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Abstract

The paper studies bounded or unbounded operators which can act as
analysis operators or synthesis operators of various signal processing includ-
ing generalized frames, semi-frames, discrete frames, Fourier transforms,
etc. The paper is concluded by a short discussion of the controllability of
the behavior of the processed signals.

1 Introduction

The theory of frames, generalized frames, semi-frames or other generalizations
of such classes have byproducts in the form of linear operators which theoreti-
cally help the better understanding of the subject; see [1, 2, 3, 4, 5, 6, 7, 8, 9, 11,
13, 14, 15, 16, 19]. In signal processing, the analysis operator sends each signal h
from a Hilbert or Banach space X to the processed function h̃ ∈ L2(Z,M, µ) for
which every point evaluation h 7→ h̃(z) : H → C is a bounded or unbounded
linear functional (z ∈ Z). The main goal of the present paper is to study those
bounded or unbounded operators from a subspace of a Hilbert space H to some
L2(µ) whose closures can be admitted as the analysis operators of some signal
processing. As we can always work in the smallest Hilbert space containing the
signals of interest, we may and shall assume without loss of generality that the
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operators are densely defined. Also, to avoid null processing, we assume the
operators are injective. Furthermore, since the analysis operators happen to be
unbounded, we restrict ourselves to closable operators for a minimal controlla-
bility on the process.

Analysis operators corresponding to generalized frames are everywhere de-
fined bounded operators; however, Fourier transformation on R

n is a unitary

operator F such that the linear functionals h 7→ ĥ(z) = (Fh)(z) do not define
bounded linear functionals. This is why Fourier transforms begin with signals in
L1(µ) ∩ L2(µ) which is a dense linear subspace of a Hilbert space. This, among
others, is a justification for beginning with linear operators which are densely
defined.

Recall that the domain D(T) of an unbounded linear operator T is a linear
subspace included in (but not necessarily equal to) a Hilbert space H and its
codomain is a Hilbert space K. For the purposes of the present paper, we fur-
ther assume that K = L2(µ) for some positive measure µ, D = H and T has
an injective closure. The range and the graph of T are denoted by R(T) and
G(T), respectively. The operator T is said to be everywhere defined if D(T) = H.

Note that, if T exists, it is uniquely determined by G(T) = G(T). The operator
T is called lower bounded, upper bounded, or doubly bounded, if, respectively,
||Th||/||h|| ≥ α, ||Th||/||h|| ≤ β, or α ≤ ||Th||/||h|| ≤ β for all unit vectors
h ∈ D(T) and some positive numbers α, β independent of h. If S : D(S) ⊂ K → L
is another unbounded operator, then ST : D(ST) ⊂ H → L is a new operator for
which D(ST) = {x ∈ D(T) : Tx ∈ D(S)} and (ST)x = S(Tx) for all x ∈ D(ST).
Recall that the operators T−1 and T∗, if it exists, are uniquely determined by the
equations G(T−1)flip = G(T) and G(−T∗)flip = G(T)⊥, where ”flip” is a map
sending x ⊕ y to y ⊕ x. Also, if T is injective, its polar decomposition T = V|T|
consists of an isometry V and an unbounded selfadjoint operator |T| := (T∗T)1/2.
(The properties of unbounded operators can be found here and there in classical
textbooks; we may also suggest to see [17].)

2 Algebraic Frames: Fourier transforms revisited

Fourier transformations on R
n are unitary operators which yield the following

unbounded linear functionals on L1(Rn) ∩ L2(Rn):

φ 7→ φ̂(z) :=
∫

Rn
φ(x)e−iz·xdx, φ ∈ L1(Rn) ∩ L2(Rn).

The above observation motivates the following definition whose notation and
symbols are maintained throughout the paper.

