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Abstract

The purpose of this paper is to discuss the deficiency of an E-valued
meromorphic function f . Results are obtained to extend the related results
for meromorphic vector valued function of Lahiri and Ziegler.

1 Introduction of E-valued meromorphic function

In 1982, Ziegler [14] succeeded in extending the Nevanlinna theory of meromor-
phic function to the vector-valued meromorphic function in finite dimensional
spaces. After Ziegler some works related to vector valued meromorphic func-
tion were done in 1990s [5]-[7]. Later, Hu and Yang [4] established the Nevan-
linna theory of meromorphic mappings with the range in an infinite-dimensional
Hilbert spaces. In 2006, Hu and Hu [3] established the Nevanlinna’s first and
second main theorems of meromorphic mappings with the range in an infinite-
dimensional Banach spaces E with a Schauder basis. Recently, Xuan and Wu
[11] established the Nevanlinna’s first and second main theorems for an E-valued
meromorphic mapping from a generic domain D ⊆ C to an to an infinite-dimen-
sional Banach spaces E with a Schauder basis. For a meromorphic scalar valued
function f (z). On the deficiency of f (z) has been studied in Hayman [2], Yang
[12] and Zheng [13]. For a meromorphic vector valued function f (z). On the
deficiency of f (z) has been studied in Lahiri [5]-[7] and Ziegler [14]. Recently,
Bhoosnurmath and Pujari [1] studied the E-Valued Borel Exceptional Values of
Meromorphic Functions.But [1], [3] or [11] does not contain deficiency. In this
paper, we discuss this problem.
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For the sake of convenience, we introduce some fundamental definition and
notation of E-valued meromorphic function which was introduced by [1]. [3] and
[11].

Let (E, ‖ • ‖) be a complex Banach space with Schauder basis {ej} and the
norm ‖ • ‖. Thus an E-valued meromorphic function f (z) defined in CR = {|z| <
R}, 0 < R ≤ +∞, C+∞ = C can be written as f (z) = ( f1(z), f2(z), · · · , fk(z), · · · ).
Let En be an n-dimensional projective space of E with a basis {ej}

n
1 . The projective

operator Pn : E → En is a realization of En associated to the basis.
The elements of E are called vectors and are usually denoted by letters from

the alphabet: a, b, c, · · · . The symbol 0 denotes the zero vector of E. We denote
vector infinity, complex number infinity, and the norm infinity by ∞̂, ∞, and +∞,
respectively. A vector-valued mappings is called holomorphic (meromorphic) if
all f j(z) are holomorphic (some of f j(z) are meromorphic). The jth derivative
j = 1, 2, · · · of f (z) are defined by

f (j)(z) = ( f
(j)
1 (z), f

(j)
2 (z), · · · , f

(j)
k (z), · · · ).

We assume that f (0)(z) = f (z). A point z0 ∈ CR is called a pole of f (z) =
( f1(z), f2(z), · · · , fk(z), · · · ) if z0 is a pole of at least one of the component func-
tions fk(z)(k = 1, 2, · · · ). We denote ‖ f (z)‖ = +∞ when z0 is a pole. A point
z0 ∈ CR is called a ”zero” of f (z) = ( f1(z), f2(z), · · · , fk(z), · · · ) if z0 is a zero of
all the component functions fk(z)(k = 1, 2, · · · ).

Let n(r, f ) or n(r, ∞̂) denote the number of poles of f (z) in |z| ≤ r, and n(r, a)
denote the number of a-points of f (z) in |z| ≤ r, counting with multiplicities.
Define the volume function associated with E-valued meromorphic function f (z)

V(r, ∞̂, f ) = V(r, f ) =
1

2π

∫

Cr

log

∣∣∣∣
r

ξ

∣∣∣∣ ∆ log ‖ f (ξ)‖dx ∧ dy, ξ = x + iy;

