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Abstract

A weakly equivariant Hopf algebra is a Hopf algebra A with an action of
a finite group G up to inner automorphisms of A. We show that each weakly
equivariant Hopf algebra can be replaced by a Morita equivalent algebra Astr

with a strict action of G and with a coalgebra structure that leads to a tensor
equivalent representation category. However, the coproduct of this strictifi-
cation cannot, in general, be chosen to be unital, so that a strictification of the
G-action can only be found on a weak Hopf algebra Astr.

1 Introduction

This paper is a supplement to our paper [MNS11]. In that paper we constructed a
3-dimensional equivariant topological field theory which is a generalization of
the well-known Dijkgraaf-Witten theory [DW90, FQ93]. Our generalization is
equivariant with respect to a finite group G (which was called J there). Our mo-
tivation comes from orbifold constructions in conformal field theory.
It is well known that one can extract a modular category C from a 3-dimensional
topological field theory, at least up to some technical subtleties [BK01, Chapter 4
& 5], involving properties of the dualities. A modular category is, in particular, a
tensor category. If the initial topological field theory is moreover G-equivariant,
the category C carries additionally a G-grading and an action of G that is com-
patible with the tensor product. Such a structure is called a G-equivariant tensor
category resp. G-modular category [Kir04, Tur10].
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In general the action of the group G on a G-modular category C is given by tensor

functors φg : C → C together with compositors φg ◦ φh
∼
−→ φgh, subject to co-

herence laws for threefold products. It has been demonstrated by Müger [Tur10,
Appendix 5] that one can replace C by an equivalent category Cstr with a strict
action of G, i.e. there the compositors are given by the identity: φg ◦ φh = φgh.

Now consider the G-modular category C which belongs to our equivariant
Dijkgraaf-Witten theory mentioned at the beginning. Although the category C
can relatively easily be described abstractly, it is very hard to work with it explic-
itly when it comes to orbifolding and showing modularity. Therefore in [MNS11,
section 4] we realized C as the representation category of a certain algebra A,
which we called the equivariant Drinfel’d double. The fact that C is a tensor cate-
gory is reflected by the fact that A is a Hopf algebra. Furthermore there is also an
algebraic structure on A belonging to the G-action on the representation category.
This structure is not just a G-action on A, as one might naively expect, but a weak
G-action, which is an action by Hopf algebra automorphisms ϕg : A → A such
that ϕg ◦ ϕh equals ϕgh only up to an inner automorphism of A. This weaken-
ing of the G-action reflects the fact that the action on the category is only weak

in the sense that we have isomorphisms φg ◦ φh
∼
→ φgh of functors rather than

equalities. In order to accommodate the example of the algebra A, we had to
introduce the notion of Hopf algebra with weak G-action ([MNS11, Definition
4.13]), generalizing the notion of Hopf algebra with strict G-action considered be-
fore [Tur10, Vir02].

In the light of Müger’s observation that one can replace a G-equivariant tensor
category C by an equivalent category Cstr with strict G-action it is a natural ques-
tion to ask whether one can replace a Hopf algebra A with weak G-action by
a Hopf algebra Astr with strict G-action such that the representation categories
are equivalent as tensor categories. A first result of this paper asserts that this
is not possible in general, see Theorem 3.2. The reason is that the Hopf algebra
axioms are too rigid: the tensor product of the representation category is, in the
case of Hopf algebras, directly inherited from the underlying tensor product of
vector spaces. Weak Hopf algebras [BNS99, BS00, NV02] have been introduced
to provide a more flexible notion for the tensor product. Note that the qualifier
weak here refers to a weakening of the bialgebra axioms (i.e. a weakening of the
unitality of the coproduct or, equivalently, of the counitality of the product) and
should not be confused with ‘weak G-action’. We refer to the appendix for a table
summarizing the situation.

Thus, a refined version of the question posed above would be whether one can re-
place a Hopf algebra A with weak G-action by a weak Hopf algebra Astr with strict
G-action such that the representation categories are equivalent. The second main
result of the present paper is to show that this is indeed possible, see Theorem 4.1.
The given concrete construction of Astr is inspired by Müger’s strictification pro-
cedure [Tur10, Appendix 5] on the level of categories. Nevertheless we present it
in an independent and elementary manner which requires no knowledge about
orbifold categories and other constructions that enter in the categorical strictifi-
cation.
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2 Equivariant Hopf algebras and their representation categ ories

In the following, let G be a finite group.

Definition 2.1. Let A be an (associative, unital) algebra over a field K. A weak
G-action on A consists of (unital) algebra automorphisms ϕg ∈ Aut(A), one for
every element g ∈ G, and invertible elements cg,h ∈ A×, one for every pair of elements
g, h ∈ G, such that for all g, h, k ∈ G the following conditions are satisfied:

ϕg ◦ ϕh = Inncg,h
◦ ϕgh ϕg(ch,k) · cg,hk = cg,h · cgh,k and c1,1 = 1 . (1)

Here Innx with x an invertible element of A denotes the algebra automorphism a 7→
xax−1. A weak action of a group G is called strict if cg,h = 1 for all pairs g, h ∈ G.

