
weak solutions to the following systems:





−△pu = λV(x)|u|r−2u + Fu(x, u, v), x ∈ Ω,
−△pv = θV(x)|v|r−2v + Fv(x, u, v), x ∈ Ω,
u = v = 0, x ∈ ∂Ω,

where Ω is a bounded domain in R
N , λ, θ > 0, △su = div(|∇u|s−2∇u) is

the s-Laplacian of u. We obtain the existence results in two cases: (i)1 < r <

p < N; (ii)1 < p < r < p∗. The existence results of solutions are obtained by
variational methods.

1 Introduction

In this paper, we are interested in finding multiple nontrivial weak solutions to
the following quasilinear elliptic systems





−△pu = λV(x)|u|r−2u + Fu(x, u, v), x ∈ Ω,
−△pv = θV(x)|v|r−2v + Fv(x, u, v), x ∈ Ω,
u = v = 0, x ∈ ∂Ω,

(1.1)
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where Ω is a bounded domain in R
N, λ, θ > 0, and 1 < r < p∗, r 6= p,

p∗ =
Np

N−p if p < N and p∗ = ∞ if p ≥ N is the critical Sobolev exponent,

△su = div(|∇u|s−2∇u) is the s-Laplacian of u.
Recently, more and more attention have been paid to the existence and mul-

tiplicity of nontrivial weak solutions for the elliptic problems involving concave-
convex nonlinearities and critical Soblev exponent. For p = 2, see [2,8,15-16,23],
and the references therein. For the quasilinear problems, the corresponding re-
sults can be found in [4,17,19,25-26]. By the results of the above papers we know
that the number of nontrivial solutions for problem (1.1) is affected by the concave-
convex nonlinearities.

If p = 2, u = v and Fu = |u|2
∗−2u, (1.1) can be reduced to

{
−△u = λV(x)|u|r−2u + |u|2

∗−2u, x ∈ Ω,
u = 0, x ∈ ∂Ω

(1.2)

which is a normal Schrodinger equation and has been widely studied,
see[10,12,21].

The solutions of problem (1.2) corresponding to the critical points of the en-
ergy functional

I(u) =
1

2

∫

Ω

|∇u|2dx −
λ

r

∫

Ω

V(x)|u|rdx −
1

2∗

∫

Ω

|u|2
∗
dx

defined on W1,2
0 (Ω). When r = 2, the pioneer result of Brezis-Nirenberg [8] stud-

ied problem (1.2) and showed that under some suitable conditions, probnlem

(1.2) possesses a positive solution in W1,2
0 (Ω). For more results see [9,18] and

reference therein.
The typically difficulty in dealing with problem (1.2) is that the corresponding

functional I(u) doesn’t satisfy (PS) condition due to the lack of compactness of
the embedding: H1

0 →֒ L2∗(Ω). Hence we couldn’t use the standard variational
methods. However, if 1 < r < 2, the situation is quite different, see [6,24]. The
main essence is that when 1 < r < 2, the functional I(u) is sublinear, when λ is
small enough, I(u) satisfies (PS)c condition for c < 0, so we can look for critical
points of negative critical values of I(u).

Many authors studied the following general p-Laplacian problem
{

−△pu = λV(x)|u|r−2u + |u|p
∗−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.3)

many results valid for problem (1.2) has been extended to problem (1.3). For
example, see [4,19,26]. The main difficulty in extending the results for problem

(1.2) to the corresponding results for problem (1.3) is that W
1,p
0 (Ω) is not a Hilbert

space in general, then more analysis is needed.
We recall some results about problem (1.1) now. When V(x) ≡ 1 and

F(x, u, v) = 2
α+β |u|

α|v|β, α + β = p∗, (1.1) becomes the following case





−△pu = λ|u|r−2u + 2α
α+β |u|

α−2u|v|β, x ∈ Ω,

−△pv = θ|v|r−2v +
2β

α+β |u|
α|v|β−2v, x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

(1.4)
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when p = r = 2, Alves et al [2] considered (1.4) and proved the existence of
least energy solutions for any λ, θ ∈ (0, λ1) and generalized the corresponding
results of [8] to the case of systems (1.4), here λ1 denote the first eigenvalue of op-
erator −△. Subsequently, Han [15] considered the existence of multiple positive
solutions for(1.4) and in [17] T.S.Hsu studied systems (1.4) when 1 < r < p <

N, α + β = p∗, with the help of the Nehari manifold, he proved that problem (1.4)
has at least two positive solutions if the pair of the parameters (λ, µ) belongs to a
certain subset of R2. More results for problem (1.1) see [16,23,25] etc..

In this paper, we will consider the existence and infinitely many weak solu-

tions of problem (1.1). Let us denote the Banach space H = W
1,p
0 (Ω) × W

1,p
0 (Ω)

throughout this paper, and for the functions V(x), F(x, u, v), we add the follow-
ing assumptions:

(d1) Suppose V(x) ∈ L
p∗

p∗−r (Ω) and V(x) > σ > 0 in Ω;
(d2) F : Ω × R × R → R

+ is a C1 function and F(x, tu, tv) = tp∗F(x, u, v)
(t > 0), ∀x ∈ Ω, (u, v) ∈ R2;

(d3) F(x, 0, v) = F(x, u, 0) = Fv(x, 0, v) = Fu(x, u, 0) = 0, where u, v ∈ R;
(d4) F(x, u, v) is even respect to u, v;

(d5) there exist x0 ∈ Ω and k >
N−p
p−1 such that

F(x0, 1, 1) = max
x∈Ω

F(x, 1, 1) ≥ 2
N

N−p M

and
F(x, 1, 1) = F(x0, 1, 1) + o(|x − x0|

k) as x → x0,

where M = max{(x,s,t)∈Ω×R+×R+:sp+tp=1} F(x, s, t) > 0.

