Harmonic Functions in Upper Half Space*

Guo-Shuang Pan
Lei Qiao
Guan-Tie Deng

Abstract

In this paper, we prove that if the positive part $u^{+}(x)$ of a harmonic function $u(x)$ in the upper half space satisfies a fast growing condition, then its negative part $u^{-}(x)$ can also be dominated by a similar growing condition. Meanwhile, $u(x)$ can be represented in terms of the modified Poisson integral and a harmonic function vanishing on the boundary.

1 Introduction and Results

Let $\mathbf{R}^{n}(n \geq 3)$ denote the n-dimensional Euclidean space with points $x=\left(x^{\prime}, x_{n}\right)$, where $x^{\prime}=\left(x_{1}, x_{2}, \cdots, x_{n-1}\right) \in \mathbf{R}^{n-1}$ and $x_{n} \in \mathbf{R}$. The boundary and closure of an open set D of \mathbf{R}^{n} are denoted by ∂D and \bar{D} respectively. The upper half space is the set $H=\left\{\left(x^{\prime}, x_{n}\right) \in \mathbf{R}^{n}: x_{n}>0\right\}$, whose boundary is ∂H. We identify \mathbf{R}^{n} with $\mathbf{R}^{n-1} \times \mathbf{R}$ and \mathbf{R}^{n-1} with $\mathbf{R}^{n-1} \times\{0\}$, writing typical points $x, y \in \mathbf{R}^{n}$ as $x=\left(x^{\prime}, x_{n}\right), y=\left(y^{\prime}, y_{n}\right)$, where $y^{\prime}=\left(y_{1}, y_{2}, \cdots, y_{n-1}\right) \in \mathbf{R}^{n-1}$ and putting

$$
x \cdot y=\sum_{j=1}^{n} x_{j} y_{j}=x^{\prime} \cdot y^{\prime}+x_{n} y_{n}, \quad|x|=\sqrt{x \cdot x},\left|x^{\prime}\right|=\sqrt{x^{\prime} \cdot x^{\prime}}
$$

For $r>0$, let $B(r)$ denote the open ball with center at the origin and radius r in \mathbf{R}^{n}. We use the standard notations $u^{+}=\max \{u, 0\}, u^{-}=-\min \{u, 0\}$ and $[d]$ is the integer part of the positive real number d. In the sense of Lebesgue measure $d x^{\prime}=d x_{1} \cdots d x_{n-1}$ and $d x=d x^{\prime} d x_{n}$. Let σ denote $(n-1)$-dimensional surface area measure and $\partial / \partial n$ denote differentiation along the inward normal into H.

[^0]The classical Poisson kernel for H is defined by

$$
P\left(x, y^{\prime}\right)=\frac{2 x_{n}}{\omega_{n}\left|x-y^{\prime}\right|^{n}}
$$

where $\omega_{n}=2 \pi^{\frac{n}{2}} / \Gamma(n / 2)$ is the area of the unit sphere in \mathbf{R}^{n}. It has the expansion

$$
P\left(x, y^{\prime}\right)=\sum_{k=0}^{\infty} \frac{2 x_{n}|x|^{k}}{\omega_{n}\left|y^{\prime}\right|^{n+k}} C_{k}^{\frac{n}{2}}\left(\frac{x \cdot y^{\prime}}{|x|\left|y^{\prime}\right|}\right),
$$

where $C_{k}^{n / 2}(t)$ is a Gegenbauer polynomial([7]). The series converges for $\left|y^{\prime}\right|>|x|$. Each term in the series is a harmonic function of x and vanishes on ∂H.

To obtain the integral representations of harmonic functions on H, as in $[3,5$, 8], we use the following modified Poisson kernel defined by

$$
P_{m}\left(x, y^{\prime}\right)= \begin{cases}P\left(x, y^{\prime}\right) & \text { when }\left|y^{\prime}\right| \leq 1 \\ P\left(x, y^{\prime}\right)-\sum_{k=0}^{m-1} \frac{2 x_{n}|x|^{k}}{\omega_{n}\left|y^{\prime}\right|^{n+k}} C_{k}^{\frac{n}{2}}\left(\frac{x \cdot y^{\prime}}{|x|\left|y^{\prime}\right|}\right) & \text { when }\left|y^{\prime}\right|>1\end{cases}
$$

for a nonnegative integer m. The new kernel $P_{m}\left(x, y^{\prime}\right)$ will be of order $\left|y^{\prime}\right|^{-(n+m)}$ as $\left|y^{\prime}\right| \rightarrow \infty$.