Remark 2.2. Note that our notion of a weak action (ϕg, cg,h) of a group G on an algebra
A corresponds to a weak action in the sense of [BCM86] together with the normal cocycle

σ : K[G]× K[G] → A×

(g, h) 7→ cg,h

that fulfills the cocycle and the twisted module condition of [BCM86].

We first demonstrate how a weak G-action on an algebra A induces a categori-
cal action (see [MNS11] for the definition) on the representation category A-mod.
Here by A-mod we denote the category of right modules over A; using left mod-
ules would lead to slightly more complicated formulas in the rest of the paper.
We define for each element g ∈ G a functor φg on objects by

g(M, ρ) := (M, ρ ◦ (idM ⊗ ϕg−1))

and on morphisms by the identity, g f = f , and take, for the functorial isomor-
phisms, αg,h(M, ρ) := ρ(idM ⊗ ch−1,g−1). One can check that the cocycle condition

in (1) implies the equality

αgh,k ◦ αg,h = αg,hk ◦
gαh,k.

We summarize this in the following lemma.

Lemma 2.3. Given a weak action of G on a K-algebra A, the functors φg and the natural
transformations αg,h define a categorical action on the abelian category A-mod of right
A-modules.
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In the following we will mostly be interested in Hopf algebras. We therefore
adapt the definition of a G-action to Hopf algebras.

Definition 2.4. A weak G-action on a Hopf algebra A is a weak G-action ((ϕg)g∈G,
(cg,h)g,h∈G) on the underlying algebra which in addition satisfies the following proper-
ties:

• G acts by automorphisms of Hopf algebras.

• The elements (cg,h)g,h∈G are group-like, i.e ∆(cg,h) = cg,h ⊗ cg,h.

Remark 2.5. Analogously, one can give the definition of a weak G-action on a weak Hopf
algebra. In that case, we require the elements cg,h to be right grouplike in the sense of
[Vec03]. By [Vec03, Corollary 5.2], this amounts to all cg,h being invertible and obeying
∆(cg,h) = (cg,h ⊗ cg,h)∆(1).

Lemma 2.6. Given a weak action of G on a Hopf algebra A, the induced action on the
tensor category A-mod of right A-modules is by strict tensor functors and tensor trans-
formations.

We next turn to an algebraic structure that yields tensor categories with G-action
and compatible G-grading, called G-equivariant tensor categories [Kir04].

Definition 2.7. A G-Hopf algebra over K is a Hopf algebra A with a weak G-action
((ϕg)g∈G, (cg,h)g,h∈G) and a G-grading A =

⊕

g∈G Ag such that:

• The algebra structure of A restricts to the structure of an associative algebra on
each homogeneous component so that A is the direct sum of the components Ag as
an algebra.

• The action of G is compatible with the grading, i.e. ϕg(Ah) ⊂ Aghg−1 .

• The coproduct ∆ : A → A ⊗ A respects the grading, i.e.

∆(Ag) ⊂
⊕

p,q∈G,pq=g

Ap ⊗ Aq .

Remark 2.8. (1) For the counit ǫ and the antipode S of a G-Hopf algebra, the compat-
ibility relations with the grading ǫ(Ag) = 0 for g 6= 1 and S(Ag) ⊂ Ag−1 are

immediate consequences of the definitions.

(2) The restrictions of the structure maps endow the homogeneous component A1 of A
with the structure of a Hopf algebra with a weak G-action.

(3) G-Hopf algebras with strict G-action have been considered under the name
“G-crossed Hopf coalgebra” in [Tur10, Chapter VII.1.2].

(4) Hopf algebras with weak G-action give a special case of G-Hopf algebra, where the
grading is concentrated in degree 1. Thus all results of this paper imply analo-
gous results where the term G-Hopf algebra is replaced by Hopf algebra with weak
G-action.
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The category A-mod of finite-dimensional modules over a G-Hopf algebra inher-
its a natural (left and right) duality from the duality of the underlying category of
K-vector spaces. The weak action described in Lemma 2.3 is even a monoidal ac-
tion, since G is required to act by Hopf algebra morphisms. A grading on A-mod
can be given by taking (A-mod)g = Ag-mod as the g-homogeneous component.
From the properties of a G-Hopf algebra one can finally deduce that the tensor
product, duality and grading are compatible with the G-action. We have thus
arrived at the following statement:

Lemma 2.9. [MNS11, Lemma 4.15] The category of representations of a G-Hopf al-
gebra inherits the natural structure of a K-linear, abelian G-equivariant tensor category
with dualities.

A similar result holds for G-weak Hopf algebras.