Then we have the following results:

Theorem 1.1 Assume 1 < r < p < N, and (d1)− (d4) hold. Then there is a
positive constant Λ

∗ such that for any 0 < λ + θ ≤ Λ
∗, problem (1.1) possesses

infinitely many weak solutions in H.

Theorem 1.2 Assume 1 < r < p < N, (d1)− (d3) and (d5) hold. Then there
is a positive constant Λ

∗∗ such that for any 0 < λ + θ ≤ Λ
∗∗, problem (1.1) pos-

sesses a nontrivial weak solutions in H.

Theorem 1.3. Assume 1 < p < r < p∗ and (d1)− (d3) hold. Then there is a
a positive constant Λ∗, such that for any (λ + θ) > Λ∗, problem (1.1) possesses a
nontrivial weak solutions in H.

Remark 1.4. In [4], J.G.Azvrero and I.P.Aloson obtained that there exists a
nontrivial solution for (1.3) with V(x) ≡ 1 by the Mountain Pass Lemma. In fact,
Theorem 1.3 is an extension of Theorem 3.2 in [4] to systems (1.1).

Remark 1.5. Assume 1 < p < N, Ω be a bounded domain in RN ,

F(x, u, v) = f1(x)(|u|
α |v|β + |u|β|v|α) + f2(x)|u|

p∗

2 |v|
p∗

2 ,



312 H. Yin – Z. Yang

where α + β = p∗, fi ∈ C1(Ω) and satisfy fi(x0) = maxx∈Ω fi(x),

fi(x) = fi(x0) + o(|x − x0|
k) as x → x0

for i = 1, 2. Then it’s easy to see that F(x, u, v) satisfy (d2) − (d5), and it is not
contained in the previous works.

The present paper is organized as follows: in section 2, we give some prelim-
inary results; in section 3- 5, we will give the proofs of Theorem 1.1-1.3 respec-
tively.

2 Preliminaries results

Let H′ be dual of H, 〈, 〉 the duality paring between H′ and H, the norm on H is
given by

‖z‖ = ‖(u, v)‖ = (‖u‖
p
p + ‖v‖

p
p)

1
p

and the norm on Lp(Ω)× Lp(Ω) is given by

|z| = |(u, v)| = (|u|
p
p + |v|

p
p)

1
p

where z = (u, v) ∈ H and ‖ · ‖p, | · |p are the norm on W
1,p
0 (Ω) and Lp(Ω) respec-

tively, that is,

‖u‖p = (
∫

Ω

|∇u|pdx)
1
p , |u|p = (

∫

Ω

|u|pdx)
1
p .

Throughout this paper, we denote weak convergence by ⇀, and denote strong
convergence by →, also we denote positive constants(possibly different) by Ci.

From (d2), we have the so-called Euler identity

z · ∇F(x, z) = p∗F(x, z) (2.1)

and

F(x, z) ≤ M|z|p
∗

for all z ∈ R2, (2.2)

where M is given in section 1.
As usually, we also denote by

S = inf
u∈W

1,p
0 (Ω)\{0}

‖u‖p

(
∫

Ω
|u|p

∗
dx)

p
p∗

the best Sobolev constant for the embedding W
1,p
0 (Ω) in Lp∗(Ω). It is known that

S is independent of Ω and is never achieved except when Ω = RN . Define

SF := inf
(u,v)∈H

{
‖u‖

p
p + ‖v‖

p
p

(
∫

Ω
F(x, u, v)dx)

p
p∗

:
∫

Ω

F(x, u, v)dx > 0}.
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According to (2.2) and the Minkowski inequality, we have

(
∫

Ω

F(x, u, v)dx)
p

p∗ ≤ M
p

p∗ [(
∫

Ω

|u|p
∗
dx)

p
p∗ + (

∫

Ω

|v|p
∗
dx)

p
p∗ ]

≤ M
p

p∗
1

S

∫

Ω

|∇u|p + |∇v|pdx.

Then we obtain that

SF ≥ SM
−

p
p∗ > 0. (2.3)

By (2.1), the corresponding energy functional of problem (1.1) is defined by

E(z) = E(u, v) =
1

p
(‖u‖

p
p + ‖v‖

p
p) +

1

r

∫

Ω

V(x)(λ|u|r + θ|v|r)dx +
∫

Ω

F(x, u, v)dx

for z = (u, v) ∈ H. Under the hypotheses of our theorems, it is obvious that E is a
C1 functional. It is well known that any critical point of E in H is a weak solution
of problem (1.1). Hence, in order to obtain the nontrivial solutions of problem
(1.1), we only need to look for the nontrivial critical points of E in H.

Now, we define the Palais-Smale(PS)-sequence, (PS)-value, and (PS)-conditions
in H for E as follows.

Definition 2.1. (I) For c ∈ R, a sequence {zn} ∈ H is a (PS)c-sequence for E if
E(zn) = c + o(1) and E′(zn) = o(1) strongly in H′ as n → ∞.

(II) c ∈ R is a (PS)-value for E if there exists a (PS)c-sequence in H for E.
(III) E satisfies the (PS)c-condition in H if every (PS)c-sequence in H for E con-

tains a convergent sub-sequence.

Now we give some results for the proof of main results.

Lemma 2.2. Assume 1 < r < p∗, r 6= p and (d1)− (d2) hold. If {zn} ⊂ H is a
(PS)c secquence for E, then {zn} is bounded in H.