Definition 2.1. Let D be a dense linear subspace of H and let (θz)z∈Z be a family
of (not necessarily bounded) linear functionals defined on D, where Z is a set
equipped with a (positive) measure µ. The family (θz)z∈Z is called an algebraic
frame if the unbounded operator T : D(T) ⊂ H → L2(µ) defined by (Th)(z) =
θz(h) (h ∈ D, z ∈ Z) has an injective closure T. The measure space Z is called
the index measure space of the algebraic frame and the closure T of T is called
the analysis operator of the algebraic frame.
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Note. The traditional definition of a generalized frame is a family of vectors
(θz)z∈Z ⊂ H indexed by a measure space (Z,M, µ) which satisfies

A||h||2 ≤
∫

Z
|〈h, θz〉|

2dµ(z) ≤ B||h||2

for all h ∈ H and some positive constants A, B independent of h. (Note that by
the Riesz representation theorem for linear functionals on Hilbert spaces, every
bounded linear functional can be identified by a vector in the Hilbert space and
vice versa.) In this case, the analysis operator T sending h to the complex-valued
function z 7→ 〈h, θz〉 is a doubly bounded operator which is also closed. If A is
allowed to be 0, then the family is called an upper semi-frame [1]. However, if
A > 0 and B = ∞, the family is called a lower semi-frame [1] and T cannot be
closable; hence, the family is not an algebraic frame. (For more on lower semi-
frames, see [1, 2, 10].)

The following example revisits the Fourier transform on Rn as an algebraic
frame.

Example 2.2. Let H = L2(Rn). Let D(T) be the (dense) linear subspace of H
consisting of all step functions and define T : D(T) → L2(Rn) by

(Tφ)(z) =
∫

Rn
φ(x)e−2πix·zdx, ∀φ ∈ D(T). (2.1)

Then the closure of T is a multiple of a unitary operator and the right-hand side of
(2.1) defines a family of unbounded linear functionals yielding a doubly bounded
algebraic frame.

To see the frame properties of the Fourier transform on R
n, consider a step

function φ = ∑
h
j=1 sjχIj

, where sj is a constant real number and Ij = Ij1 × · · · ×

Ijn ⊂ Rn is a cartesian product of some (closed or nonclosed) intervals (j =
1, 2, · · · , h). Let ℓn denote the n-dimensional volume in Rn. Then, assuming with-
out loss of generality that the cells I1, · · · , Ih are disjoint,

||Tφ||22 =
∫

Rn

∫

Rn

∫

Rn
φ(x)φ(y)e2πiz·(y−x)dxdydz

=
h

∑
j,k=1

sjsk

∫

Rn

(
n

∏
m=1

∫

Ijm

∫

Ikm

e2πizm(ym−xm)dxmdym

)
dz

=
h

∑
j,k=1

sjsk

n

∏
m=1

∫ ∞

−∞

∫

Ijm

∫

Ikm

e2πizm(ym−xm)dxmdymdzm

= π−n
h

∑
j,k=1

sjsk

n

∏
m=1

ℓ1(Ijm ∩ Ikm)
∫ ∞

−∞
[1 − cos t]/t2dt (2.2)

= cnπ−n
h

∑
j=1

|sj|
2
ℓn(Ij) = cnπ−n||φ||2,

where

c =
∫ ∞

−∞
[1 − cos t]/t2dt < ∞.
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(The well-known fact c = π is not needed here.) Thus πn/2c−n/2T = V for some
isometry V. (If we use the value c = π, it follows that T is in fact an isometry.)

To show T is a multiple of unitary, we prove that

(T∗ψ)(x) =
∫

Rn
ψ(z)e2πiz·xdz. (2.3)

If φ = χ
A

and ψ = χ
B

for some cells A ⊂ Rn and B ⊂ Rn, then

〈φ, T∗ψ〉 = 〈Tφ, ψ〉 =
∫

B

∫

A
e−2πiz·xdxdz = 〈φ,

∫
ψ(z)e2πiz·xdz〉,

which proves (2.3). Repeating the above computations for T∗, it follows that
πn/2c−n/2T∗ is also an isometry. Hence, V is a unitary.

The next example revisits the Zak transformation [12] as an algebraic frame.
In the following, if α, x ∈ Rn, by α > 0, we mean all the coordinates α1, · · · , αn

of α are positive, by α−1 we mean a vector with coordinates α−1
1 , · · · , α−1

n , and by
αx, we mean a vector with coordinates α1x1, · · · , αnxn. Also, [0, α] denotes the cell
[0, α1]× · · · × [0, αn] ⊂ Rn.

