
Extinction phenomenon for Spinor

Ginzburg-Landau equations

Zuhan Liu

Abstract

Recent papers in physics literature have introduced spinor Ginzburg-
Landau model for complex vector-valued order parameters in order to ac-
count for ferromagnetic or antiferromagnetic effects in high-temperature su-
perconductors. In this paper, we study the spatial behavior of interacting
components of Spinor Ginzburg-Landau model. We prove the interspecies
interaction leads to extinction, that is, configurations where one or more den-
sities are null.

1 Introduction

Recent papers in physics literature have introduced spin-coupled (or spinor)
Ginzburg-Landau model for complex vector-valued order parameters in order
to account for ferromagnetic or antiferromagnetic effects in high-temperature su-
perconductors ([7]). This model can lead to new types of vortices, with fractional
degree and non-trivial core structure ([1], [8], [9]).

A reduction of the full two dimensional evolutionary spinor Ginzburg-Landau
model can be made which leads to a simplified model that retains the basic fea-
tures ([1], [8], [9]), related to the superconductivity model introduced in [7]:











∂uj

∂t
= △uj + µuj +

2

∑
i=1

Uij|ui|
2uj in R

2 × (0, ∞) ,

uj(x, 0) = uj0(x) in R
2 × {0}, j = 1, 2.

(1.1)
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uj denotes the macroscopic wave function of the jth (j=1, 2) component, |uj|
2 is

interpreted as the particle density of the jth component. µ is the potential. The
constant Ujj (j=1, 2) is the intraspecies scattering length of the j-th hyperfine state
and Uij(i 6= j) is the interspecies scattering length. As Ujj < 0(> 0), the self-
interaction is repulsive (attractive). As Uij > 0(< 0), the interspecies interaction
is attractive (repulsive).

In the understanding of the spatial behavior of interacting components, a cen-
tral problem is to establish whether coexistence of all the components occurs, or
the interspecies interaction leads to extinction, that is, configurations where one

or more densities are null. As |U12| >
√

|U11||U22| and U11 < 0, U22 < 0, sponta-
neous symmetric breaking occurs, and the 1-th component and 2-th component
are immiscible and separated in space called phase separation [14]. For this rea-
son, we may set Ujj = −ε−2 = −µ, Uij = −ε−2 − β(ε) in the system (1.1), and
transform it into the following system















∂uε
j

∂t
−△uε

j + β(ε) ∑
i 6=j

|uε
i |

2uε
j =

uε
j

ε2
(1 −

2

∑
i=1

|uε
i |

2) in R
2 × (0, ∞) ,

uε
j(x, 0) = uε

j0(x) on R
2 × {0}.

(1.2)

The solution to (1.2) is the gradient flow of the following energy functional

E(u1, u2) =
1

2

∫

R2
[

2

∑
j=1

|∇uj|
2 +

1

2ε2
(1 −

2

∑
i=1

|ui|
2)2] + β(ε)|u1 |

2|u2|
2. (1.3)

The following theorem is our main result concerning the extinction phenome-
non of (1.2).

Theorem 1.1. Let uε
j , j = 1, 2, be a solution to (1.2). Assume that ∑j |u

ε
j0|

2 ≤ 1 and

E(uε
10, uε

20) →
∫

R2

1

2 ∑
j

|∇wj0|
2, (1.4)

where (w10, w20) ∈ V = {(v1, v2) ∈ H1(R2; C2) : |v1|
2|v2|

2 = 0, ∑j |vj|
2 = 1}.

Assume β(ε) = O(ε−2). There exist a (w1, w2) of complex-valued functions and
0 < γ < 1 such that, up to a subsequence ε → 0, we have

uε
j → wj in C

1+γ,(1+γ)/2
loc (R2 × (0, ∞)), j = 1, 2, (1.5)

and w1 = 0 or w2 = 0, that is, one component is an asymptotic null. Moreover, wi

satisfies the heat flow of the harmonic map from R2 to S1 when wi 6= 0.

We have a source of inspiration in our study, which is the corresponding the-
ory for the elliptic case. When uε

1(x) and uε
2(x) are real functions, one investigates

the phase separation phenomena ([2, 3, 11, 13]). In the recent paper [12], Terracini
and Verzini extend this result of [2, 3, 11, 13] to the case of an arbitrary number
of components k ≥ 3. However, from a rigorous mathematical point of view, the
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phase separation is not well understood so far for the complex-valued solutions
of (1.2). The method in [2, 3, 11, 12, 13] can not be applied to the this case.