V(r, a) = V(r, a, f ) =
1

2π

∫

Cr

log

∣∣∣∣
r

ξ

∣∣∣∣ ∆ log ‖ f (ξ) − a‖dx ∧ dy, ξ = x + iy;

and the counting function of finite or infinite a−points by

N(r, f ) = n(0, f ) log r +
∫ r

0

n(t, f )− n(0, f )

t
dt,

N(r, ∞̂) = n(0, ∞̂) log r +
∫ r

0

n(t, ∞̂)− n(0, ∞̂)

t
dt,

and

N(r, a) = n(0, a) log r +
∫ r

0

n(t, a) − n(0, a)

t
dt.

respectively. Next, we define

m(r, f ) = m(r, ∞̂, f ) =
1

2π

∫ 2π

0
log+

∥∥∥ f (reiθ)
∥∥∥ dθ;

m(r, a) = m(r, a, f ) =
1

2π

∫ 2π

0
log+ 1

‖ f (reiθ)− a‖
dθ;
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T(r, f ) = m(r, f ) + N(r, f ).

Let n(r, f ) or n(r, ∞̂) denote the number of poles of f (z) in |z| ≤ r, and n(r, a)
denote the number of a-points of f (z) in |z| ≤ r, ignoring multiplicities. Simi-
larly, we can define the counting function N(r, f ), N(r, ∞̂) and N(r, a) of n(r, f ),
n(r, ∞̂) and n(r, a).

If f (z) is an E-valued meromorphic function in the whole complex plane, then
the order and the lower order of f (z) are defined by

λ( f ) = lim sup
r→∞

log T(r, f )

log r
;

µ( f ) = lim inf
r→∞

log T(r, f )

log r
.

We call the E-valued meromorphic function f admissible if

lim sup
r→+∞

T(r, f )

log r
= +∞.

Definition 1.1. For a meromorphic function f (z) (E-valued or scalar valued) we denote
by S(r, f ) any quantity such that

S(r, f ) = O(log T(r, f ) + log r), r → +∞

or

S(r, f ) = o(T(r, f )), r → +∞

without restriction if f (z) is of finite order and otherwise except possibly for a set of values
of r of finite linear measure.

Definition 1.2. (see [3]) An E-valued meromorphic function f (z) in CR = {|z| <

R}, 0 < R ≤ +∞ is of compact projection, if for any given ε > 0, ‖Pn( f (z))− f (z)‖ <

ε has sufficiently large n in any fixed compact subset D ⊂ CR.

In 2006, C. G. Hu and Qijian Hu[3] proved the following theorems.

THEOREM A (the E-valued Nevanlinna’s first fundamental theorem) Let f (z)
be a nonconstant E-valued meromorphic function in CR. Then for 0 < r < R, a ∈
E, f (z) 6≡ a,

T(r, f ) = V(r, a) + N(r, a) + m(r, a) + log+ ‖cq(a)‖+ ε(r, a).

Here ε(r, a) is a function such that

|ε(r, a)| ≤ log+ ‖a‖+ log 2, ε(r, 0) ≡ 0,

and cq(a) ∈ E is the coefficient of the first term in the Laurent series at the point
a.
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THEOREM B (the E-valued Nevanlinna’s second fundamental theorem) Let
f (z) be a nonconstant E-valued meromorphic function of compact projection in

C and a[k] ∈ E(k = 1, 2, · · · , q) be q ≥ 3 distinct points. Then for 0 < r < R,

(q − 2)T(r, f ) + G(r, f ) ≤
q

∑
k=1

[V(r, a[k]) + N(r, a[k])] + S(r, f ).

and

(q − 1)T(r, f ) + G(r, f ) ≤
q

∑
k=1

[V(r, a[k]) + N(r, a[k])] + N(r, ∞̂) + S(r, f ),

where

G(r, f ) =
∫ r

0

1

2π
dt

∫

Cr

∆ log ‖ f (ξ)‖dx ∧ dy, ξ = x + iy;

THEOREM C Let f (z) be a nonconstant E-valued meromorphic function of
compact projection in C. Then the inequality

1

2π

∫ 2π

0
log+ ‖ f ′(reiθ)‖

‖ f (reiθ)− a‖
dθ = S(r, f ), a ∈ E,

holds.

