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Abstract

Using the order structure of the lattice DP(X) of density preserving con-
tinuous maps on a Hausdorff space X without isolated points, we describe
closed nowhere dense subsets of X and, for a subspace A of X, we also de-
duce topological properties of the space X− A from the lattice theoretic prop-
erties of DP(X, A). Finally, we use them to obtain Thrivikraman’s results
concerning βX − X and K(X) and, Magill’s result concerning the automor-
phism group of the lattice K(X).

1 Introduction

In [5], we have studied DP(X), the poset of all equivalence classes of density pre-
serving maps obtained by identifying equivalent density preserving maps on X.
We observe that for a compact Hausdorff space X, DP(X) is a complete lattice
and we have characterized it by proving that for countably compact T3 spaces
X and Y without isolated points, lattice DP(X) is isomorphic to lattice DP(Y) if
and only if X and Y are homeomorphic. In fact, if lattice DP(X) is isomorphic
to lattice DP(Y) then we obtain a bijective map F : X → Y preserving closed
nowhere dense sets, which turns out to be a homeomorphism if X and Y are
countably compact T3 spaces without isolated points. In this paper we describe
closed nowhere dense subsets of a Hausdorff space X without isolated points us-
ing the order structure of the lattice DP(X). Consequently, we obtain Thrivikra-
man’s [6] and Magill’s [3] results concerning Stone-Čech remainder. For survey
article on such posets see [2].
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Throughout spaces considered are Hausdorff and maps are continuous. A
map f : X −→ Y is called a density preserving map if IntCl f (A) 6= φ, whenever
IntA 6= φ, A ⊆ X [1]. Two density preserving maps f and g each having domain
X and range R f and Rg respectively are said to be equivalent ( f ≈ g) if there exists
a homeomorphism h : R f −→ Rg satisfying h ◦ f = g. We denote by DP(X), the
set of all equivalence classes of density preserving maps obtained by identifying
equivalent density preserving maps on X [5]. The set DP(X) is a partially ordered
set with the partial order relation ‘≤’ defined by g ≤ f if there exists a continuous
map h : R f −→ Rg such that h ◦ f = g.

An f in DP(X) is called primary if ℘( f ) contains at most one non-singleton
member. A primary f in DP(X) is called a dual if ℘( f ) contains exactly one non-
singleton member which is a doubleton. Note that the quotient map f obtained
by identifying two distinct points a, b in X is a density preserving dual map. Such
a map is also denoted by ( f , {a, b}). The set of all duals in DP(X) is denoted by
Σ. An f in DP(X) obtained by collapsing a closed nowhere dense subset H of X
to a point is denoted by ( f , H).

Recall that for A ⊆ X, DP(X, A)={ f ∈ DP(X) : | f−1( f (x)) |= 1, for each
x ∈ A}. A perfect irreducible continuous surjection is called a covering map.
A study of the poset IP(X) of all equivalence classes of covering maps on X
is done by Porter and Woods in [4]. The poset DP(X) naturally contains the
poset IP(X) and in [5] we have proved that if X is compact and A is dense
in X then DP(X, A) = IP(X, A). In particular, if X is locally compact then
DP(αX, X) = IP(αX, X), where αX is a compactification of X. By Corollary 3.6
in [5] and Lemma 3.11 in [4], we obtain the following result.

Theorem 1.1. Let X be a locally compact Hausdorff space. Then DP(βX, X) is order
isomorphic to K(X), the lattice of all compactifications of X.

For an f in DP(X), denote the set { f−1(y) | y ∈ R f} by ℘( f ). Note that
for every f ∈ DP(X), the set ℘( f ) forms a partition of X. The partial order-
ing on DP(X) naturally induces a partial ordering on the family ℑ = {℘( f )| f ∈
DP(X)} of partitions of X. In fact, the lattice ℑ is isomorphic to the lattice DP(X).
In [7], it is proved that E(X), the collection of all Hausdorff partitions of X, is a
complete lattice with the natural ordering for a normal space X. We recall that
a partition π of X is said to be a Hausdorff partition if the quotient space X/π is
Hausdorff. The lattice DP(X) is naturally a sublattice of the lattice E(X). It is
proved that for a locally compact space X, E(βX − X) is isomorphic to K(X) [7].
Now by Theorem 1.1 one can deduce the following result.

Theorem 1.2. Let X be a locally compact Hausdorff space. Then DP(βX, X) is order
isomorphic to E(βX − X), the lattice of all Hausdorff partitions of X.