In order to overcome the difficulty arising from complex-valued functions, we
introduce the heat flow of the harmonic map to the singular space (see Section 3).
We find that the solution of (1.2) converges to the solution of the heat flow of
the harmonic map to the singular space in H1-norm. The second important step
in our proof is to prove ∑j |u

ε
j |

2
> 0 provided ε is small. The third step is to

prove the Bochner type inequality and small energy regularity theorem, which
implies the uniformly Lipschitz estimate for (uε

1, uε
2). The fourth step is to obtain

C1+γ,(1+γ)/2-estimates by Schauder theory.
The rest of this paper is organized as follows: In Section 2, we derive some

basic lemmas. In Section 3, we prove the main Theorem 1.1.

2 Preliminaries

In this section, we will derive some basic lemmas. By maximum principles, we
have the following lemmas.

Lemma 2.1. Let Ψε = (uε
1, uε

2) be the solution of (1.2) with E(Ψ0
ε ) < +∞. Assume that

β(ε) = O(ε−2). Then there exists a constant K > 0 such that, for t ≥ ε2, we have

|Ψε(x, t)| ≤ 3, |∇Ψε(x, t)| ≤
K

ε
, |

∂Ψε(x, t)

∂t
| ≤

K

ε2
(2.1)

and

|Ψε(x, t)|2 ≤ 1 + K exp(−
t

2ε2
) for t ≥ ε2. (2.2)

Moreover, if for some C0 such that

|Ψ0
ε (x)| ≤ 1, |∇Ψ0

ε (x)| ≤
C0

ε
, |D2Ψ0

ε (x)| ≤
C0

ε2
, ∀x ∈ R

2. (2.3)

Then, for any x ∈ R2 and t > 0,

|Ψε(x, t)| ≤ 1, |∇Ψε(x, t)| ≤
K

ε
, |

∂Ψε(x, t)

∂t
| ≤

K

ε2
, (2.4)

where K depends only on C0.

Proof . Set
Uj(x, t) = uj(εx, ε2t), σj(x, t) = |Uj(x, t)|2.

Multiplying (1.2) by Uj we have

∂tσ1 −△σ1 + 2|∇U1|
2 + 2(∑

j

σj − 1)σ1 + ε2βσ2σ1 = 0,

∂tσ2 −△σ2 + 2|∇U2|
2 + 2(∑

j

σj − 1)σ2 + ε2βσ1σ2 = 0.
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Now we consider
y′(t) + (y(t) + 1)y(t) = 0,

which has an explicit solution

y0 =
exp(−t)

1 − exp(−t)
for t > 0,

which blows-up as t tends to zero. Set σ̃(x, t) = y0(t), σ = σ1 + σ2 − 1. Then

∂tσ −△σ + (1 + σ)σ + ε2βσ1σ2 + 2(|∇U1|
2 + |∇U2|

2) = 0,

∂t(σ̃ − σ)−△(σ̃ − σ) + 2(σ̃ + σ + 1)(σ̃ − σ) ≥ 0. (2.5)

The maximum principle implies that

σ̃(x, t)− σ(x, t) ≥ 0 for all t > 0 and x ∈ R
2,

which implies

∑
j

|Uj(x, t)|2 = ∑
j

σj(x, t) ≤ 9 for t ≥
1

4
and x ∈ R

2.

Note that

∂tUj −△Uj = 2Uj(1 − |Uj|
2)− ε2β ∑

i 6=j

|Ui|
2Uj on R

2 × [0, ∞), j = 1, 2.

Since |Uj(x, t)| ≤ 3 for t ≥ 1
4 , we have

∣

∣

∣
2Uj(1 − |Uj|

2)− ε2β ∑
i 6=j

|Ui|
2Uj

∣

∣

∣
≤ C for t ≥

1

4
, j = 1, 2.

By the standard parabolic equation theory, we have

||Uj||C1,α/2(R2×[1,∞)) ≤ K, j = 1, 2

where 0 < α < 1. The conclusions (2.1), (2.2) of Lemma 2.1 follow. (2.3) and (2.4) follow
as in the proof of (2.1) and (2.2).

Now we give the energy estimate.

Lemma 2.2. Let uε
j , j = 1, 2, be a solution of (1.2). Then, we have

∫ t

0

∫

R2
∑

j

|∂tu
ε
j |

2 + E(uε
1(t), uε

2(t)) = E(uε
10, uε

20). (2.6)

Proof . Multiply (1.2) by uε
jt and integrate by parts.
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3 Proof of Theorem 1.1

In this section, we will prove Theorem 1.1.