Put

$$
U_{m}(x)=\int_{\partial H} P_{m}\left(x, y^{\prime}\right) u\left(y^{\prime}\right) d y^{\prime}
$$

where $u\left(y^{\prime}\right)$ is a continuous function on ∂H.
For any nonnegative real number β, we denote by \mathcal{A}_{β} the space of all measurable functions $f(y)$ on H satisfying

$$
\int_{H} \frac{y_{n}|f(y)| d y}{1+|y|^{n+\beta+2}}<\infty
$$

and \mathcal{B}_{β} the set of all measurable functions $g\left(y^{\prime}\right)$ on ∂H such that

$$
\int_{\partial H} \frac{\left|g\left(y^{\prime}\right)\right| d y^{\prime}}{1+\left|y^{\prime}\right|^{n+\beta}}<\infty .
$$

We also denote by \mathcal{C}_{β} the set of all continuous functions $u(x)$ on \bar{H}, harmonic on H with $u^{+}(y) \in \mathcal{A}_{\beta}$ and $u^{+}\left(y^{\prime}\right) \in \mathcal{B}_{\beta}$.

We say that u is of order λ if

$$
\lambda=\limsup _{r \rightarrow \infty} \frac{\log \left(\sup _{H \cap B(r)}|u|\right)}{\log r}
$$

If $\lambda<\infty$, then u is said to be of finite order (see Hayman-Kennedy [4, Definition 4.1]).

In case $\lambda<\infty$, about the solution of the Dirichlet problem with continuous data in H, we refer readers to the following two results.

Theorem A.(see [1,6]) If $u(x) \leq 0$ and $u \in \mathcal{C}_{\beta}$, then there exists a constant $c \leq 0$ such that $u(x)=c x_{n}+\int_{\partial H} P\left(x, y^{\prime}\right) u\left(y^{\prime}\right) d y^{\prime}$ for all $x \in H$.

Using the modified Poisson kernel $P_{m}\left(x, y^{\prime}\right)$, Siegel-Talvila (cf. [5, Corollary 2.1]) proved

Theorem B. If u is a continuous function on ∂H satisfying $\int_{\partial H}\left|u\left(y^{\prime}\right)\right|$ $\left(1+\left|y^{\prime}\right|\right)^{-n-m} d y^{\prime}<\infty$, then $U_{m}(x)$ is a classical solution of the Dirichlet problem on H with u.

Motivated by above results, we consider the integral representations for harmonics of infinite order. To do this, we define a nondecreasing and continuously differentiable function $\rho(R) \geq 1$ on the interval $[0,+\infty)$. We assume further that

$$
\begin{equation*}
\varepsilon_{0}=\limsup _{R \rightarrow \infty} \frac{\rho^{\prime}(R) R \log R}{\rho(R)}<1 . \tag{1.1}
\end{equation*}
$$

Remark. For any $\epsilon\left(0<\epsilon<1-\epsilon_{0}\right)$, there exists a sufficiently large positive number R such that $r>R$, by (1.1) we have

$$
\rho(r)<\rho(e)(\ln r)^{\epsilon_{0}+\epsilon} .
$$

For any positive real number α, we denote by $(L U)_{\alpha}$ the space of all measurable functions $f(y)$ on H satisfying

$$
\begin{equation*}
\int_{H} \frac{y_{n}|f(y)| d y}{1+|y|^{\rho(|y|)+n+\alpha+1}}<\infty \tag{1.2}
\end{equation*}
$$

and $(L V)_{\alpha}$ the set of all measurable functions $g\left(y^{\prime}\right)$ on ∂H such that

$$
\begin{equation*}
\int_{\partial H} \frac{\left|g\left(y^{\prime}\right)\right| d y^{\prime}}{1+\left|y^{\prime}\right|^{\rho\left(\left|y^{\prime}\right|\right)+n+\alpha-1}}<\infty . \tag{1.3}
\end{equation*}
$$

We also denote by $(\mathrm{CH})_{\alpha}$ the set of all continuous functions $u(y)$ on \bar{H}, harmonic on H with $u^{+}(y) \in(L U)_{\alpha}$ and $u^{+}\left(y^{\prime}\right) \in(L V)_{\alpha}$.