We also note that using techniques similar to the proofs of Lemmas 3.2 to 3.7 in
[7], lattice homomorphisms from DP(X) to DP(Y) will have the following prop-
erty.
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Theorem 1.3. Let Φ be a lattice homomorphism from DP(X) into DP(Y). Then Φ is a
bijection on the set Σ of all duals in DP(X).

In Section 2, we define the notion of ‘hinged’ and ‘overlapping’ for duals in
DP(X). The hinged set Λ consists of those members of the dual set Σ which are
hinged with overlapping duals. We introduce the notion of Λ-closed sets for the
subsets of hinged set Λ. The notion of hinged set Λ and that of Λ-closed set can
be naturally extended to DP(X, A) for any subset A of X. In particular, when X
is a locally compact Hausdorff space then using Theorem 1.1, one can observe
that Λ-closed sets for the hinged set Λ ⊆ DP(βX, X) are precisely F-compact
sets defined by Thrivikraman in [6]. We show here that for a Hausdorff space X
without isolated points there is a bijection from Λ onto X which maps Λ-closed
sets in Λ to closed nowhere dense sets in X. The well known results concerning
the Stone-Čech remainder due to Thrivikraman [6] and Magill [3] follow as a
consequence.

Our study about interplay of the order structure of DP(X) and the topology
of X is continued in Section 3. We prove that if DP(X) is complemented then X is
totally disconnected. Further, for a subset A of a Hausdorff space X, we deduce
topological properties of X − A using lattice theoretic properties of DP(X, A). We
also observe that the results obtained by Thrivikraman in [6] concerning topolog-
ical properties of βX − X and the lattice theoretic properties of K(X) follow from
our results. We note two anomalies in [6]. In fact, we prove that DP(X, A) is
modular if and only if |X − A| < 4. Consequently, we obtain K(X) is modular
if and only if |βX − X| < 4 establishing that the inequality in Result 3.2 of [6]
should be strict. Further, while observing that DP(X, A) is modular if and only
if |X − A| < 4 we note that primary members of K(X) need not satisfy modular
law. Hence the Result 3.3 in [6] is incorrect.

In Section 4, we determine the automorphism group of the lattice DP(X). As
a consequence we obtain Magill’s result concerning the automorphism group of
the lattice K(X).

2 Topology of X and order structure of DP(X)

Recall that for a Hausdorff space X, the dual set Σ consists of all duals in DP(X).
The hinged set Λ consist of those subsets of the dual set Σ which are hinged with
overlapping duals.

Definition 2.1. Two members in the dual set Σ are said to be overlapping if there
are precisely three dual members greater than their meet.

Definition 2.2. An h in the dual set Σ is said to be hinged with two overlapping
duals f and g if there are precisely six dual members greater than f ∧ g ∧ h.

For two overlapping duals f and g, denote by | f g| the set containing f and g
along with duals hinged with f and g. Note that the set | f g| determines a unique
point of X. In fact, if f and g are overlapping duals, then there exists a, b, c ∈ X
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such that f ≈ ( f , {a, b}) and g ≈ (g, {a, c}). In this case the set | f g| is said to
determine the point a of X and we denote it by | f g|a. The hinged set Λ denote the
set of all subsets of the dual set Σ of the form | f g|, where f and g are overlapping
duals.

Definition 2.3. An f in the dual set Σ is said to be determined by a subset A
of the hinged set Λ if there exist distinct points |hk|, |lm| in A satisfying { f} =
|hk| ∩ |lm|.

Definition 2.4. Let A be a subset of the hinged set Λ and λ = {d ∈ Σ | d is deter-
mined by A}. Then A is said to be Λ-closed if ∧ f∈λ f exists and λ = λ′, where λ′

is the collection of all duals ≥ ∧ f∈λ f .

Using the order structure of the poset DP(X), the following Proposition de-
scribes closed nowhere dense subsets of X.

Proposition 2.5. Let X be a Hausdorff space without isolated points and let Λ be the
hinged set. Then there exists a bijective map from Λ to X which maps Λ-closed sets in Λ

to closed nowhere dense sets in X.

Proof. Define ϕ : Λ → X by ϕ(| f g|)=a, where a in X is the unique point de-
termined by | f g|. Clearly the map ϕ is bijective. Let A be a Λ-closed subset of
Λ. If A = {| f g|}, then ϕ(A) = {a}, where a is the unique point determined
by | f g|. Let A be a non-singleton Λ-closed subset and λ be the set of all duals
determined by A. Then observe that ∧ f∈λ f exists and it is a primary member of
DP(X) say ( f , H), where H is a closed nowhere dense subset of X. Since A is
Λ-closed, the collection of all duals ≥ ∧ f∈λ f is precisely λ. Thus ϕ(A) = H, is a
closed nowhere dense subset of X.