Proof. Let zn = (un, vn) be a (PS)c secquence for E. We argue by contradiction.
Assume that ‖zn‖ → ∞. Let

zn = (un, vn) =
zn

‖zn‖
= (

un

‖zn‖
,

vn

‖zn‖
).

Then ‖zn‖ = 1, we may assume that zn ⇀ z = (u, v) in H. Thus we have that

un → u, vn → v in Ls(Ω), 1 ≤ s < p∗

and
∫

Ω

λV(x)|un|
r + θV(x)|vn|

rdx =
∫

Ω

λV(x)|u|r + θV(x)|v|rdx + o(1). (2.4)

Since {zn} ⊂ H is a (PS)c secquence for E and ‖zn‖ → ∞, we have

1

p

∫

Ω

|∇un|
p + |∇vn|

pdx −
‖zn‖r−p

r

∫

Ω

λV(x)|un|
r + θV(x)|vn|

rdx−

‖zn‖
p∗−p

∫

Ω

F(x, un, vn)dx = o(1) (2.5)
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and

∫

Ω

|∇un|
p + |∇vn|

pdx − ‖zn‖
r−p

∫

Ω

λV(x)|un|
r + θV(x)|vn|

rdx−

p∗‖zn‖
p∗−p

∫

Ω

F(x, un, vn)dx = o(1). (2.6)

From (2.4)-(2.6), we can deduce that

(
p∗

p
− 1)

∫

Ω

|∇un|
p + |∇vn|

pdx =

(
p∗

r
− 1)‖zn‖

r−p
∫

Ω

λV(x)|u|r + θV(x)|v|rdx + o(1).

Since 1 < r < p∗, r 6= p and ‖zn‖ → ∞, we deduce that when r < p

∫

Ω

|∇un|
p + |∇vn|

pdx → 0, as n → ∞,

when r > p ∫

Ω

|∇un|
p + |∇vn|

pdx → ∞, as n → ∞,

which is contrary to the fact ‖zn‖ = 1.

Lemma 2.3. Assume 1 < r < p and (d1)− (d3) hold. If {zn} ⊂ H is a (PS)c

secquence for E, then there exist z ∈ H and B > 0 such that

E(z) ≥ −B(λ + θ)
p

p−r ,

where B will be given later.
Proof. By Lemma 2.2, we know that zn is bounded in H, there is a

z = (u, v) ∈ H and a subsequence of {zn}, sitll denoted by {zn} such that






zn = (un, vn) ⇀ (u, v) = z, in H;
zn = (un, vn) → (u, v) = z, in Ls(Ω)× Ls(Ω), 1 ≤ s < p∗;
zn = (un, vn) → (u, v) = z, a.e. in Ω;
∇zn = (∇un,∇vn) → (∇u,∇v) = ∇z, a.e. in Ω.

Consequently, passing to the limit in 〈E′(zn), (φ, ϕ)〉 as n → ∞, together with
(d1)− (d3), we have

∫

Ω

|∇u|p−2∇u∇φdx − λ
∫

Ω

V(x)|u|r−2uφdx −
∫

Ω

Fu(x, u, v)φdx = 0

and
∫

Ω

|∇v|p−2∇v∇ϕdx − θ
∫

Ω

V(x)|v|r−2vϕdx −
∫

Ω

Fv(x, u, v)ϕdx = 0

for all (φ, ϕ) ∈ H.
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It shows that z is a critical point of E, then we have 〈E′(z), z〉 = 0 and

‖z‖p −
∫

Ω

λV(x)|u|r + θV(x)|u|r dx = p∗
∫

Ω

F(x, u, v)dx.

Thus,

E(z) = (
1

p
−

1

p∗
)‖z‖p − (

1

r
−

1

p∗
)
∫

Ω

λV(x)|u|r + θV(x)|v|rdx.

By the Hölder inequality, the Young inequality, and the Sobolev embedding the-
orem, we have

E(z) ≥
1

N
‖z‖p − (

1

r
−

1

p∗
)|V(x)| p∗

p∗−r

(λ|u|rp∗ + θ|v|rp∗)

≥
1

N
‖z‖p − (

1

r
−

1

p∗
)S

− r
p |V(x)| p∗

p∗−r

(λ + θ)‖z‖r
p .

Consider the following function,

g(x) = C1xp − C2(λ + θ)xr , x > 0

where C1 = 1
N , C2 = (1

r −
1
p∗ )S

− r
q

q |V(x)| p∗

p∗−r

are positive constants. It is easy to see

the function obtains its absolute minimum(for x > 0) at point x0 = (C2r(λ+θ)
C1 p )

1
p−r ,

then we have

g(x) ≥ g(x0) = −B(λ + θ)
p

p−r ,

where B = C
−r
p−r

1 C
p

p−r

2 ( r
p )

r
p−r (1 − r

p) > 0 is independent of λ, θ. Then we obtain

E(z) ≥ −B(λ + θ)
p

p−r .�

In addition, we need the following version of the Brezis-Lieb lemma[7].

Lemma 2.4. Assume that G ∈ C1(Ω, R2) with G(x, 0, 0) = 0 and | ∂G
∂u (z)|,

| ∂G
∂v (z)| ≤ C|z|s−1 for some 1 ≤ s < ∞. Let zn be a bounded sequence in Ls(Ω)×

Ls(Ω), and such that zn ⇀ z in H. Then, as n → ∞,
∫

Ω

G(x, zn)dx =
∫

Ω

G(x, zn − z)dx +
∫

Ω

G(x, z)dx + o(1).