Now we have
Theorem. If $u \in(C H)_{\alpha}$, then the following properties hold:
(I) $u \in(L V)_{\alpha}$.
(II) The integral $U_{\left[\rho\left(\left|y^{\prime}\right|\right)+\alpha\right]}(x)$ is absolutely convergent. It represents a harmonic function on H and can be continuously extended to \bar{H} such that $U_{\left[\rho\left(\left|y^{\prime}\right|\right)+\alpha\right]}\left(z^{\prime}\right)=u\left(z^{\prime}\right)$ for any $z^{\prime} \in \partial H$;
(III) There exists a harmonic function $h(x)$ which vanishes on ∂H such that $u(x)=h(x)+U_{\left[\rho\left(\left|y^{\prime}\right|\right)+\alpha\right]}(x)$ for all $x \in \bar{H}$.

2 Lemmas

Lemma 1.(see [5]) There exists a positive constant M such that

$$
\left|P_{m}\left(x, y^{\prime}\right)\right| \leq M x_{n}|x|^{m}\left|y^{\prime}\right|^{-n-m}
$$

for $x \in H$ and $y^{\prime} \in H$ satisfying $\left|y^{\prime}\right| \geq \max \{1,2|x|\}$.
The following Lemma (see [9, Lemma 1]) generalizes the Carleman's formula (referring to the holomorphic functions in the half space) to the harmonic functions in H, which is essentially due to T. Carleman (see [2]).

Lemma 2. If $R>1$ and $u(y)$ is a harmonic function on H with continuous boundary on ∂H, then we have

$$
\begin{aligned}
& m_{-}(R)+\int_{\left\{y^{\prime} \in \partial H: 1<\left|y^{\prime}\right|<R\right\}} u^{-}\left(y^{\prime}\right)\left(\frac{1}{\left|y^{\prime}\right|^{n}}-\frac{1}{R^{n}}\right) d y^{\prime} \\
& =m_{+}(R)+\int_{\left\{y^{\prime} \in \partial H: 1<\left|y^{\prime}\right|<R\right\}} u^{+}\left(y^{\prime}\right)\left(\frac{1}{\left|y^{\prime}\right|^{n}}-\frac{1}{R^{n}}\right) d y^{\prime}-c_{1}-\frac{c_{2}}{R^{n}}
\end{aligned}
$$

where

$$
\begin{aligned}
& m_{ \pm}(R)=\int_{\{y \in H:|y|=R\}} u^{ \pm}(y) \frac{n y_{n}}{R^{n+1}} d \sigma(y), \\
& c_{1}=\int_{\{y \in H:|y|=1\}}\left((n-1) y_{n} u(y)+y_{n} \frac{\partial u(y)}{\partial n}\right) d \sigma(y), \\
& c_{2}=\int_{\{y \in H:|y|=1\}}\left(y_{n} u(y)-y_{n} \frac{\partial u(y)}{\partial n}\right) d \sigma(y) .
\end{aligned}
$$

3 Proof of Theorem

Since $u \in(C H)_{\alpha}$, we obtain by (1.2)

$$
\begin{equation*}
\int_{1}^{\infty} \frac{m_{+}(R)}{R^{\rho(R)+\alpha}} d R=n \int_{\{y \in H:|y|>1\}} \frac{y_{n} u^{+}(y)}{|y|^{\rho(|x|)+n+\alpha+1}} d x<\infty, \tag{3.1}
\end{equation*}
$$

where $m_{+}(R)$ is defined in Lemma 2.
We have by (1.3)