Example 2.3. Let λ be a finite (positive) measure on some space Y, let γ be the
counting measure on Zn and let dx be the (n-dimensional) Lebesgue measure on
[0, α−1] for some 0 < α ∈ R

n. Let H = L2(λ × γ) and K = L2(λ × dx). Let F be a
linear space of bounded functions supported on Y × J for some finite subset J of
Zn, and assume the class D consisting of all functions almost equal to functions
in F with respect to the measure λ × γ is dense in L2(λ × γ). (For example, if Y is
a locally compact space, F can be taken to be Cc(Y × Zn).) Define T : D → K by

(T[ f ])(y, x) = ∑
k∈Zn

f (y, k)e2πi(αk).x . (2.4)

(Here, it is important to distinguish between a function g ∈ F and its equivalence
class [g] ∈ D; for example, if g ∈ C([0, 1]), g(x) is well-defined but, if h = g
a.e., the expression h(x) is not well-defined.) Then the closure of T is a multiple
of a unitary operator and the functionals defined by (2.4) are unbounded linear
functionals generating an algebraic frame. To see this, apply Tonelli’s theorem to
|T[ f ]|2 ( f ∈ F), to observe that

∫

Y×Zn
| f |2dµ = ∑

k∈Zn

∫

Y
| f (y, k)|2dλ(y) =

∫

Y
∑

k,j∈Zn

f (y, k) f (y, j)δjkdλ(y)

= α×

∫

Y
∑

k,j∈Zn

f (y, k) f (y, j)
∫

[0,α−1]
e2πiα(j−k)·xdxdλ(y)

= α×

∫

Y

∫

[0,α−1]
|(T[ f ])(y, x)|2dxdλ(y) = α× ||T[ f ]||

2
< ∞.

Thus, the closure of (α×)
1/2T defines an isometry V and, hence, the required

(densely defined closed) analysis operator T is equal to (α×)
−1/2V.
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Next, assume ψ ∈ L2(λ × dω) and [ f ] ∈ D. Then

〈T∗ψ, [ f ]〉L2(µ) = 〈ψ, T[ f ]〉

=
∫

Y

∫

[0,α−1]
ψ(y, x)∑

k

f (y, k)e−2πiαk·xdxdλ(y)

= 〈
∫

[0,α−1]
ψ(y, x)e−2πiαk·xdx, [ f ]〉L2(µ). (2.5)

Now, assume T∗ψ = 0 and fix h ∈ Zn and η ∈ L2(λ) ∩ L∞(λ). The function
f (y, k) := δkhη(y) defines an element [ f ] ∈ D(T) and

0 = 〈T∗ψ, [ f ]〉L2(µ) = 〈(T∗ψ)(·, h), η〉L2(λ).

Since L2(λ)∩ L∞(λ) is dense in L2(λ), it follows that, for each k ∈ Zn, there exists
Γk ⊂ Y such that λ(Y\Γk) = 0 and

∫
[0,α−1] ψ(y, x)e−2πiαk·xdx = 0 for all y ∈ ∩kΓk.

Now, applying the theory of Fourier series inductively to each coordinate of x,

one obtains measurable subsets Ωj ⊂ [0, α−1
j ] (j = 1, 2, · · · , n) such that, [0, αj]\Ωj

has Lebesgue measure 0 and that ψ(y, x) = 0 for all (y, x) ∈ (∩h∈ZnYh)× Ω1 ×
· · · × Ωn. Hence ψ = 0 and, thus, V is a unitary operator.

The actual Zak transform is included in the following corollary.

Corollary 2.4. Let 0 < α ∈ Rn and 0 < β ∈ Rm for some positive integers m, n and
assume h : Zn → Zm is a bijection. Let X = Cc(Rm) and let Z := [0, β] × [0, α−1]
equipped with the Lebesgue measure dy × dω. Then, for z := (y, ω) ∈ Z, define

θz(φ) = ∑
k∈Zn

φ(y + βh(k))e2πiαk·ω .

Then Θ = (θz)z∈Z is a nonanalytic algebraic frame whose analyzing operator is a multi-
ple of unitary. The Zak transformation is obtained if β = α = (α1, α1, · · · , α1), m = n
and h(k) ≡ k.

In all the above examples, the analysis operator turned out to be a multiple
of a unitary and thus the inversion formula could be written in the form of a
multiple of the adjoint of the analysis operator. The following example is an
unbounded analysis operator whose inverse is bounded and has nothing to do
with the adjoint of the analysis operator.