2 Deficiency of E-valued meromorphic function

Follow Ziegler [14] or Bhoosnurmath, Pujari [1], we define the Nevanlinna defi-
cient value and deficiency for the E-valued meromorphic function. For any vector
a ∈ E, we define the number δ(a) = δ(a, f ) by putting

δ(a) = δ(a, f ) = lim inf
r→+∞

m(r, a)

T(r, f )
= 1 − lim sup

r→+∞

V(r, a) + N(r, a)

T(r, f )
;

δ(∞̂) = δ(∞̂, f ) = lim inf
r→+∞

m(r, f )

T(r, f )
= 1 − lim sup

r→+∞

N(r, f )

T(r, f )
;

and Θ(a) = Θ(a, f ) by putting

Θ(a) = Θ(a, f ) = 1 − lim sup
r→+∞

V(r, a) + N(r, a)

T(r, f )
;

Θ(∞̂) = Θ(∞̂, f ) = 1 − lim sup
r→+∞

N(r, f )

T(r, f )
.

For any a ∈ E, it is easy to derive

0 ≤ δ(a) ≤ Θ(a) ≤ 1. (2.1)

We also define

δG = lim inf
r→+∞

G(r, f )

T(r, f )
.
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Theorem 2.1. Let f (z) be an admissible E-valued meromorphic function of compact
projection in C. Then the set {a ∈ E ∪ {∞̂}, δ(a) > 0} is at most countable and
summing over all such points we have

∑
a

δ(a) + δG ≤ ∑
a

Θ(a) + δG ≤ 2.

Theorem 2.1 extend the relative result of meromorphic vector valued function
in Ziegler [14].

Proof. Since f (z) is admissible, then there is a sequence {rv} outside the excep-
tional set of Definition 1.1 such that

lim
v→+∞

S(rv, f )

T(rv, f )
= 0.

Assume a[k] ∈ E(k = 1, 2, · · · , q) are q ≥ 2 distinct points. In view of Theorem B,
we get

(q − 1)T(rv, f ) + G(rv, f ) ≤
q

∑
k=1

[V(rv, a[k]) + N(rv, a[k])] + N(rv, ∞̂) + S(rv, f ).

Hence, dividing by T(rv, f ), we get

q − 1 ≤
q

∑
k=1

[V(rv, a[k]) + N(rv, a[k])]

T(rv, f )
+

N(rv, ∞̂)

T(rv, f )
+

S(rv, f )

T(rv, f )
.

Thus

q − 1 +
G(rv, f )

T(rv, f )
≤

q

∑
k=1

lim sup
r→+∞

[V(r, a[k]) + N(r, a[k])]

T(r, f )
+ lim sup

r→+∞

N(r, ∞̂)

T(r, f )
.

So
q

∑
k=1

Θ(a[k]) + Θ(∞̂) ≤ 2 − δG. (2.2)

Also
q

∑
k=1

δ(a[k]) + δ(∞̂) ≤ 2 − δG ≤ 2. (2.3)

Hence the number of vector in the set {a ∈ E ∪ {∞̂}, δ(a) > 1
l } is at most 2l − 1.

So the set {a ∈ E ∪ {∞̂}, δ(a) > 0} = ∪+∞
l=1{a ∈ E ∪ {∞̂}, δ(a) >

1
l } is at most

countable. Since (2.2) and (2.3) hold for all q ≥ 2, letting q → +∞ and combining
(2.1) we get

∑
a

δ(a) + δG ≤ ∑
a

Θ(a) + δG ≤ 2.

It is easy to derive the following result from Theorem 2.1.
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Corallary 2.2. Let f (z) be an admissible E-valued meromorphic function of compact
projection in C. Then the set {a ∈ E ∪ {∞̂}, δ(a) > 0} is at most countable and
summing over all such points we have

∑
a

δ(a) ≤ ∑
a

Θ(a) ≤ 2.