3 Strictification of the group action

The action of the group G on a G-equivariant tensor category C can always be
strictified (see [Tur10, Appendix 5]), i.e. there is an equivalent G-equivariant ten-
sor category Cstr with strict G-action (all compositors are identities). If one starts
with the representation category of a G-Hopf algebra A, it is natural to ask whether
this strictification leads to the representation category of another G-Hopf algebra
with strict G-action. We will make this precise in the next definition.
A G-equivariant functor between G-equivariant tensor categories is a tensor func-
tor F together with natural isomorphisms

ψg : F(g M)
∼
−→ gF(M)

such that for every pair g, h ∈ G the obvious coherence diagrams of morphisms
from F(gh M) to ghF(M) commute. See also [Tur10, Appendix 5, Def. 2.5].

Definition 3.1. (1) Let A be a Hopf algebra with weak G-action. A strictification of
A is a weak Hopf algebra B with strict G-action and an equivalence

A-mod
∼
−→ B-mod

of tensor categories with G-action.

(2) Let A be a G-Hopf algebra. A strictification of A is a G-weak Hopf algebra B with
strict G-action and an equivalence

A-mod
∼
−→ B-mod

of G-equivariant tensor categories.

We will now show that it is in general not possible to find a strictification that is
a Hopf algebra, rather than a weak Hopf algebra. This shows that we really have
to allow for weak Hopf algebras as strictifications. In the next chapter we then
show that a strictification as a weak Hopf algebra always exists.
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Consider the weak action of Z/2 × Z/2 = {1, t1, t2, t1t2} on the group algebra
C[Z/2] of Z/2 = {1, t} given by

ϕg = id for all g ∈ Z/2 × Z/2

and non-trivial compositors given by the grouplike elements cg,h ∈ C[Z/2] as in
the following table:

h\g 1 t1 t2 t1t2

1 1 1 1 1
t1 1 t t 1
t2 1 1 1 1
t1t2 1 t t 1

(2)

In [MNS11, Section 3.1] we showed how weak actions correspond to extensions of
groups together with the choice of a set theoretic section. In this case, the relevant
extension is given by the exact sequence of groups

Z/2 → D4 → Z/2 × Z/2 ,

where D4 denotes the dihedral group of order 8. The inclusion of Z/2 into D4

is given by mapping the nontrivial t element of Z/2 to the rotation by π. The
projection to Z/2×Z/2 is given by mapping the rotation a ∈ D4 by π

2 to the first
generator t1 and the reflection b ∈ D4 to the second generator t2. The set theoretic
section is defined by s : Z/2 × Z/2 → D4 with s(1) = 1, s(t1) = a, s(t2) =
b, s(t1t2) = ab.

Theorem 3.2. There is no strictification as a Hopf algebra of C[Z/2] with the weak
Z/2 × Z/2-action with compositors as displayed in (2).

Remark 3.3. Note that the algebra C[Z/2] is not a priori endowed with a grading by
Z/2. We can consider it as being trivially graded.

For the proof of Proposition 3.2 we need the following elementary facts:

Lemma 3.4. Let A = C[G] be the complex group algebra of a finite abelian group G.

(1) Let A′ be an arbitrary Hopf algebra. If A-mod ∼= A′-mod as tensor categories,
then A ∼= A′ as algebras (not necessarily as Hopf algebras).

(2) The natural endomorphisms of the identity functor Id : A-mod → A-mod are
given by the action of elements in A. More precisely there is an isomorphism of
algebras

A
∼
−→ End(Id)A-mod .

(3) Let ϕ : A → A be an algebra automorphism such that the restriction functor
resϕ : A-mod → A-mod is naturally isomorphic to the identity functor. Then
ϕ = id.
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Proof. 1.) By the reconstruction theorem we know that we can recover the Hopf
algebra A as endomorphisms of the fibre functor F : A-mod → C-mod and A′ as

endomorphisms of the fibre functor G : A-mod
∼
−→ A′-mod → C-mod. Now we

claim that the underlying functors of F and G are naturally isomorphic. To this
end note that for each simple representation Vi of A we have Vn

i
∼= 1 where n is

the order of the group. Thus we have F(Vi) ∼= C ∼= G(Vi) by the fact that F and
G are tensor-functors. But it is easy to see that the C-linearity and the fact that
A-mod is semisimple then already show that F and G are isomorphic as functors
between abelian categories. This implies that A ∼= End(F) ∼= End(G) ∼= A′. Note
that the functors F and G still might have different tensor functor structures, lead-
ing to different Hopf algebra structures on A and A′.

2.) This follows from the fact that A is abelian and from the fact that the center
of an algebra is isomorphic to the endomorphisms of the identity functor on its
representation category.

3) The functor resϕ is an equivalence of categories. Hence it sends simple objects
to simple objects. That means it acts on simple characters χ : G → C∗. By the
fact that this functor is naturally isomorphic to the identity this action has to be
trivial. Hence we know χ ◦ ϕ = χ for each character χ. Because G is abelian, the
characters form a basis of the dual space A∗. Thus ϕ∗ = id which implies ϕ = id.