$$
\begin{align*}
& \int_{1}^{\infty} \frac{1}{R^{\rho(R)+\alpha}} \int_{\left\{y^{\prime} \in \partial H: 1<\left|y^{\prime}\right|<R\right\}} u^{+}\left(y^{\prime}\right)\left(\frac{1}{\left|y^{\prime}\right|^{n}}-\frac{1}{R^{n}}\right) d y^{\prime} d R \\
&=\int_{\left\{y^{\prime} \in \partial H:\left|y^{\prime}\right| \geq 1\right\}} u^{+}\left(y^{\prime}\right) \int_{\left|y^{\prime}\right|}^{\infty} \frac{1}{R^{\rho(R)+\alpha}}\left(\frac{1}{\left|y^{\prime}\right|^{n}}-\frac{1}{R^{n}}\right) d R d y^{\prime} \\
& \leq \frac{n}{n+1} \int_{\left\{y^{\prime} \in \partial H:\left|y^{\prime}\right| \geq 1\right\}} \frac{u^{+}\left(y^{\prime}\right)}{\left|y^{\prime}\right|^{\rho\left(\left|y^{\prime}\right|\right)+n+\alpha-1}} d y^{\prime}<\infty . \tag{3.2}
\end{align*}
$$

From (3.1), (3.2) and Lemma 2, we see that

$$
\begin{aligned}
& \int_{1}^{\infty} \frac{1}{R^{\rho(R)+\alpha / 2}} \int_{\left\{y^{\prime} \in \partial H: 1<\left|y^{\prime}\right|<R\right\}} u^{-}\left(y^{\prime}\right)\left(\frac{1}{\left|y^{\prime}\right|^{n}}-\frac{1}{R^{n}}\right) d y^{\prime} d R \\
& \quad=\int_{\left\{y^{\prime} \in \partial H:\left|y^{\prime}\right| \geq 1\right\}} u^{-}\left(y^{\prime}\right) \int_{\left|y^{\prime}\right|}^{\infty} \frac{1}{R^{\rho(R)+\alpha / 2}}\left(\frac{1}{\left|y^{\prime}\right|^{n}}-\frac{1}{R^{n}}\right) d R d y^{\prime} \\
& \quad \leq \int_{1}^{\infty} \frac{1}{R^{\rho(R)+\alpha / 2}} m_{+}(R) d R-\int_{1}^{\infty} \frac{1}{R^{\rho(R)+\alpha / 2}}\left(c_{1}+\frac{c_{2}}{R^{n}}\right) d R \\
& \quad+\int_{1}^{\infty} \frac{1}{R^{\rho(R)+\alpha / 2}}\left(\int_{\left\{y^{\prime} \in \partial H: 1<\left|y^{\prime}\right|<R\right\}} u^{+}\left(y^{\prime}\right)\left(\frac{1}{\left|y^{\prime}\right|^{n}}-\frac{1}{R^{n}}\right) d y^{\prime}\right) d R<\infty .
\end{aligned}
$$

Set

$$
I(\alpha)=\lim _{\left|y^{\prime}\right| \rightarrow \infty}\left|y^{\prime}\right|^{\rho\left(\left|y^{\prime}\right|\right)+n+\alpha-1} \int_{\left|y^{\prime}\right|}^{\infty} \frac{1}{R^{\rho(R)+\alpha / 2}}\left(\frac{1}{\left|y^{\prime}\right|^{n}}-\frac{1}{R^{n}}\right) d R .
$$

By the L'hospital's rule and Remark, we have

$$
I(\alpha)=+\infty,
$$

which yields that there exists $\varepsilon_{1}>0$ such that

$$
\int_{\left|y^{\prime}\right|}^{\infty} \frac{1}{R^{\rho(R)+\alpha / 2}}\left(\frac{1}{\left|y^{\prime}\right|^{n}}-\frac{1}{R^{n}}\right) d R \geq \frac{\varepsilon_{1}}{\left|y^{\prime}\right|^{\rho\left(\left|y^{\prime}\right|\right)+n+\alpha-1}}
$$

for any $\left|y^{\prime}\right| \geq 1$.
Thus

$$
\begin{aligned}
\varepsilon_{1} \int_{\left\{y^{\prime} \in \partial H:\left|y^{\prime}\right| \geq 1\right\}} & \frac{u^{-}\left(y^{\prime}\right)}{\left|y^{\prime}\right| \rho\left(\left|y^{\prime}\right|\right)+n+\alpha-1} d x^{\prime} \\
\leq & \int_{\left\{y^{\prime} \in \partial H:\left|y^{\prime}\right| \geq 1\right\}} u^{-}\left(y^{\prime}\right) \int_{\left|y^{\prime}\right|}^{\infty} \frac{1}{R^{\rho(R)+\alpha / 2}}\left(\frac{1}{\left|y^{\prime}\right|^{n}}-\frac{1}{R^{n}}\right) d R d y^{\prime}<\infty .
\end{aligned}
$$