For vector valued transcendental integral function f (z) = ( f1(z), f2(z), · · · ,
fn(z)), Lahiri [5] have prove the following

THEOREM D [5]. Let f (z) = ( f1(z), f2(z), · · · , fn(z)) be a vector-valued tran-
scendental integral function (see [5]) of finite order. Then

∑
a∈Cn

δ(a) ≤ δ(0, f ′).

Most recently, Wu and Chen [9] extend Theorem D to admissible meromor-
phic vector valued function and prove

THEOREM E [9]. Let f (z) = ( f1(z), f2(z), · · · , fn(z)) be an admissible mero-
morphic vector function of finite order in C and assume δ(∞) = 1. Then

∑
a∈Cn

δ(a) ≤ δ(0, f ′).

It is natural to consider whether there exists a similar results, if meromor-
phic vector valued function f (z) is replaced by E-valued meromorphic function
f (z). In this following, the main contribution is to extend the above theorem to
E-valued meromorphic function.

Theorem 2.3. Let f (z) be a finite order admissible E-valued meromorphic function of
compact projection in C and assume δ(∞̂) = 1. Then

∑
a∈E

δ(a) ≤ δ(0, f ′).

Proof. For any q ≥ 2 vectors {a[µ]} in E, put

F(z) =
q

∑
j=1

1

‖ f (z) − a[j]‖
.

We can get

1

2π

∫ 2π

0
log+ F(reiθ)dθ ≤ m

(
r, 0, f ′

)
+

1

2π

∫ 2π

0
log+{F(reiθ)‖ f ′(reiθ)‖}dθ; (2.4)

Put
δ = min

i 6=j
‖a[i] − a[j]‖.

Let for the moment µ ∈ {1, 2, · · · , q} be fixed. Then we get in every point where

‖ f (z)− a[µ]‖ <
δ

2q
≤

δ

4
, (2.5)
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the inequality

‖ f (z) − a[ν]‖ ≥ ‖a[µ] − a[ν]‖ − ‖ f (z)− a[µ]‖ ≥
3δ

4
,

for µ 6= ν. Therefore the set of points on ∂Cr which is determined by (2.5) is either
empty or any two such sets for different µ have empty intersection. In any case

1
2π

∫ 2π
0 log+ F(reiθ)dθ ≥ 1

2π

q

∑
µ=1

∫

‖ f (z)−a[µ]‖< δ
2q ,|z|=r

log+ F(reiθ)dθ

≥ 1
2π

q

∑
µ=1

∫

‖ f (z)−a[µ]‖< δ
2q ,|z|=r

log+ 1
‖ f (reiθ)−a[µ]‖

dθ.

Because of

1
2π

∫

‖ f (z)−a[µ]‖< δ
2q ,|z|=r

log+ 1
‖ f (reiθ)−a[µ]‖

dθ

= m(r, a[µ])− 1
2π

∫

‖ f (z)−a[µ]‖≥ δ
2q ,|z|=r

log+ 1
‖ f (reiθ)−a[µ]‖

dθ

≥ m(r, a[µ])− log+ 2q
δ ,

it follows that

1

2π

∫ 2π

0
log+ F(reiθ)dθ ≥

q

∑
µ=1

m(r, a[µ])− log+ 2q

δ
, (2.6)

so that by (2.4)

q

∑
µ=1

m(r, a[µ]) ≤ m
(
r, 0, f ′

)
+

1

2π

∫ 2π

0
log+{F(reiθ)‖ f ′(reiθ)‖}dθ + log+ 2q

δ
. (2.7)

Thus by Theorem C, we have (The proof of the following inequality quoted [3])

q

∑
µ=1

m(r, a[µ]) ≤ m
(
r, 0, f ′

)
+ S(r, f ). (2.8)

It follows from Theorem A that

T(r, f ′) = m
(
r, 0, f ′

)
+ N

(
r, 0, f ′

)
+ V

(
r, 0, f ′

)
+ O(1). (2.9)

Thus from (2.8) and (2.9) we deduce

q

∑
µ=1

m(r, a[µ]) + N
(
r, 0, f ′

)
+ V

(
r, 0, f ′

)
≤ T

(
r, f ′

)
+ S(r, f ).