Proof of Theorem 3.2. Assume that there is a Hopf algebra H with a strict action of
Z/2 by Hopf algebra automorphisms ϕg together with an equivalence of cate-
gories A-mod → H-mod. By Lemma 3.4(1) we know that the underlying algebra
of H is isomorphic to C[Z/2]. We choose an isomorphism and transport the
action ϕg on H to an action ϕ′

g on C[Z/2] (which is now only an action by al-
gebra automorphisms and not necessarily by Hopf algebra automorphisms). By

assumption there are now natural isomorphisms resϕ′
g

∼
−→ resϕg = Id hence by

lemma 3.4(3) we have ϕ′
g = id.

Now we have both times the trivial action on the Hopf algebra C[Z/2], once
with the nontrivial compositors cg,h as displayed in table (2) above and once with
the trivial compositors. By Lemma 3.4(2), an isomorphism between the two in-
duced actions on the representation categories is induced by invertible elements
(ag ∈ C[Z/2])g∈Z/2×Z/2 such that

agh · cg,h = ag · ah for all g, h ∈ Z/2 × Z/2 (3)

We show that such elements can not exist: Assume, there are invertible elements
(ag ∈ C[Z/2])g∈Z/2×Z/2 that fulfill (3). In particular we have, by setting g = h =

1 in (3), a2
1 = a1, and since the elements ag are invertible, it follows that a1 = 1.

One concludes similarly, by setting g = h = t2 resp. g = h = t1t2, that a2
t2
= 1

and a2
t1t2

= 1. Now if we set g = t1 and h = t2 in (3) and take the square of

the resulting equation, we get a2
t1
= 1, but clearly those elements don’t fulfill the

equation a1t = a2
t1

, which is (3) with g = h = t1. This contradicts the existence of
the strictification H of a Hopf algebra.
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4 Existence of a strictification

In this section, we will successively prove the following theorem which holds for
Hopf algebras over an arbitrary field K.

Theorem 4.1. (1) For any Hopf algebra with weak G-action there exists a strictifica-
tion in the sense of Definition 3.1(1).

(2) For any G-Hopf algebra there exists a strictification in the sense of definition 3.1(2).

Note that the first part of Theorem 4.1 follows from the second part if we con-
sider a Hopf algebra with weak G-action as a G-Hopf algebra with grading con-
centrated in degree 1, see also Remark 2.8(4). Therefore we will only prove the
second part.
In the following let A be a G-Hopf algebra with unit 1A, counit ǫA, coproduct ∆A

and a weak G-action ((ϕg)g∈G, (cg,h)g,h∈G). The plan of this section is to construct

step by step a strictification Astr.
In section 4.1 we construct Astr as an algebra, in section 4.2 we endow it with a
weak Hopf algebra structure and finally in section 4.3 we turn it into a G-weak
Hopf algebra with strict G-action. Along the way, we also provide the necessary
equivalences of the representation categories

F : A-mod
∼
→ Astr-mod

and show that they preserve all the structure involved. This implies that Astr is a
strictification, which proves Theorem 4.1.

4.1 The algebra

In the following we use the notation K(G) for the K-vector space of functions
on the finite group G, with distinguished basis (δg)g∈G. By K[G] we denote the
K-vector space underlying the group algebra with basis (g)g∈G.

Definition 4.2. Set Astr = K(G)⊗K A ⊗K K[G] as a vector space and define a multi-
plication on the generators of Astr by

(δg ⊗ a ⊗ h)(δg′ ⊗ a′ ⊗ h′) = δ(gh′, g′)(δg′ ⊗ aϕh(a
′)ch,h′ ⊗ hh′) (4)

where δ(gh′ , g′) is the Kronecker delta, i.e. δ(gh′ , g′) = 1 if gh′ = g′ and δ(gh′, g′) = 0
otherwise. This multiplication has the unit

1 = ∑
g∈G

δg ⊗ 1A ⊗ 1. (5)

It can easily be checked that the product and the unit defined in (4) and (5) endow
Astr with the structure of an associative unital algebra.

We next define a functor F : A-mod → Astr-mod: Let M be an object in A-mod.
Define an object in Astr-mod which is M ⊗K K[G] as a vector space and has the
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following right action of the algebra Astr: On an element of the form (m ⊗ k) with
m ∈ M, k ∈ G, the action of (δg ⊗ a ⊗ h) reads:

(m ⊗ k).(δg ⊗ a ⊗ h) := δ(kh, g)(m.ϕk(a)ck,h ⊗ g) (6)

One checks that this really defines a right action of Astr. For a morphism
f ∈ HomA(M, N) we consider the morphism f ⊗ idK[G] ∈ HomAstr(M ⊗ K[G],

N ⊗ K[G]). Together this defines a functor:

F : A-mod → Astr-mod (7)

Proposition 4.3. The functor F is an equivalence of abelian categories.