Example 2.5. If T = d/dx acts on D(T) = { f ∈ C(1)([0, 1]) : f (0) = 0}, then the
unbounded operator T : D(T) ⊂ L2([0, 1]) → L2([0, 1]) is a densely defined op-
erator the inverse of whose closure is the bounded operator (Sg)(x) =

∫ x
0 g(t)dt.

Thus, the functionals f 7→ f ′(x) are unbounded linear functionals on C(1)([0, 1])
and define a lower bounded algebraic frame. On the other hand, the functionals
f 7→

∫ x
0 f (t)dt are bounded linear functionals on L2([0, 1]) and define an upper

semi-frame.
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3 Inversion formula

In this section, we establish an inversion formula for every algebraic frame. Recall
that the closed injective operator T has the polar decomposition T = V|T|, where

V : H → L2(µ) is an isometry, D(T) = D(|T|) and R(V) = R(T). It is not
difficult to show that, in our special case,

T∗ = |T|V∗. (3.1)

The synthesis operator of an algebraic frame generated by the unbounded
operator T : D(T) ⊂ H → L2(µ), must be a densely defined closed operator
S : D(S) ⊂ L2(µ) → H acting as a left inverse to T. To make it densely defined,
we require S to satisfy the following conditions:

ST = ID(T) and S(R(T)⊥) = {0}. (3.2)

If T is an everywhere defined bounded operator, which is the case for generalized
frames and upper semi-frames, then the inverse mapping theorem implies that
S = T−1 on R(T) and S = 0 on R(T)⊥ ; since S is closed, it is uniquely defined.
The following theorem and the example following the theorem reveal that, to
have a uniquely defined synthesis operator, we need to impose extra conditions
on S. In what follows, the symbol +̇ stands for decomposition of a general vector
space as the direct sum of some linear subspaces, while ⊕ is used for the decom-
position of a Banach space as the direct sum of closed subspaces; in Hilbert spaces
we further assume the summands of ⊕ are mutually orthogonal unless otherwise
specified.

Theorem 3.1. Let T : D(T) ⊂ H → L2(µ) and S : D(S) ⊂ L2(µ) → H be un-
bounded operators such that T is the analysis operator of some algebraic frame and S is
closed. Then the following assertions are equivalent. (Note that G(S) ⊂ L2(µ)⊕ H.)

1. G(T)flip + [R(T)⊥ ⊕ {0}] ⊂ G(S).

2. The operator S satisfies (3.2).

3. (The inversion formula) D(S) ⊃ R(T)⊥+̇R(T); moreover, for all g ∈
R(T)⊥+̇R(T) and for all h ∈ R(|T|),

〈Sg, h〉 =
∫

Z
g(z)(V|T|−1h)(z)dµ(z). (3.3)

Moreover, under any one of the equivalent conditions (1) − (3), the operator T is an
isometry if and only if S = T∗; in either case, D(T) = H.

Proof. Assume S satisfies (1). Clearly, S(R(T)⊥) = {0} and it remains to show
that ST|D(T) = ID(T). Let x ∈ D(T) be arbitrary. Then Tx ⊕ x ∈ G(T)flip ⊂

G(T)flip ⊂ G(S) which proves that x = STx; hence, (1) ⇒ (2).
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Next, assume S satisfies (2) and let h ∈ R(|T|). If g ⊥ R(T), then g ⊥ R(V),
〈Sg, h〉 = 0 and

∫
g(z)(V|T|−1h)(z)dµ(z) = 〈g, V|T|−1h〉L2(µ) = 0.

If g ∈ R(T), then g ∈ D(S) and

〈Sg, h〉 = 〈Sg, |T||T|−1h〉 = 〈Sg, T∗V|T|−1h〉

= 〈TSg, V|T|−1h〉 = 〈g, V|T|−1h〉

=
∫

g(z)(V|T|−1h)(z)dµ(z).

The complete proof of (2) ⇒ (3) follows from the linearity of S.
Now, assume (3) holds. If g ⊥ R(T), it follows from (3.3) that 〈Sg, h〉 = 0

for all h in the dense subspace R(|T|) of H. Thus Sg = 0 and, hence, R(T)⊥ ⊕
{0} ⊂ G(S). If k ∈ D(T), then k ⊕ Tk = limn→∞ kn ⊕ Tkn for some sequence
(kn)n∈N ⊂ D(T). Fix n ∈ N. By (3.3),

〈STkn , h〉 =
∫

Z
(Tkn)(z)(V|T|−1h)(z)dµ(z)

= 〈Tkn, V|T|−1h〉 = 〈V|T|kn, V|T|−1h〉

= 〈|T|kn, |T|−1h〉 = 〈kn, h〉,

for all h ∈ R(|T|). Since R(|T|) is dense in H, it follows that STkn = kn. Thus,
k ⊕ Tk = limn→∞ kn ⊕ Tkn = limn→∞ STkn ⊕ Tkn ∈ G(S)flip. Hence, G(T)flip ⊂
G(S) and the implication (3) ⇒ (1) is proven.