Therefore, we have

N (r, 0, f ′) + V (r, 0, f ′)

T(r, f ′)
+

T(r, f )

T(r, f ′)




q

∑
µ=1

m(r, a[µ])

T(r, f )
− o(1)


 ≤ 1, r → +∞.



710 Z. Wu – Z. Xuan

On the other hand, one has

T(r, f ′) = m(r, f ′) + N(r, f ′)

≤ m(r, f ) + N(r, f ′) + 1
2π

∫ 2π
0 log+ ‖ f ′(reiθ)‖

‖ f (reiθ)‖
dθ

≤ m(r, f ) + N(r, f ) + N(r, f ) + 1
2π

∫ 2π
0 log+ ‖ f ′(reiθ)‖

‖ f (reiθ)‖
dθ

≤ T(r, f ) + N(r, f ) + S(r, f ).

Hence

lim sup
r→+∞

T(r, f ′)

T(r, f )
≤ 2 − δ(∞̂).

So

1 ≥ lim sup
r→+∞


N(r,0, f ′)+V(r,0, f ′)

T(r, f ′)
+ T(r, f )

T(r, f ′)




q

∑
µ=1

m(r,a[µ])

T(r, f )
− o(1)







≥ lim sup
r→+∞

N(r,0, f ′)+V(r,0, f ′)
T(r, f ′)

+ lim inf
r→+∞

T(r, f )
T(r, f ′)




q

∑
µ=1

m(r,a[µ])

T(r, f )
− o(1)




≥ lim sup
r→+∞

N(r,0, f ′)+V(r,0, f ′)
T(r, f ′)

+ lim inf
r→+∞

T(r, f )
T(r, f ′)

lim inf
r→+∞

q

∑
µ=1

m(r,a[µ])

T(r, f )

≥ lim sup
r→+∞

N(r,0, f ′)+V(r,0, f ′)
T(r, f ′)

+

q

∑
j=1

δ(a[j])

2−δ(∞̂)
.

Since q > 0 were arbitrary and δ(∞̂) = 1, we have

∑
a∈E

δ(a) ≤ 1 − lim sup
r→+∞

N (r, 0, f ′) + V (r, 0, f ′)

T(r, f ′)
= δ(0, f ′).

Example 2.4. Put f (z) = (ez, ez, · · · , ez, · · · ). Then

f (j)(z) = (ez, ez, · · · , ez, · · · ), j = 1, 2, · · · .

For any non-zero vector a ∈ E, we have δ(a) = 0, δ(∞̂) = 1, δ(0) = 1 and δ(0, f ′) = 1.
Thus

∑
a∈E

δ(a) ≤ δ(0, f ′).

Corallary 2.5. Let f (z) be a finite order admissible E-valued meromorphic function of
compact projection in C and assume δ(∞̂) = 1. If f (z) has at least one deficient vector
a ∈ E, then the vector 0 is the deficient vector of f ′.

Corallary 2.6. Let f (z) be a finite order admissible E-valued meromorphic function of
compact projection in C and assume ∑

a∈E
δ(a) = 1 and δ(∞̂) = 1. Then δ(0, f ′) = 1.
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3 Relative deficiency of E-valued meromorphic function

The concept of the relative Nevanlinna defect of meromorphic function was due
to Milloux [8] and Xiong qinglai (also Hiong qinglai [10]). In 1990, Lahiri [5]
extended this concept to meromorphic vector valued function and prove

THEOREM F Let f (z) = ( f1(z), f2(z), · · · , fn(z)) be a meromorphic vector

valued function and let a[µ](µ = 1, 2, · · · , p) and b[λ](λ = 1, 2, · · · , q), q ≥ 2, are
elements of Cn, distinct within each set. Then for all positive integers k,

Θ(∞, f ) +
q

∑
λ=1

Θ(k)(b[λ], f ) +
q − 2

n

p

∑
µ=1

δ(a[µ], f ) ≤ q + 1.

where Θ(k)(a, f ) is the relative deficiency (see Lahiri [5]) of the vector a in Cn.