Proof. We show that F is essentially surjective and fully faithful.
For the essential surjectivity, note that an object N in Astr-mod has a G-grading
N =

⊕

g∈G Ng with Ng := N.(δg ⊗ 1A ⊗ 1). Endow the subspace N1 := N.(δ1 ⊗

1A ⊗ 1) ⊂ N with the structure of an A-module by setting n.a := n.(δ1 ⊗ a ⊗ 1)
for an element n ∈ N1 and a ∈ A.
Define the K-linear map

Θ : F(N1) = N1 ⊗ K[G] → N

by

(n ⊗ g) 7→ n.(δg ⊗ 1A ⊗ g).

It is easy to see that Θ is an isomorphism with inverse n 7→ ∑g∈G n.

(δ1 ⊗ (cg−1,g)
−1 ⊗ g−1)⊗ g. To see that Θ is a morphism in Astr-mod, note that

the action of Astr on F(N1) is given by

(n ⊗ k).(δg ⊗ a ⊗ h) = δ(kh, g)n.(δ1 ⊗ ϕk(a)ck,h ⊗ 1)⊗ g

Hence we have

Θ((n ⊗ k).(δg ⊗ a ⊗ h)) = δ(kh, g)Θ(n.(δ1 ⊗ ϕk(a)ck,h ⊗ 1)⊗ g)

= δ(kh, g)n.(δ1 ⊗ ϕk(a)ck,h ⊗ 1)(δg ⊗ 1A ⊗ g)

= δ(kh, g)n.(δg ⊗ ϕk(a)ck,h ⊗ g)

and

Θ(n ⊗ k).(δg ⊗ a ⊗ h) = n.(δk ⊗ 1A ⊗ k)(δg ⊗ a ⊗ h)

= δ(kh, g)n.(δg ⊗ ϕk(a)ck,h ⊗ g).

This shows that F(N1) ∼= N as Astr-modules and thus essential surjectivity.
It is clear that F is faithful. In order to see that F is also full, consider for two
A-modules M, N a morphism f ∈ HomAstr(F(M), F(N)). We have

f (m ⊗ k).(δg ⊗ 1A ⊗ 1) = f ((m ⊗ k).(δg ⊗ 1A ⊗ 1)) = δ(k, g) f (m ⊗ k),
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so f (m ⊗ k) ∈ N ⊗ Kk and we have f = ∑g∈G fg ⊗ idKg for some

fg ∈ HomK(M, N). From the definition (6) of the action of Astr, it is clear that
f1 ∈ HomA(M, N). Now, since f commutes with the action of Astr, we have

δ(kh, g) fg(m.ϕk(a)ck,h)⊗ g = f ((m ⊗ k).(δg ⊗ a ⊗ h))

= f (m ⊗ k).(δg ⊗ a ⊗ h)

= δ(kh, g) fk(m).ϕk(a)ck,h ⊗ g

and (by setting a = 1A, k = 1 and h = g) we get fg = f1 for all g ∈ G and
therefore f is of the form f = f1 ⊗ idK[G].

4.2 The weak Hopf algebra structure

We need the strictification algebra Astr to have more structure in order for its
representation category to be a tensor category. In fact, we want it to be a weak
bialgebra. For the definition and properties of weak bialgebras, see e.g. [NTV03].

Proposition 4.4. The linear maps ∆ : Astr → Astr ⊗ Astr and ǫ : Astr → K defined on
the generators of Astr by

∆(δg ⊗ a ⊗ h) = ∑
(a)

(δg ⊗ a(1) ⊗ h)⊗ (δg ⊗ a(2) ⊗ h) ,

ǫ(δg ⊗ a ⊗ h) = ǫA(a)

endow Astr with the structure of a weak bialgebra. Furthermore, the linear map
S : Astr → Astr given by

S(δg ⊗ a ⊗ h) = (δgh−1 ⊗ c−1
h−1,h

· ϕh−1

(

SA(a)
)

⊗ h−1)

is an antipode for Astr, where SA is the antipode of A.