Lemma 2.5. Assume 1 < r < p and (d1)− (d3) hold. Then E satisfies the (PS)c

condition with c satisfying

c <
1

N
(SF p∗

−
p

p∗ )
N
p − B(λ + θ)

p
p−r . (2.7)

Proof. Suppose {zn = (un, vn)} ⊂ H is a (PS)c sequence of E with

c < 1
N (SF p∗

−
p

p∗ )
N
p − B(λ + θ)

p
p−r , i.e.,

E(zn) = c + o(1), E′(zn) = o(1),
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by Lemma 2.2, we may assume there exist a subsequence of {zn} and z = (u, v) ∈
H such that zn ⇀ z in H. By the argument in Lemma 2.3, we have

∫

Ω

λV(x)|un |
r + θV(x)|vn|

rdx =
∫

Ω

λV(x)|u|r + θV(x)|v|rdx + o(1)

and
〈E′(z), z〉 = 0.

Let ṽn = un − u, ṽn = vn − v and z̃n = (ũn, ṽn). Then by Lemma 2.4, we
deduce that

‖z̃n‖
p = ‖zn‖

p − ‖z‖p + o(1). (2.8)

Since (d2) and (d3) hold, it follows from Lemma 2.4 that
∫

Ω

F(x, zn)dx =
∫

Ω

F(x, z̃n)dx +
∫

Ω

F(x, z)dx + o(1). (2.9)

From E(zn) = c + o(1), E′(zn) = o(1) and (2.8),(2.9), we obtain

1

p
‖z̃n‖

p −
∫

Ω

F(x, z̃n)dx = c − E(z) + o(1) (2.10)

and

‖z̃n‖
p − p∗

∫

Ω

F(x, z̃n)dx = o(1). (2.11)

From (2.11), we may suppose that

‖z̃n‖
p → l,

∫

Ω

F(x, z̃n)dx →
l

p∗
,

if l = 0, then we have zn → z in H, we complete the proof. On the contrary, we
ssume l > 0, by the definition of SF, we have

‖z̃n‖
p ≥ SF(

∫

Ω

F(x, z̃n)dx)
p

p∗ ,

then as n → ∞ we obtain that

l ≥ (SF p∗
−

p
p∗ )

N
p .

On the other hand, from (2.10) and Lemma 2.3, we have that

c =
l

p
−

l

p∗
+ E(z) ≥

1

N
(SF p∗

−
p

p∗ )
N
p − B(λ + θ)

p
p−r ,

which contradicts c < 1
N (SF p∗

−
p

p∗ )
N
p − B(λ + θ)

p
p−r .

The following is the classical Deformation Lemma:

Lemma 2.6.(see[1]) Let f ∈ C1(X, R) and satisfy (PS) condition. If c ∈ R

and N is any neighborhood of Kc
.
= {u ∈ X| f (u) = c, f ′(u) = 0}, there exist

η(t, x) ≡ ηt(x) ∈ C([0, 1]× X, X) and constants ǫ > ǫ > 0 such that
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(1) η0(x) = x for all x ∈ X,
(2) ηt(x) = x for all x ∈ f−1[c − ǫ, c + ǫ],
(3) ηt(x) is a homeomorphism of X onto X for all t ∈ [0, 1],
(4) f (ηt(x)) ≤ f (x) for all x ∈ X, t ∈ [0, 1],
(5) η1(Ac+ǫ − N) ⊂ Ac+ǫ, where Ac = {x ∈ X| f (x) ≤ c} for any c ∈ R,
(6) if Kc = Ø, η1(Ac+ǫ) ⊂ Ac−ǫ,
(7) if f is even, ηt is odd in x.

Remark 2.7. Lemma 2.6 is also true if f satisfies (PS)c condition for c < c0 for
some c0 ∈ R.

At the end of this section, we recall some concepts in minimax theory.

Let X be a Banach space, and

Σ = {A ⊂ X \ {0}|A is closed, −A = A},

and

Σk = {A ∈ Σ|γ(A) ≥ k},

where γ(A) is the Z2 genus of A, that is

γ(A) =





inf{n : there exist odd, continuous h : A → Rn \ {0}},
+∞, if it doesn’t exist odd, continuous h : A → Rn \ {0}, ∀n ∈ Z+,
0, if A = Ø.

The main properties of genus are contained in the following lemma.

Lemma 2.8.(see[20]) Let A, B ∈ Σ. Then
(1) If there exists f ∈ C(A, B), odd, then γ(A) ≤ γ(B).
(2) If A ⊂ B, then γ(A) ≤ γ(B).
(3) If there exists an odd homeomorphism between A and B, then γ(A) =

γ(B).
(4) If SN−1 is the sphere in RN, then γ(SN−1) = N.

(5) γ(A ∪ B) ≤ γ(A) + γ(B).
(6) If γ(A) < ∞, then γ(A − B) ≥ γ(A)− γ(B).
(7) If A is compact, then γ(A) < ∞, and there exists δ > 0 such that γ(A) =

γ(Nδ(A)), where Nδ(A) = {x ∈ X|d(x, A) ≤ δ}.
(8) If X0 is a subspace of X with codimension k, and γ(A) > k, then A ∩ X0 6=

Ø.