It is natural to consider whether there exists a similar results, if meromorphic
vector valued function f (z) is replaced by E-valued meromorphic function f (z).
In this section, the main contribution is to extend the above theorem to E-valued
meromorphic function.

Definition 3.1. If k is a positive integer then the number

Θ(k)(a, f ) = 1 − lim sup
r→+∞

V(r, a, f (k)) + N(r, a, f (k))

T(r, f )

is called the relative deficiency of the value a ∈ E with respect to distinct zeros.

Theorem 3.2. Let f (z) be an admissible E-valued meromorphic function of compact

projection in C and let a[µ](µ = 1, 2, · · · , p) and b[λ](λ = 1, 2, · · · , q), q ≥ 2, are
elements of E, distinct within each set. Then for all positive integers k,

q

∑
λ=1

Θ(k)(b[λ], f ) + (q − 2)
p

∑
µ=1

δ(a[µ], f ) ≤ q.

In order to prove Theorem 3.2, we need the following Lemmas.

Lemma 3.3. [3]. If an E-valued meromorphic function f (z) in C is of compact projec-

tion, then f (k)(z) is also of compact projection in C for all positive integers k.

Lemma 3.4. [3]. Let f (z) be of compact projection in C, then

1

2π

∫ 2π

0
log+ ‖ f ′(reiθ)‖

‖ f (reiθ)‖
dθ = O(log T(r, f ) + log r)

without restriction if f (z) is of finite order and otherwise except possibly for a set of values
of r of finite linear measure.

Lemma 3.5. [11]. If an E-valued meromorphic function f (z) in C is of compact projec-
tion, then

T(r, f ′) ≤ 2T(r, f ) + O(log T(r, f ) + log r)

without restriction if f (z) is of finite order and otherwise except possibly for a set of values
of r of finite linear measure.
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From Lemma 3.3-3.5, we can get

Lemma 3.6. If an E-valued meromorphic function f (z) in C is of compact projection,
then

S(r, f (k)) = S(r, f ),

and
1

2π

∫ 2π

0
log+ ‖ f (k)(reiθ)‖

‖ f (k−1)(reiθ)‖
dθ = S(r, f ),

holds for all positive integers k.

Lemma 3.7. Let f (z) be of compact projection in C, then for an positive integers k, we
have

1

2π

∫ 2π

0
log+ ‖ f (k)(reiθ)‖

‖ f (reiθ)‖
dθ = S(r, f ).

Proof.
1

2π

∫ 2π
0 log+ ‖ f (k)(reiθ)‖

‖ f (reiθ)‖
dθ

= 1
2π

∫ 2π
0 log+

k

∏
λ=1

‖ f (λ)(reiθ)‖

‖ f (λ−1)(reiθ)‖
dθ

≤
k

∑
λ=1

1
2π

∫ 2π
0 log+ ‖ f (λ)(reiθ)‖

‖ f (λ−1)(reiθ)‖
dθ

Combining the above inequality and Lemma 3.6, Lemma 3.7 follows.

Now, we are in the position to prove Theorem 3.2.

Proof. We set

F(z) =
p

∑
j=1

1

‖ f (z) − a[j]‖
.

then

1

2π

∫ 2π

0
log+ F(reiθ)dθ ≤ m

(
r, 0, f (k)

)
+

1

2π

∫ 2π

0
log+{F(reiθ)‖ f (k)(reiθ)‖}dθ.

From this and (2.6), we have

p

∑
µ=1

m(r, a[µ]) ≤ m
(

r, 0, f (k)
)
+

1

2π

∫ 2π

0
log+{F(reiθ)‖ f (k)(reiθ)‖}dθ + log+ 2q

δ
.

Hence, we can get from the above and Lemma 3.7 that

p

∑
µ=1

m(r, a[µ]) ≤ m
(

r, 0, f (k)
)
+ S(r, f ). (3.1)

It follows from Theorem A that

T(r, f (k)) = m
(

r, 0, f (k)
)
+ N

(
r, 0, f (k)

)
+ V

(
r, 0, f (k)

)
+ O(1). (3.2)
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Thus from (3.1) and (3.2) we deduce

p

∑
µ=1

m(r, a[µ]) ≤ T
(

r, f (k)
)
+ S(r, f ).