Proof. The maps ∆ and ǫ are a coassociative coproduct and a counit on Astr, as
they are just the structural maps of the tensor product coalgebra of K(G), A and
K[G| (where we consider the diagonal coproduct on both K(G) and K[G]). We
show that ∆ is also a morphism of algebras, i.e. that

(m ⊗ m) ◦ (id ⊗ τ ⊗ id)(∆ ⊗ ∆) = ∆ ◦ m. (8)

If we plug in two elements (δg ⊗ a ⊗ h), (δg′ ⊗ a′ ⊗ h′), we get for the left hand
side of (8)

∑
(a)

(δg ⊗ a(1) ⊗ h) · (δg′ ⊗ a′(1) ⊗ h′)⊗ (δg ⊗ a(2) ⊗ h) · (δg′ ⊗ a′(2) ⊗ h′)

= ∑
(a)

δ(gh′ , g′)(δg′ ⊗ a(1)ϕh(a
′
(1))ch,h′ ⊗ hh′)⊗ (δg′ ⊗ a(2)ϕh(a

′
(2))ch,h′ ⊗ hh′) ,
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and for the right hand side

δ(gh′, g′)∆(δg′ ⊗ aϕh(a
′)ch,h′ ⊗ hh′)

= δ(gh′, g′)∑
(a)

(δg′ ⊗ (aϕh(a
′)ch,h′ )(1) ⊗ hh′)⊗ (δg′ ⊗ (aϕh(a

′)ch,h′ )(2) ⊗ hh′)

= ∑
(a)

δ(gh′, g′)(δg′ ⊗ a(1)ϕh(a
′
(1))ch,h′ ⊗ hh′)⊗ (δg′ ⊗ a(2)ϕh(a

′
(2))ch,h′ ⊗ hh′) .

All equations follow just by definition, except for the last one, where we used that
the coproduct in A is a morphism of algebras, that the elements cg,h are group-
like and that the action of G on A is a coalgebra-morphism.
Further equations concerning the compatibilities of the product with the counit,
the coproduct with the unit and the antipode can be checked directly.

In a weak Hopf algebra H the target and source counital maps are defined on an
element h ∈ H by

ǫt(h) := (ǫ ⊗ idH)(∆(1)(h ⊗ 1))

ǫs(h) := (idH ⊗ ǫ)((1 ⊗ h)∆(1))

The maps ǫt and ǫs are idempotents. The image of H under them are called the
target and source counital subalgebras

Ht := ǫt(H)

Hs := ǫs(H).

The category of right modules over H can be endowed with the structure of a
tensor category, where the tensor product of two modules M, N is defined via the
coproduct on the following vector space:

M⊗̄N := (M ⊗K N)∆(1) .

The tensor unit is the source counital subalgebra Hs with H-action given by
z.h := ǫs(zh) for h ∈ H, z ∈ Hs.

Lemma 4.5. For the algebra Astr, the target and source counital maps are given by

ǫt(δg ⊗ a ⊗ h) = ǫA(a)(δgh−1 ⊗ 1A ⊗ 1) (9)

ǫs(δg ⊗ a ⊗ h) = ǫA(a)(δg ⊗ 1A ⊗ 1) (10)

and the target and source counital subalgebras are

Astr
t

∼= Astr
s

∼= K(G) .

Proof. We calculate ǫt on an element (δg ⊗ a ⊗ h) ∈ Astr:

ǫt(δg ⊗ a ⊗ h) = (ǫ ⊗ id)(∆(1)((δg ⊗ a ⊗ h)⊗ 1))

= (ǫ ⊗ id)((δg ⊗ a ⊗ h)⊗ (δgh−1 ⊗ 1A ⊗ 1))

= ǫA(a)(δgh−1 ⊗ 1A ⊗ 1) .
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The calculation for the source counital map is completely parallel.
Choose a basis (ai)i∈I of the algebra A with aj = 1A for a fixed j ∈ I, then a

general element b ∈ Astr is of the form

b = ∑
g,h∈G,i∈I

λ(g, h, i)(δg ⊗ ai ⊗ h)

with λ(g, h, i) ∈ K. We have:

∆(b) = ∑
g,h∈G,i∈I

∑
(ai)

λ(g, h, i)(δg ⊗ (ai)(1) ⊗ h)⊗ (δg ⊗ (ai)(2) ⊗ h)

∆(1)(b ⊗ 1) = ∑
g,h∈G,i∈I

λ(g, h, i)(δg ⊗ ai ⊗ h)⊗ (δg ⊗ 1A ⊗ h)

By equating coefficients, we get λ(g, h, i) = 0 for h 6= 1, i 6= j and therefore:

Astr
t = 〈δg ⊗ 1A ⊗ 1, g ∈ G〉 ∼= K(G) .

An analog calculation shows the same result for Astr
s .

Proposition 4.6. The equivalence F : A-mod
∼
−→ Astr-mod can be promoted to an

equivalence of tensor categories.

Proof. The tensor unit in the representation category of the weak Hopf algebra
Astr is given by the source counital subalgebra, which is by Lemma 4.5 isomor-
phic to K(G). The weak Hopf algebra Astr acts on the source counital subalgebra
as follows: for an element (δk ⊗ 1A ⊗ 1) ∈ Astr

s and (δg ⊗ a ⊗ h) ∈ Astr, we have

(δk ⊗ 1A ⊗ 1).(δg ⊗ a ⊗ h) = ǫs((δk ⊗ 1A ⊗ 1)(δg ⊗ a ⊗ h)) =

δ(kh, g)ǫA(a)(δg ⊗ 1A ⊗ 1) .