3 Proof of Theorem 1.1

We will prove the existence of infinitely many solutions for systems(1.1) in this
section. We try to use Lusternik-Schnirelman’s theory for Z2−invariant func-
tional (see [20]). But since the functional E(z) defined in section 2 is not bounded
from below, so we following [4] to consider a truncated functional E∞(z) which
will be constructed later.
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At first, let’s consider the functional E(z), using the Sobolev’s inequality with
the hypothesis 1 < r < p < N, we obtain

E(z) =
1

p
‖z‖p −

1

r

∫

Ω

λV(x)|u|r + θV(x)|u|rdx −
∫

Ω

F(x, z)dx

≥
1

p
‖z‖p −

1

r
S
− r

p |V(x)| p∗

p∗−r

(λ + θ)‖z‖r
p − S

−
p∗

p

F ‖z‖p∗

= C3‖z‖p − C4(λ + θ)‖z‖r − C5‖z‖p∗

where C3 = 1
p , C4 =

1
r S

− r
p |V(x)| p∗

p∗−r

, C5 = S
−

p∗

p

F are all positive constants.

We now consider function

h(x) = C3xp − C4(λ + θ)xr − C5xp∗ , x > 0

by the hypothesis 1 < r < p < p∗, we easily know that there exists a Λ
∗
> 0 such

that for any 0 < (λ + θ) ≤ Λ
∗, we have the following results hold:

(a) h(x) reaches its positive maximum;

(b) 1
N (SF p∗

−
p

p∗ )
N
p − B(λ + θ)

p
p−r ≥ 0, where B is given in Lemma 2.3.

From the structure of h(x), we see that there are two positive solutions
R1 < R2 of h(x) = 0. Then we can easily know that

h(x)

{
< 0, x ∈ (0, R1) ∪ (R2, ∞),
> 0, x ∈ (R1, R2).

(3.1)

We let τ : R+ → [0, 1] be C∞ and nonincreasing function such that

τ(x) = 1, if x ∈ (0, R1),

τ(x) = 0, if x ∈ (R2, ∞).

Let ϕ(z) = τ(‖z‖), we consider the truncated functional

E∞(z) =
1

p
‖z‖p −

1

r

∫

Ω

λV(x)|u|r + θV(x)|v|rdx −
∫

Ω

F(x, z)ϕ(z)dx,

similar as above, we consider the function

h(x) = C3xp − C4(λ + θ)xr − C5xp∗τ(x),

and have that
E∞(z) ≥ h(‖z‖). (3.2).

By further analysis, we can see that h(x) ≥ h(x), for all x ∈ (0, ∞); and h(x) =
h(x), for x ∈ (0, R1]; and h(x) ≥ 0, for x ∈ [R2, ∞). So we have that E(z) = E∞(z)
when ‖z‖ ∈ (0, R1], and since τ ∈ C∞, we get E∞(z) ∈ C1(H, R). Also we obtain
the following results.
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Lemma 3.1. (1) If E∞(z) < 0, then ‖z‖ ∈ (0, R1), and E(w) = E∞(w) for all w
in a small enough neighborhood of z.

(2) There exists a Λ
∗
> 0, such that when 0 < (λ + θ) ≤ Λ

∗, E∞(z) satisfies
the (PS)c condition for c < 0.

Proof. We prove (1) by contradiction, assume E∞(z) < 0 and ‖z‖ ∈ [R1, ∞).
Then if ‖z‖ ∈ [R1, R2], by (3.1),(3.2), we see that

E∞(z) ≥ h(‖z‖) ≥ h(‖z‖) ≥ 0.

If ‖z‖ ∈ (R2, ∞), by (3.2) and above analysis, we also have that

E∞(z) ≥ h(‖z‖) ≥ 0.

Thus ‖z‖ ∈ (0, R1), (1) holds.
Now, we prove (2), let Λ

∗ as above. If c < 0 and {zn} ⊂ H is a (PS)c se-
quence of E∞, then we may assume that E∞(zn) < 0 and E′

∞(zn) = o(1), by (1),
‖zn‖ ∈ (0, R1), hence E(zn) = E∞(zn) and E′(zn) = E′

∞(zn). Since (b) hold when
0 < (λ + θ) ≤ Λ

∗, By Lemma 2.5, E(z) satisfies the (PS)c condition for c < 0.
Thus E∞(z) satisfies the (PS)c condition for c < 0, (2) holds.

Now we prove our main result via genus.

Proof of Theorem 1.1. Let Σk = {A ⊂ H − {(0, 0)}, A is closed, A = −A,
γ(A) ≥ k}, ck = infA∈Σk

supz∈A E∞(z), Kc = {z ∈ H| E∞(z) = c, E′
∞(z) = 0},

and suppose that 0 < (λ + θ) ≤ Λ
∗, Λ

∗ is as above.
We claim that if k, l ∈ N are such that c = ck = ck+1 = · · · = ck+l, then

γ(Kc) ≥ l + 1.
In fact, we assume

E−ε
∞ = {z ∈ H| E∞(z) ≤ −ε},

we will show for any k ∈ N, there exist an ε = ε(k) > 0, such that

γ(E−ε
∞ (z)) ≥ k.

Fix k ∈ N, denote Hk be an k-dimensional subspace of H, choose z = (u, v) ∈ Hk,
with ‖z‖ = 1, for 0 < ρ < R1, we have

E(ρz) = E∞(ρz) =
1

p
ρp −

ρr

r

∫

Ω

λV(x)|u|r + θV(x)|v|rdx − ρp∗
∫

Ω

F(x, z)dx.