Then (I) is proved from $|u|=u^{+}+u^{-}$.
To prove (II). For any $k>k_{R}=[2 R]+1$, there exists a positive constant $M(R)$ dependent only on R such that

$$
\begin{equation*}
k^{-\alpha / 2}(2 R)^{\rho(k+1)+\alpha+1} \leq M(R) \tag{3.3}
\end{equation*}
$$

from Remark.
For any $x \in H$ and $|x| \leq R$, we have by (1.3), Lemma 1 and (3.3)

$$
\begin{aligned}
& \sum_{k=k_{R}}^{\infty} \int_{\left\{y^{\prime} \in \partial H: k \leq\left|y^{\prime}\right|<k+1\right\}} \frac{(2|x|)^{\left[\rho\left(\left|y^{\prime}\right|\right)+\alpha\right]+1}}{\left|y^{\prime}\right|\left[\rho\left(\left|y^{\prime}\right|\right)+\alpha\right]+n}\left|u\left(y^{\prime}\right)\right| d y^{\prime} \\
& \leq \sum_{k=k_{R}}^{\infty} \frac{(2 R)^{\rho(k+1)+\alpha+1}}{k^{\alpha / 2}} \int_{\left\{y^{\prime} \in \partial H: k \leq\left|y^{\prime}\right|<k+1\right\}} \frac{2\left|u\left(y^{\prime}\right)\right|}{1+\left|y^{\prime}\right| \rho\left(\left|y^{\prime}\right|\right)+\alpha / 2+(n-1)} d y^{\prime} \\
& \quad \leq 2 M(R) \int_{\left\{y^{\prime} \in \partial H:\left|y^{\prime}\right| \geq k_{R}\right\}} \frac{\left|u\left(y^{\prime}\right)\right|}{1+\left|y^{\prime}\right|^{\rho\left(y^{\prime} \mid\right)+\alpha / 2+(n-1)}} d y^{\prime}<\infty .
\end{aligned}
$$

So $U_{\left[\rho\left(\left|y^{\prime}\right|\right)+\alpha\right]}(x)$ is absolutely convergent. Now we shall prove the boundary behavior of $\mathcal{U}_{\left[\rho\left(\left|y^{\prime}\right|\right)+\alpha\right]}(x)$. For fixed $z^{\prime} \in \partial H$, we choose a number $t>\left|z^{\prime}\right|+1$ and write

$$
U_{\left[\rho\left(\left|y^{\prime}\right|\right)+\alpha\right]}(x)=X(x)-Y(x)+Z(x)
$$

where

$$
\begin{gathered}
X(x)=\int_{\left\{y^{\prime} \in \partial H:\left|y^{\prime}\right| \leq t\right\}} P\left(x, y^{\prime}\right) u\left(y^{\prime}\right) d y^{\prime} \\
Y(x)=\sum_{k=0}^{\left[\rho\left(\left|y^{\prime}\right|+\alpha\right)\right]-1} \frac{2 x_{n}|x|^{k}}{\omega_{n}} \int_{\left\{y^{\prime} \in \partial H: 1<\left|y^{\prime}\right| \leq t\right\}} \frac{1}{\left|y^{\prime}\right|^{n+k}} C_{k}^{\frac{n}{2}}\left(\frac{x^{\prime} \cdot y^{\prime}}{|x|\left|y^{\prime}\right|}\right) u\left(y^{\prime}\right) d y^{\prime}, \\
Z(x)=\int_{\left\{y^{\prime} \in \partial H:\left|y^{\prime}\right|>t\right\}} P_{\left[\rho\left(\left|y^{\prime}\right|+\alpha\right)\right]}\left(x, y^{\prime}\right) u\left(y^{\prime}\right) d y^{\prime} .
\end{gathered}
$$