The action of an element a ∈ A on the tensor unit K in A-mod is by multiplication
with ǫA(a). So we get for the image of the tensor unit under F the vector space
K ⊗ K[G] with Astr-action

(λ ⊗ k).(δg ⊗ a ⊗ h) = δ(kh, g)ǫA(a)λ ⊗ g .

We clearly have an isomorphism F(1) → 1 in Astr-mod given by

η0 : (λ ⊗ k) 7→ λδk.

Let M, N ∈ A-mod. We have

F(M)⊗̄F(N) = 〈(m ⊗ g ⊗ n ⊗ g), m ∈ M, n ∈ N, g ∈ G〉.

Thus the linear map

η2(M, N) : (m ⊗ g ⊗ n ⊗ g) 7→ (m ⊗ n ⊗ g)

is an isomorphism F(M)⊗̄F(N)
∼
−→ F(M ⊗ N). It can be seen to commute with

the action of Astr and is natural in M, N. Moreover the isomorphisms η2 clearly
satisfy the coherence axioms for three objects. We have therefore established that
(F, η0, η2) is a tensor functor.
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4.3 G-action and G-grading

We will now define a G-equivariant structure on Astr that induces a G-equivariant
structure on the category Astr-mod. The last step of proving Theorem 4.1 is then
to show that the categories A-mod and Astr-mod are even equivalent as G-equiva-
riant categories.

Definition 4.7. On the weak Hopf algebra Astr we have a strict left action ϕstr of the
group G given by translation in the first factor. Explicitly, an element g′ ∈ G acts on an
element (δg ⊗ a ⊗ h) ∈ Astr by

ϕstr
g′ (δg ⊗ a ⊗ h) = (δg′g ⊗ a ⊗ h) .

The strict G-action on Astr gives us a strict left G-action on the category Astr-mod
by setting φg(M, ρ) = (M, ρ ◦ (idM ⊗ ϕstr

g−1). We will now establish, that the equiv-

alence A-mod ∼= Astr is compatible with the G-actions.

Proposition 4.8. The equivalence F : A-mod
∼
−→ Astr-mod given in (7) respects the

G-action of the two categories, i.e. for every element g ∈ G there are natural isomor-
phisms

ψg : F(g M)
∼
−→ gF(M)

such that for every pair g, h ∈ G the obvious coherence diagrams of morphisms from
F(gh M) to ghF(M) commute.

Proof. For M ∈ A-mod consider the linear map ψg : M ⊗ K[G] → M ⊗ K[G]
defined by

ψg : (m ⊗ k) 7→ (m.cg−1,k ⊗ g−1k).

We first show that ψg is a morphism of Astr-modules. To distinguish the actions
on the different modules we use the notation “⋆” for the Astr-action on F(g M)
and gF(M), “⊙” for the action on F(M) and “.” for the A-action on M.

ψg

(

(m ⊗ k) ⋆ (δx ⊗ a ⊗ h)
)

= ψg

(

δ(kh, x)(m.ϕg−1 (ϕk

(

a)ck,h

)

⊗ x)
)

= δ(kh, x) m.ϕg−1(ϕk

(

a)ck,h

)

cg−1,kh ⊗ g−1kh

= δ(kh, x) m.cg−1,kϕg−1k(a)(cg−1 ,k)
−1ϕg−1(ck,h)cg−1,kh ⊗ g−1kh

= δ(g−1kh, g−1x) m.cg−1,kϕg−1k(a)cg−1k,h ⊗ g−1kh

= (m.cg−1,k ⊗ g−1k)⊙ (δg−1x ⊗ a ⊗ h)

= ψg(m ⊗ k) ⋆ (δx ⊗ a ⊗ h) .

Moreover we have to verify that the ψg satisfy a coherence condition for two in-
dices g and h. This condition can be checked similarly to the above computation,
using the cocycle condition for the cg,h.
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Definition 4.9. We define a G-grading in the sense of 2.7 on the algebra Astr by:

(Astr)h =
⊕

g∈G

(

K(δg)⊗ Ag−1hg

)

⊗ K[G] . (11)

The following Lemma can then be checked directly.

Lemma 4.10. The algebra Astr is a G-weak Hopf algebra with strict G-action, i.e a weak
Hopf algebra with strict G-action and compatible G-grading.

Note that the grading on A resp. Astr gives a grading on the representation cate-
gory by (A-mod)h := Ah-mod resp. (Astr-mod)h = (Astr)h-mod.

Proposition 4.11. The equivalence F : A-mod
∼
−→ Astr-mod given in (7) respects the

G-grading of the two categories, i.e. for every element h ∈ G, we have

F((A-mod)h) ⊂ (Astr-mod)h.