(3.3)
For Hk is a finite dimension space, all the norms in Hk are equivalent. So we can
define

αk = sup{|z|
p∗

p∗ | z ∈ Hk, ‖z‖ = 1} < ∞, (3.4)

βk = inf{|z|rr | z ∈ Hk, ‖z‖ = 1} > 0, (3.5)

from (3.3)-(3.5), we have

E∞(ρz) ≤
1

p
ρp − σβk

min{λ, θ}ρr

r
+ ρp∗Mαk.
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For any ε > 0 and an 0 < ρ < R1 such that E∞(ρz) ≤ −ε for z ∈ Hk, ‖z‖ = 1,
let Sρ = {z ∈ H| ‖z‖ = ρ}, then Sρ ∩ Hk ⊂ E−ε

∞ . By Lemma 2.8, we obtain that

γ(E−ε
∞ (z)) ≥ γ(Sρ ∩ Hk) = k. (3.6)

Since E∞ is continuous and even, with (3.6), we have E−ε
∞ ∈ Σk and c = ck ≤

−ε < 0. As E∞ is bounded from below, we see that c = ck > −∞(This is the main
reason that we consider E∞ instead of E). Then by Lemma 3.1 E∞ satisfies (PS)c

condition and it is easy to see that Kc is a compact set.
Now we prove our claim by contradiction, suppose on the contrary γ(Kc) ≤ l.

By Lemma 2.8, there is a closed and symmetric set U with Kc ⊂ U and γ(U) ≤ l.
Since c < 0, we also can assume that the closed set U ⊂ E0

∞. By Lemma 2.6, there
exists an odd homeomorphism

η : H → H

such that η(Ec+δ
∞ − U) ⊂ Ec−δ

∞ for some 0 < δ < −c.
From the definition of c = ck+l, we know that there is an A ∈ Σk+l such that

sup
z∈A

E∞(z) < c + δ,

i.e., A ⊂ Ec+δ
∞ , and

η(A − U) ⊂ η(Ec+δ
∞ − U) ⊂ Ec−δ

∞ ,

that’s meaning
sup

z∈η(A−U)

E∞(z) ≤ c − δ. (3.7)

Again by Lemma 2.8, we have

γ(η(A − U)) ≥ γ(A − U) ≥ γ(A)− γ(U) ≥ k.

Thus we have η(A − U) ∈ Σk and supz∈η(A−U) E∞(z) ≥ ck = c, which contradicts

to (3.7). So we have proved our claim.
Now let’s complete the proof of Theorem 1.1. If for all k ∈ N, we have Σk+1 ⊂

Σk, ck ≤ ck+1 < 0. If all ck are distinct, then γ(Kck
) ≥ 1, and we see that {ck} is a

sequence of distinct negative critical values of E∞; if for some k0, there is a l ≥ 1
such that c = ck0

= ck0+1 = · · · = ck0+l, then by the claim, we have

γ(Kc) ≥ l + 1,

which shows that Kc contains infinitely many distinct elements.
By Lemma 3.1, we know E(z) = E∞(z) when E∞(z) < 0, so we show that

there are infinitely many critical points of E(z). Theorem 1.1 is proved.
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4 Proof of Theorem 1.2.

In this section, we will prove Theorem 1.2 by the following general version of the
Mountain Pass Lemma(see[3]).

Lemma 4.1. Let I be a functional on a Banach space H, I ∈ C1(H, R). Let us
assume that there exists ρ, R > 0 such that

(i) I(z) > ρ, ∀z ∈ H with ‖z‖ = R.
(ii) I(0) = 0, and I(w0) < ρ for some w0 ∈ H, with ‖w0‖ > R.

Let us define Γ = {γ ∈ C([0, 1], H)| γ(0) = 0, γ(1) = w0}, and

µ = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)). (4.1)

Then there exists a sequence {zn} ⊂ H, such that I(zn) → µ, and I ′(zn) → 0 in
H′ (dual of H) as n → ∞.

Define, for η > 0,

uη(x) =
η

N−p
p(p−1)ψ(x)

(η
p

p−1 + |x − x0|
p

p−1 )
N−p

p

,

where ψ(x) ∈ C∞

0 (B(x0, 2δ0)) is such that 0 ≤ ψ(x) ≤ 1, ψ(x) ≡ 1 on B(x0, δ0)
and |∇ψ| ≤ C for some positive constant C.

After a detailed calculation, we have the following estimate

∫
Ω
|∇uη |pdx

(
∫

Ω
|uη |p

∗
dx)

p
p∗

= S + O(η
N−p
p−1 ), η → 0. (4.2)

Now we show that (4.2) is valid. Indeed, we have

∇uη(x) = η
N−p

p(p−1) (
∇ψ

(η
p

p−1 + |x − x0|
p

p−1 )
N−p

p

−
N − p

p − 1

ψ|x − x0|
2−p
p−1 x

(η
p

p−1 + |x − x0|
p

p−1 )
N
p

).

Let x = x0 + ηy, by the definition of ψ, we obtain

∫

Ω

|∇uη |
pdx = η

N−p
p−1

∫

Ω

|x − x0|
p

p−1

(η
p

p−1 + |x − x0|
p

p−1 )N
dx + O(η

N−p
p−1 )

= η
N−p
p−1

∫

RN

|x − x0|
p

p−1

(η
p

p−1 + |x − x0|
p

p−1 )N
dx + O(η

N−p
p−1 )

=
∫

RN

|y|
p

p−1

(1 + |y|
p

p−1 )N
dy + O(η

N−p
p−1 )

= |∇U|
p

Lp(RN)
+ O(η

N−p
p−1 ),
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and
∫

Ω

|uη |
p∗dx = η

N
p−1

∫

Ω

ψp∗

(η
p

p−1 + |x − x0|
p

p−1 )N
dx

= η
N

p−1

∫

B(x0,δ0)

1

(η
p

p−1 + |x − x0|
p

p−1 )N
dx + O(η

N
p−1 )

= η
N

p−1

∫

RN

1

(η
p

p−1 + |x − x0|
p

p−1 )N
dx + O(η

N
p−1 )

=
∫

RN

1

(1 + |y|
p

p−1 )N
dy + O(η

N
p−1 )

= |U|
p∗

Lp∗ (RN)
+ O(η

N
p−1 ),

where U(x) = (1 + |x|
p

p−1 )
−

N−p
p ∈ W1,p(RN) satisfies

|∇U|
p

Lp(RN)

|U|
p

Lp∗ (RN)

= S = inf
u∈W1,p(RN)\{0}

|∇u|
p

Lp(RN)

|u|
p

Lp∗ (RN)

.