Finally, assume T is an isometry. Since it is a closed, densely defined, bounded
operator, it follows that D(T) = H, |T| = I and T = V. Since SV = ST = I, the
operators S and V∗ coincide on R(V) and since they both vanish on R(V)⊥,
S = V∗ = T∗ ∈ B(L2(Z, µ), H). Conversely, if T∗ = S, it follows that T∗T =
ST = ID(T) and, hence, T is an isometry.

The following example shows that the operator S satisfying any of the equiv-
alent conclusions (1)− (3) is not unique.

Example 3.2. Let T = id/dx be the differential operator acting on the dense

linear subspace D(T) := { f ∈ C(1)([0, 1]) : f (0) = f (1) = 0} of L2([0, 1]).

Choosing R̃(T) ⊂ C([0, 1]), we obtain an algebraic frame generated by T. Now,
let T1 = id/dx be the differential operator on the dense linear subspace { f ∈

C(1)([0, 1]) : f (0) = f (1)}. It is known that T is an injective closed symmet-
ric operator, T1 is a non injective selfadjoint operator, and T ⊂ T1 ⊂ T∗ (see
pp. 257 − 259 of [18]). Define S1 : ker(T1) ⊕ R(T1) → L2([0, 1]) by S1 f = 0

for f ∈ ker(T1) and S1(T1 f ) = f for f ∈ R(T1) ∩ D(T1). Similarly, define
S2 : ker(T∗)⊕R(T∗) → L2([0, 1]) by S2 f = 0 for f ∈ ker(T∗) and S2(T

∗ f ) = f

for f ∈ R(T) ∩ D(T∗). The operators S1 and S2 are distinct closed operators
satisfying the inversion formula (3.3) of Theorem 3.1.
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The above observation suggests the following definition of the synthesis op-
erator of an algebraic frame which coincides with the one defined for generalized
frames.

Definition 3.3. The synthesis operator S of an algebraic frame having the analysis
operator T : D(T) ⊂ H → L2(µ) is defined to be the closed operator S : D(S) ⊂
L2(µ) → H determined by

G(S) = G(T)flip ⊕ (R(T)⊥ ⊕ {0}).

4 Discussion

In this section, we discuss the effect of unboundedness of the analysis operators
and/or the unboundedness of the linear functionals on the processed signals. The
algebraic frame generated by the Fourier transformation consists of unbounded
linear functionals; however, although the frequency of the signal is uncontrol-
lable, the doubly boundedness of the analysis operator controls the energy of
the processed signal. Also, there are other reasons to believe Fourier transforms

have good behavior: if the signal itself is in L1(µ), the processed signal is a C(0)-
function and the correspondence φ 7→ φ̂ is a continuous function from L1-norm
to L∞-norm. For an analytic frame (θz)z∈Z, one can discard the zero function-
als and normalize it to θz/||θz|| and modify the measure dµ(z) by ||θz||2dµ(z) to
obtain a new analytic frame which is isometric to the original one. The analysis
operator of the modified frame is continuous from the L2-norm to L∞-norm. (See
[10].) In the worst case of the algebraic frames in which the linear functionals are
not bounded, one can still have some kind of continuity: The analysis operator
T has a polar decomposition T = V|T|, where V is an isometry but |T| is un-
bounded. The unbounded selfadjoint operator |T| can be further decomposed as
|T| = (I − W)1/2W−1/2, where 0 < W := (I + T∗T)−1 < I. If ǫ > 0 is small
enough, the restriction W|E([ǫ,1−ǫ])H provides a truncation Tǫ which generates a
doubly bounded analytic frame. Besides this, one has also to note that our un-
bounded operators have injective closures and, hence, the partial isometry V in
the polar decomposition V|T| of T is a well-behaved isometry.
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