On the other hand if H is any closed nowhere dense subset of X then for each
a ∈ H, consider unique set | f g|a such that | f g|a determines the point a. Let A =
{| f g|a | a ∈ H} and λ = {d ∈ Σ | d is determined by A}. Then observe that ∧ f∈λ f
exists. In fact, ∧ f∈λ f ≈ (k, H). Also λ = λ′, where λ′ = {d ∈ Σ | d ≥ ∧ f∈λ f}.
Thus A is F-closed and ϕ(A) = H.

Let the dual set Σ be the set of all duals in DP(βX, X) and let the hinged set
Λ be the set of all subsets of Σ of the form | f g|, where f and g are overlapping
duals. Then in this case our notion of Λ-closed sets coincides with the notion of
F-compact sets defined in [6] and hence we have F = Λ. The F-compact sets
are used in [6] to recover topology of the space βX − X using order structure of
K(X), for a locally compact space X. Proposition 2.5 and our observation about
F-compact sets leads to following result due to Thrivikraman [6]. As a conse-
quence, Magill’s result follows [3].

Theorem 2.6 [6, Theorem 4.9]. Let X be a completely regular Hausdorff space. Then
there is bijection from F onto βX − X which carries F-compact sets to compact subsets of
βX − X and vice-versa. Further, the complements of F-compact sets of F form a topology
for F if and only if X is locally compact. In this case F is homeomorphic to βX − X.
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Corollary 2.7 [3, Theorem 12]. Let X and Y be locally compact Hausdorff spaces. Then
K(X) and K(Y) are order isomorphic if and only if βX − X and βY − Y are homeomor-
phic.

3 Lattice DP(X, A) and space X − A

In this section we deduce topological properties of X − A from the lattice the-
oretic properties of DP(X, A), where A is a subset of X. As a consequence we
obtain Thrivikraman’s results concerning K(X) and βX − X [6]. The following
Theorem establishes a relation between order structure of the poset DP(X) and
topology of a space X. A similar result is proved in [6] for K(X), which follows
as a consequence of our result.

Theorem 3.1. Let X be a Hausdorff space. If DP(X) is complemented then X is totally
disconnected.

Proof. Let x, y ∈ X, x 6= y. Then consider the dual member ( f , {x, y}) in DP(X).
Since DP(X) is complemented, there exists g in DP(X) such that f ∧ g = ω and
f ∨ g = IX, where ω is the minimum element in DP(X). Since f ∧ g = ω, ℘(g)
can contain at most two non-empty members. Further, f ∨ g = IX implies that
℘(g) contains exactly two non-empty members, say H and K such that x ∈ H
and y ∈ K. Since H and K are the only non-empty members of ℘(g) we have
X = H ∪ K. Thus for every pair of distinct points in X we get a separation for X.

Corollary 3.2. Let X be a Hausdorff space and A be a subset of X. If DP(X, A) is
complemented then X − A is totally disconnected.

Using Theorem 1.1 and Corollary 3.2, we can deduce the following result.

Corollary 3.3. [6, Result 3.7] Let X be a locally compact Hausdorff space. If K(X) is
complemented then βX − X is totally disconnected.

Remark 3.4. Converse of the Corollary 3.2 is not true in general. Let X = [0, 1]
and let A be such that X − A = {1, 1

2 , 1
3 , .....}. Then X − A is totally disconnected

but DP(X, A) is not complemented as it does not contain the universal lower
bound.

Theorem 3.5. Let X be a Hausdorff space and A be a subset of X. Then,
(i) DP(X, A) is distributive if and only if | X − A |< 3.

(ii) DP(X, A) has a minimum element but has no atom if and only if X − A is con-
nected.

(iii) DP(X, A) is modular if and only if | X − A |≤ 3.

Proof.
(i) One easily verifies that if | X − A |< 3, then DP(X, A) is distributive. If

|X − A| ≥ 3, then choose distinct points a, b, c ∈ X − A. Then consider



306 T. Das – S. Shah

the members ( f , {a, b}), (g, {b, c}), (h, {a, c}) and (k, {a, b, c}) in DP(X, A).
One easily verifies ( f ∨ g) ∧ h = h 6= k = ( f ∧ h) ∨ (g ∧ h).