Proof. Let M ∈ (A-mod)h = Ah-mod. We know that the action by the unit (1A)h

of Ah is the identity on M. We need to show, that the h-component of the unit in
Astr, which is 1h = ∑g∈G(δg ⊗ (1A)g−1hg ⊗ 1), acts as an idempotent on F(M) =

M ⊗K[G]. In fact it even acts as the identity: for any element of the form (m ⊗ k),
we have:

(m ⊗ k).

(

∑
g∈G

δg ⊗ (1A)g−1hg ⊗ 1

)

= ∑
g∈G

(δ(k, g)m.ϕk((1A)g−1hg)ck,1 ⊗ k)

= (m.ϕk((1A)k−1hk)⊗ k)

= (m.(1A)h ⊗ k)

= (m ⊗ k)

where in the first equality we used the definition of the action of Astr on M⊗K[G]
given in (6), in the third equality the fact that G acts by unital algebra morphisms
and in the last equality that M is in the h-component of A-mod.
So we have F(M).1h = F(M); therefore F(M) lies in the component (Astr-mod)h.

5 Equivariant R-Matrix and ribbon-element

In [MNS11] we considered G-equivariant categories with a G-braiding and a
G-twist as additional data (G-ribbon categories). For the definition see [Tur10,
Kir04]. Since those categories were our main motivation to study the strictifica-
tion in terms of algebras, we want to say a few words about the G-ribbon struc-
ture.
The definition of a G-equivariant R-matrix is rather involved even in the strict
Hopf algebra case. We will refrain here from stating the axioms for it explicitly,
but we will instead make an equivalent definition:
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Definition 5.1. Let A be a G-(weak) Hopf algebra.

(1) A G-equivariant R-matrix is an element R = R1 ⊗ R2 ∈ ∆op(1)(A ⊗ A)∆(1)
such that for V ∈ (A-mod)g, W ∈ A-mod, the map

cV,W : V ⊗ W → gW ⊗ V

v ⊗ w 7→ w.R2 ⊗ v.R1

is a G-braiding, in particular a morphism of A-modules.

(2) A G-twist is an invertible element θ ∈ A such that for every object V ∈ (A-mod)g

the induced map

θV : V → gV

v 7→ v.θ−1

is a G-twist in A-mod.

A G-(weak) ribbon-algebra is a G-(weak) Hopf algebra A with a G-equivariant
R-matrix and a G-twist.

Lemma 5.2. A G-weak Hopf algebra A can be endowed with the structure of a G-weak
ribbon algebra if and only if the representation category A-mod has the structure of a
G-ribbon category.

Proof. If A is a G-ribbon algebra, it follows from the definition that A-mod is
a G-ribbon category. If on the other hand, A-mod is a G-ribbon category with
G-braiding c and G-twist θ, define an R-matrix and a twist of A by

R = τ ◦ cA,A(1A ⊗ 1A) and θ = θA(1)
−1 . (12)

For v ∈ V, w ∈ W let v̄ : A → V, w̄ : A → W be the A-linear maps with
v̄(1A) = v, w̄(1A) = w. We then have

τ((v ⊗ w).R) = τ(v̄ ⊗ w̄(R)) = (w̄ ⊗ v̄)cA,A(1A ⊗ 1A) = cV,W(v ⊗ w) ,

v.θ−1 = v.(θA(1A)) = v̄(θA(1A)) = θV v̄(1A) = θV(v).

Thus R and θ satisfy the conditions of Definition 5.1 by construction.

As an immediate consequence of Lemma 5.2, we have:

Corollary 5.3. If A is a G-ribbon algebra, the strictification algebra Astr inherits the
structure of a G-weak ribbon algebra such that the equivalence F : A-mod → Astr-mod
is an equivalence of G-ribbon categories.
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A Table summarizing terminology

The following table summarizes the terminology for Hopf algebras with an action
of a finite group G and their weakenings. We consider two types of weakenings:
a weakening of the G-action corresponding to the two rows of the table, and a
weakening of the unitality of the coproduct, corresponding to the two columns
of the table.
Each square contains three different entries, depending on additional structure
on the Hopf algebra. The objects in 1. only have the G-action and no additional
structure (see Definition 2.4). The objects in 2. are equipped with a G-grading
with the compatibilities introduced in Definition 2.7. The objects in 3. have, in
addition to the G-equivariant structure, a G-equivariant R-matrix and a G-twist
as introduced in Definition 5.1.

Hopf algebra weak Hopf algebra

strict G-action

(1) Hopf algebra with strict
G-action

(2) G-Hopf algebra with
strict G-action

(3) G-ribbon algebra with
strict G-action

(1) weak Hopf algebra with
strict G-action

(2) G-weak Hopf algebra
with strict G-action

(3) G-weak ribbon algebra
with strict G-action

weak G-action

(1) Hopf algebra with weak
G-action

(2) G-Hopf algebra

(3) G-ribbon algebra

(1) weak Hopf algebra with
weak G-action

(2) G-weak Hopf algebra

(3) G-weak ribbon algebra
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