By Theorem A,

pT(r, f ) ≤ T
(

r, f (k)
)
+

p

∑
µ=1

[N(r, a[µ]) + V(r, a[µ])] + S(r, f ). (3.3)

Now it follows from Theorem B and Lemma 3.7 that

(q − 2)T(r, f (k)) ≤
q

∑
λ=1

[V(r, b[λ], f (k)) + N(r, b[λ], f (k))] + S(r, f ). (3.4)

Therefore from (3.3) and (3.4) we get

p(q − 2)T(r, f ) ≤
q

∑
λ=1

[V(r, b[λ], f (k)) + N(r, b[λ], f (k))]

+(q − 2)
p

∑
µ=1

[N(r, a[µ]) + V(r, a[µ])] + S(r, f ).

Hence

p(q − 2) ≤
q

∑
λ=1

lim sup
r→+∞

[V(r,b[λ], f (k))+N(r,b[λ], f (k))]
T(r, f )

+(q − 2)
p

∑
µ=1

lim sup
r→+∞

[N(r,a[µ])+V(r,a[µ])]
T(r, f )

=
q

∑
λ=1

(1 − Θ(k)(b[λ], f )) + (q − 2)
p

∑
µ=1

(1 − δ(a[µ], f )).

Hence
q

∑
λ=1

Θ(k)(b[λ], f ) + (q − 2)
p

∑
µ=1

δ(a[µ], f ) ≤ q.

Example 3.8. Put f (z) = (ez, ez, · · · , ez, · · · ). Then

f (k)(z) = (ez, ez, · · · , ez, · · · ), k = 1, 2, · · · .

For any non-zero vector a ∈ E, we have δ(a, f ) = 0, δ(∞̂, f ) = 1, δ(0, f ) = 1 and

Θ(k)(a, f ) = δ(a, f ) = 0, Θ(k)(∞̂, f ) = δ(∞̂, f ) = 1, Θ(k)(0, f ) = δ(0, f ) = 1. Let

a[µ](µ = 1, 2, · · · , p) and b[λ](λ = 1, 2, · · · , q; q ≥ 2) be elements of E, distinct within
each set. Then for all positive integers k, we have

q

∑
λ=1

Θ(k)(b[λ], f ) =
q

∑
λ=1

δ(b[λ], f ) ≤ 2 − δ(∞̂, f ) = 1,

p

∑
µ=1

δ(a[µ], f ) ≤ 2 − δ(∞̂, f ) = 1.
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Therefore,

q

∑
λ=1

Θ(k)(b[λ], f ) + (q − 2)
p

∑
µ=1

δ(a[µ], f ) ≤ 1 + (q − 2) = q − 1 < q.

Corallary 3.9. Let f (z) be an admissible E-valued meromorphic function of compact

projection in C and let a[µ](µ = 1, 2, · · · , p) and b[λ](λ = 1, 2, · · · , q), q ≥ 2, are
elements of E, distinct within each set. Then for all positive integers k,

Θ(∞, f ) +
q

∑
λ=1

Θ(k)(b[λ], f ) + (q − 2)
p

∑
µ=1

δ(a[µ], f ) ≤ q + 1.

Corallary 3.10. Let f (z) be an admissible E-valued meromorphic function of compact

projection in C and let a[µ](µ = 1, 2, · · · , p) and b[λ](λ = 1, 2, · · · , q), q ≥ 2, are
elements of E, distinct within each set. Then for all positive integers k and n,

Θ(∞, f ) +
q

∑
λ=1

Θ(k)(b[λ], f ) +
q − 2

n

p

∑
µ=1

δ(a[µ], f ) ≤ q + 1.

Corallary 3.11. Let f (z) be an admissible E-valued meromorphic function of compact
projection in C,

1

q

q

∑
λ=1

Θ(k)(b[λ], f ) ≤ 1.

i.e., the mean value of Θ(k)(b[λ], f )’s does not exceed 1.
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