Note that $X(x)$ is the Poisson integral of $u\left(y^{\prime}\right) \chi_{B(t)}\left(y^{\prime}\right)$, where $\chi_{B(t)}$ is the characteristic function of $B(t)$. So it tends to $u\left(z^{\prime}\right)$ as $x \rightarrow z^{\prime}$. Clearly, $Y(x)$ vanishes on ∂H. Further, $\mathrm{Z}(x)=O\left(x_{n}\right)$, which tends to zero as $x \rightarrow z^{\prime}$. Thus the function $U_{\left[\rho\left(\left|y^{\prime}\right|\right)+\alpha\right]}(x)$ can be continuously extended to \bar{H} such that $U_{\left[\rho\left(\left|y^{\prime}\right|\right)+\alpha\right]}\left(z^{\prime}\right)=u\left(z^{\prime}\right)$ for any $z^{\prime} \in \partial H$. (II) is proved.

To prove (III). Consider the function $u(x)-U_{\left[\rho\left(\left|y^{\prime}\right|\right)+\alpha\right]}(x)$. Then it follows that this is harmonic on H, vanishes on ∂H and can be continuously extended to \bar{H}. Applying Schwarz Reflection Principle ($[1, \mathrm{p} .68])$ to $u(x)-U_{\left[\rho\left(\left|y^{\prime}\right|\right)+\alpha\right]}(x)$, we obtain that there exists a harmonic function $h(x)$ on H such that $h\left(x^{*}\right)=$ $-h(x)=-\left(u(x)-U_{\left[\rho\left(\left|y^{\prime}\right|\right)+\alpha\right]}(x)\right)$ for $x \in \bar{H}$, where $*$ denotes reflection in ∂H just as $x^{*}=\left(x^{\prime},-x_{n}\right)$. Thus $u(x)=h(x)+U_{\left[\rho\left(\left|y^{\prime}\right|\right)+\alpha\right]}(x)$ for all $x \in \bar{H}$, where $h(x)$ is a harmonic function on H and vanishes continuously on ∂H. We complete the proof of Theorem.

References

[1] S. Axler, P. Bourdon and W. Ramey: Harmonic Function Theory, Second Edition, Springer-Verlag, New York, 1992.
[2] T. Carleman, Über die Approximation analytischer Funktionen durch lineare Aggregate von vorgegebenen Potenzen, Ark. för Mat., Astr. och Fysik, 17 (1923), 1-30.
[3] M. Finkelstein and S. Scheinberg: Kernels for solving problems of Dirichlet typer in a half-plane, Advances in Math. (18) (1) (1975), 108-113.
[4] W. K. Hayman and P. B. Kennedy: Subharmonic Functions, Vol. 1, Academic Press, London, 1976.
[5] D. Siegel and E. Talvila: Sharp growth estimates for modified Poisson integrals in a half space, Potential Analysis. (15) (2001), 333-360.
[6] E. M. Stein: Harmonic Analysis, Princeton University Press, Princeton, New Jersey, 1993.
[7] G. Szegö: Orthogonal Polynomials, American Mathematical Society Colloquium Publications, Vol.23, American Mathematical Society, Providence, 1975.
[8] H. Yoshida: A type of uniqueness of the Dirichlet problem on a half-space with continuous data, Pacific J. Math. (172) (1996), 591-609.
[9] Y. H. Zhang, G. T. Deng and J. X. Gao: On the lower bound for a class of harmonic functions in the half space, Acta Math. Sin. (Engl. Ser.) (32)(4)(2012), 1487-1494.

Beijing National Day School, Beijing 100039, P R China
E-mail address: gsp1979@163.com
Department of Mathematics and Information Science, Henan University of Economics and Law, Zhengzhou 450002, P R China
E-mail address: qiaocqu@163.com
School of Mathematical Science, Beijing Normal University, Laboratory of Mathematics and Complex Systems,
MOE, Beijing 100875, P R China.
E-mail address: denggt@bnu.edu.cn

[^0]: *This work is supported by SRFDP (No. 20100003110004) and NSF of China (No. 11271045).
 Received by the editors November 2011 - In revised form in December 2011.
 Communicated by H. De Schepper.
 2000 Mathematics Subject Classification : 31B05,31B10.
 Key words and phrases : Harmonic function, Integral Representation, Half space.