A direct calculation, we deduce that (4.2) holds.

Proof of Theorem 1.2. By the analysis in section 3, see (a), we know that when
λ + θ < Λ

∗ there exist R, ρ > 0 such that

E(z) > ρ, for all ‖z‖ = R.

On the other hand, since F is positive homogenous of degree p∗ and 1 < r < p <

p∗, for any z0 ∈ H, it’s easy to see that

lim
t→∞

E(tz0) = −∞.

Choose t0 > 0 large enough such that E(t0z0) < ρ and ‖t0z0‖ > R, set w0 = t0z0,
then we know that the functional E has the mountain pass geometry.

From (2.7) and (4.1), we only need to show

µ <
1

N
(SF p∗

−
p

p∗ )
N
p − B(λ + θ)

p
p−r , (4.3)

then Lemma 4.1 and Lemma 2.5 give the existence of the critical point of E.
Let we take zη = (uη , uη), and

g(t) = J(tzη) =
2tp

p

∫

Ω

|∇uη |
pdx − tp∗

∫

Ω

F(x, 1, 1)|uη |
p∗dx.

We can easily see that g(t) attains its maximum at tη = (
2
∫

Ω
|∇uη|pdx

p∗
∫

Ω
F(x,1,1)u

p∗
η dx

)
1

p∗−p .

Using the definition of uη and F, we obtain tη < ∞. We also have

sup
t≥0

J(tzη) = J(tηzη) = Φ(η) + Ψ(η),
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where

Φ(η) =
2t

p
η

p
|∇uη |

p − F(x0, 1, 1)t
p∗

η

∫

Ω

|uη |
p∗dx,

Ψ(η) = t
p∗

η

∫

Ω

(F(x0, 1, 1)− F(x, 1, 1))|uη |
p∗dx.

We deduce from (2.3) and (4.2) that

Φ(η) ≤
1

N
p∗

− N
p∗ (F(x0 , 1, 1))

−
N−p

p [
2
∫

Ω
|∇uη |pdx

(
∫

Ω
|uη |p

∗
dx)

p
p∗
]

N
p

=
1

N
p∗

− N
p∗ (F(x0 , 1, 1))

−
N−p

p (2S)
N
p + O(η

N−p
p−1 )

≤
1

N
(SF p∗

−
p

p∗ )
N
p + O(η

N−p
p−1 ),

here we use the assumption that 2
N

N−p M ≤ F(x0, 1, 1).
It follows from (d5) that there exists ρ0 ∈ (0, δ0) such that

0 ≤ F(x0, 1, 1)− F(x, 1, 1) ≤ |x0 − x|k for all x ∈ B(x0, ρ0).

From k >
N−p
p−1 , noticing that tη < ∞, we have

Ψ(η) = t
p∗

η η
N

p−1

∫

Ω

(F(x0, 1, 1)− F(x, 1, 1))ψp∗

(η
p

p−1 + |x − x0|
p

p−1 )N
dx

≤ t
p∗

η η
N

p−1

∫

RN\B(x0,ρ0)

2F(x0, 1, 1)

(η
p

p−1 + |x − x0|
p

p−1 )N
dx

+t
p∗

η η
N

p−1

∫

B(x0,ρ0)

|x − x0|
k

(η
p

p−1 + |x − x0|
p

p−1 )N
dx

≤ 2t
p∗

η η
N

p−1 F(x0, 1, 1)
∫

RN\B(x0,ρ0)
|x − x0|

−
pN
p−1 dx +

t
p∗

η η
N−p
p−1

N

∫

B(x0,ρ0)
|x − x0|

k−
p(N−1)

p−1 dx

= NωN2t
p∗

η η
N

p−1 F(x0, 1, 1)
∫ +∞

ρ0

r
− N

p−1−1
dr + ωNt

p∗

η η
N−p
p−1

∫ ρ0

0
r

k−1−
N−p
p−1 dr

= (p − 1)ωN2t
p∗

η η
N

p−1 F(x0, 1, 1)ρ0
− N

p−1 +
(p − 1)ωNt

p∗

η

k(p − 1)− N + p
η

N−p
p−1 ρ0

k−
N−p
p−1

= O(η
N−p
p−1 ),

where ωN = 2π
N
2

NΓ( N
2 )

denotes the volume of the unit ball B(0, 1) ⊂ RN .

Then we have

sup
t≥0

J(tzη) ≤
1

N
(SF p∗

−
p

p∗ )
N
p + O(η

N−p
p−1 ).
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By the definition of E(z) and uη , and (d1), (d2), we have

E(tzη) ≤
2

p
tp

∫

Ω

|∇uη |
pdx =

2

p
tp[|∇U|

p

Lp(RN)
+ O(η

N−p
p−1 )].

Then there exist a T ∈ (0, 1) and δ1 > 0 such that for λ + θ < δ1

sup
0≤t≤T

E(tzη) ≤
1

N
(SF p∗

−
p

p∗ )
N
p − B(λ + θ)

p
p−r .