(ii) If DP(X, A) has an atom say f , then ℘( f ) contains precisely two non-singleton
members H and K whose union is X − A. Thus X − A is disconnected. Fur-
ther, if X − A is disconnected then X − A = H ∪ K, where H and K are
disjoint clopen sets. The natural quotient map obtained by identifying H
and K to distinct points is an atom in DP(X, A). Note that the minimum
element in DP(X, A) is the quotient map obtained by identifying X − A to
a point.

(iii) One easily verifies that if | X − A |≤ 3, then DP(X, A) is modular. That
DP(X, A) is not modular if | X − A |> 3 follows by observing that for
a, b, c, d ∈ X − A, the members IX, ( f , {a, b}), (g, {a, b, c}), (h, {c, d}),
(k, {a, b, c, d}) of DP(X, A) form a sublattice isomorphic to a pentagon.

Corollary 3.6 [6, Result 3.1]. Let X be a locally compact Hausdorff space. Then, K(X)
is distributive if and only if | βX − X |< 3.

Corollary 3.7 [6, Result 3.4]. Let X be a locally compact Hausdorff space. Then, K(X)
has a minimum element but has no atom if and only if βX − X is compact and connected.

Corollary 3.8. Let X be a locally compact Hausdorff space. Then, K(X) is modular if
and only if | βX − X |≤ 3.

Remark 3.9.
(a) In view of Corollary 3.8 note that the inequality in Result 3.2 in [6] should

be strict.
(b) Maps f , g and h defined in proof of Theorem 3.5(iii) are primary but they do

not satisfy modular law. Thus in general primary members of K(X) need
not satisfy modular law. Consequently Result 3.3 in [6] is incorrect.

4 Automorphism groups of DP(X)

In this section we determine the automorphism group of the lattice DP(X). As a
consequence of this we derive Magill’s result concerning the group of automor-
phisms of lattice K(X). We abbreviate a bijective map preserving closed nowhere
dense sets as cln-bijection.

Theorem 4.1. Let X be a Hausdorff space and let A(DP(X)) denote the automorphism
group of the lattice DP(X).

(i) If |X| = 2, then A(DP(X)) is the group consisting of one element.
(ii) If X has no isolated points, then A(DP(X)) is isomorphic to the group (under

composition) of all cln-bijections from X to X.

Proof.
(i) If X consists of two elements then DP(X) consists of the identity map and

the map which commutes the two elements. Thus A(DP(X)) consists of
one element.
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(ii) Let X be a space without isolated points and let Ψ ∈ A(DP(X)). Then by
Lemma 2.4 in [5] there exists a cln-bijection F : X → Y such that if Ψ( f ) = g,
then ℘(g) = {F(A)|A ∈ ℘( f )}. One can easily prove that such an F is
unique. Define a mapping Φ : A(DP(X)) → G(X) by Φ(Ψ) = F, where
G(X) is the group of all cln-bijections from X to X. We first observe that Φ

is a homomorphism. Suppose Φ(Ψ1) = F1 and Φ(Ψ2) = F2. Then for any
f ∈ DP(X), ℘(Ψ1( f )) = {F1(A)|A ∈ ℘( f )} and ℘(Ψ2( f )) = {F2(A)|A ∈
℘( f )}. Further ℘((Ψ1 ◦ Ψ2)( f )) = {(F1 ◦ F2)(A)|A ∈ ℘( f )}. Therefore we
have Φ(Ψ1 ◦ Ψ2) = F1 ◦ F2 = Φ(Ψ1) ◦ Φ(Ψ2). Clearly Φ maps A(DP(X))
onto G(X) and the kernel of Φ is {I}, where I denotes the identity map on
X. Hence Φ is an isomorphism of A(DP(X)) onto G(X).

Corollary 4.2. Let X be a compact Hausdorff space and let A(DP(X)) denote the auto-
morphism group of the lattice DP(X).

(i) If |X| = 2, then A(DP(X)) is a group consisting of one element.
(ii) If X has no isolated points, then A(DP(X)) is isomorphic to the group (under

composition) of all homeomorphisms from X to X.

Proof. Follows from the Theorem 4.1 as a compact Hausdorff space X is a count-
ably compact T3 space and closed nowhere dense sets determine the topology for
these spaces.

Corollary 4.3 [3, Corollary 15]. Let X be a locally compact non-compact space and
let A(K(X)) denote the automorphism group of the lattice K(X). If |βX − X| = 2,
then A(K(X)) is a group consisting of one element. If |βX − X| 6= 2, then A(K(X))
is isomorphic to the group (under composition) of all homeomorphisms from βX − X to
βX − X.

Proof. Follows since DP(βX, X) is order isomorphic to K(X).
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