For t ≥ T, we have

sup
t≥T

E(tzη) = sup
t≥T

[J(tzη)−
tr

r

∫

Ω

λV(x)|uη |
r + θV(x)|uη |

rdx]

≤
1

N
(SF p∗

−
p

p∗ )
N
p + O(η

N−p
p−1 )− σ(λ + θ)

Tr

r

∫

B(x0,δ0)
|uη |

rdx.

Let η ∈ (0, δ0], then we have

∫

B(x0,δ0)
|uη |

rdx = η
r(N−p)
p(p−1)

∫

B(x0,δ0)

1

(η
p

p−1 + |x − x0|
p

p−1 )
r(N−p)

p

dx

≥ η
r(N−p)
p(p−1)

∫

B(x0,δ0)

1

(2δ0

p
p−1 )

r(N−p)
p

dx

= C6η
r(N−p)
p(p−1) ,

where C6 =
∫

B(x0,δ0)
1

(2δ0

p
p−1 )

r(N−p)
p

dx.

Then for any 0 < η ≤ δ0, we have

sup
t≥T

E(tzη) ≤
1

N
(SF p∗

−
p

p∗ )
N
p + O(η

N−p
p−1 )− C6σ

Tr

r
(λ + θ)η

r(N−p)
p(p−1) .

For any positive constants C7, C8 and any λ, θ > 0, choose η < min{δ0,

(C8(λ+θ)
C7

)
p(p−1)

(p−r)(N−p)}, we have

C7η
N−p
p−1 − 2C8(λ + θ)η

r(N−p)
p(p−1) < δ

r(N−p)
p(p−1)

0 (C7η
(p−r)(N−p)

p(p−1) − 2C8(λ + θ))

< −C8δ
r(N−p)
p(p−1)

0 (λ + θ),

which implies that there exist η0 > 0 and C9 > 0 such that for all λ, θ > 0 and
0 < η < η0,

O(η
N−p
p−1 )− C6σ

Tr

r
(λ + θ)η

r(N−p)
p(p−1) < −C9(λ + θ).

Then there exists δ2 > 0 such that when λ + θ < δ2, we have

−C9(λ + θ) < −B(λ + θ)
p

p−r .
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Then for any η ∈ (0, η2), λ + θ ∈ (0, δ2), we have

sup
t≥T

E(tzη) ≤
1

N
(SF p∗

−
p

p∗ )
N
p − B(λ + θ)

p
p−r .

Set Λ
∗∗ = min{δ1, δ2, Λ

∗}, then for all λ + θ ∈ (0, Λ
∗∗) and η ∈ (0, η0), we have

sup
t≥0

E(tzη) ≤
1

N
(SF p∗

−
p

p∗ )
N
p − B(λ + θ)

p
p−r .

Then we obtain (4.3). This completes the proof of theorem 1.2.

5 Proof of Theorem 1.3.

We will study the case 1 < p < r < p∗ and prove theorem 1.3 in this section.
Similar to Lemma 2.5 in section 2, we have the following result.

Lemma 5.1. Assume 1 < p < r < p∗ and (d1)− (d3) hold. Then E satisfies
the (PS)c condition with c satisfying

c <
1

N
(SF p∗

−
p

p∗ )
N
p . (5.1)

Proof. By Lemma 2.3, we know that zn is bounded in H, there is a z = (u, v) ∈
H and a subsequence of {zn}, sitll denoted by {zn} such that zn ⇀ z. A standard
argument shows that z is a critical point of E, this implies that 〈E′(z), z〉 = 0 and

‖z‖p − p∗
∫

Ω

F(x, z)dx =
∫

Ω

λV(x)|u|r + θV(x)|v|rdx.

Thus,

E(z) = (
1

p
−

1

r
)‖z‖p + (

p∗

r
− 1)

∫

Ω

F(x, z)dx.

For p < r < p∗, we deduce that E(z) > 0 for any λ, θ > 0, the following is similar
to lemma 2.5. we omit it here.

Now we give the proof of Theorem 1.3.

Proof of Theorem 1.3. From (4.1) and (5.1), we only need to show

µ <
1

N
(SF p∗

−
p

p∗ )
N
p , (5.2)

then Lemma 4.1 and Lemma 5.1 give the existence of the critical point of E.
To obtain (5.2), Let us choose z0 = (u0, u0) ∈ H, with

∫

Ω

F(x, 1, 1)u
p∗

0 dx > 0, lim
t→∞

E(tz0) = −∞,
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then there exists a tθλ > 0 such that supt≥0 E(tz0) = E(tθλz0) holds, and then tθλ

satisfies

0 = t
p−1
θλ ‖z0‖

p − (λ + θ)tr−1
θλ

∫

Ω

V(x)|u0|
rdx − p∗t

p∗−1
θλ

∫

Ω

F(x, 1, 1)u
p∗

0 dx,

then we get

(λ + θ)
∫

Ω

V(x)|u0|
rdx = t

p−r
θλ ‖z0‖

p − p∗t
p∗−r
θλ

∫

Ω

F(x, 1, 1)u
p∗

0 dx,

from p < r < p∗, we get tθλ → 0 as (λ + θ) → ∞. Then there exists Λ∗ > 0 such
that for any (λ + θ) > Λ∗, we have

sup
t≥0

E(tz0) <
1

N
(SF p∗

−
p

p∗ )
N
p .

Now we take w0 = t0z0 with t0 large enough to verify E(w0) < 0, we get

α ≤ max
t∈[0,1]

E(γ0(t)),

where γ0(t) = tw0. Therefore,

µ ≤ sup
t≥0

E(tw0) <
1

N
(SF p∗

−
p

p∗ )
N
p .

then we have proved (5.2). The proof of Theorem 1.3 is completed.
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