Lemma 3.1. Let Ψε = (uε
1, uε

2) be the solutions to (1.2). Assume that

E(uε
10 , uε

20) →
∫

R2

1

2 ∑
j

|∇wj0|
2 (3.1)

and ∑j |w
ε
j0|

2 = 1. Assume β(ε) → +∞ as ε → 0. Then there exist a subsequence of

{(uε
1, uε

2)} and a function W = (w1, w2) ∈ H1(R2 × (0, T)), such that

uε
1 → w1, uε

2 → w2 strongly in H1(R2 × (0, T)) as ε → 0; (3.2)
∫ T

0

∫

R2
β(ε)|uε

1 |
2|uε

2|
2 +

1

ε2
(1 − |Ψε|

2)2 → 0 as ε → 0. (3.3)

Proof . By Lemma 2.2, we obtain

∫ T

0

∫

R2
∑

j

|
∂

∂t
uε

j |
2 + E(Ψ(·, t)) = E(Ψε

0). (3.4)

Hence, from (3.1), there exist w1, w2 ∈ H1(R2 × (0, T), C) such that, up to a subse-
quence,

uε
1 ⇀ w1, uε

2 ⇀ w2 weakly-* in L2(0, ∞; H1(R2)) as ε → 0, (3.5)

uε
1t ⇀ w1t, uε

2t ⇀ w2t weakly in L2(0, ∞; L2(R2)) as ε → 0, (3.6)

uε
1 → w1, uε

2 → w2 strongly in L2(0, ∞; L2(R2)) as ε → 0. (3.7)

Note that

∫ T

0

∫

R2

(1 − ∑j |u
ε
j |

2)2

ε2
≤ C; β(ε)

∫ T

0

∫

R2
|uε

1|
2|uε

2|
2 ≤ C, (3.8)

we obtain

∑
j

|wj|
2 = 1 a.e. (x, t) ∈ R

2 × [0, T],
∫ T

0

∫

R2
|w1|

2|w2|
2 = 0. (3.9)

Taking the exterior product of (1.2) with uε
j , we get

Ψεt ∧ Ψε −∇ · (∇Ψε ∧ Ψε) = 0. (3.10)

In view of (3.5)-(3.7), we get by passing to the limit in (3.10), denoting W = (w1, w2),
that

Wt ∧ W −∇ · (∇W ∧ W) = 0. (3.11)

From [5] we know that W is a weak solution of the following problem














∂W

∂t
−△W = W|∇W|2 in R

2 × (0, ∞) ,

|W| = 1 on R
2 × (0, ∞) ,

W = W0 on R
2 × {0},

(3.12)
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and
∫ T

0

∫ t

0

∫

R2
|

∂

∂t
W|2 +

1

2

∫ T

0

∫

R2
|∇W|2 =

1

2
T
∫

R2
|∇W0|

2. (3.13)

Using (3.1), (3.4), (3.13), and a lower semi-continuity argument, one may deduce the
strong convergence

Ψε → W strongly in H1(R2 × (0, T)), (3.14)
∫ T

0

∫

R2

(1 − |Ψε|2)2

ε2
→ 0. (3.15)

The conclusion of Lemma 3.1 follows.

Proposition 3.2. Under the assumption of Lemma 3.1, ∑j |u
ε
j0|

2 ≤ 1 and β(ε) =

O(ε−1). Then, |w1| and |w2| are continuous functions. Denote Ωj = {(x, t) ∈

R2 × (0, T) : |wj(x, t)| > 0}, j = 1, 2. We have

‖|Ψε(x, t)|‖
C

1+γ,(1+γ)/2
loc (R2×(0,∞))

≤ C (3.16)

and
‖uε

j‖C
1+γ,(1+γ)/2
loc (Ωj)

≤ C. (3.17)

Proof . Step 1: |Ψε(x)|2 → 1 uniformly on R2 × (0, T) as ε → 0.
Let (x0, t0) ∈ R

2 × (0, T) and set α = |Ψε(x0, t0)|. By Lemma 2.1 then α ≤ 1, and
we have

|Ψε(x, t)| ≤ α +
C

ε
ρ +

C

ε2
ρ2 if |x − x0| < ρ, |t − t0| < ρ2. (3.18)

Thus

(1 − |Ψε(x, t)|2)2 ≥ (1 − α −
C

ε
ρ −

C

ε2
ρ2)2 provided

Cρ

ε
+

C

ε2
ρ2 ≤ 1 − α. (3.19)

By (3.3), we obtain

ε2o(1) =
∫ t0+ρ2

t0−ρ2

∫

B(x0,ρ)
(1 − |Ψε|

2)2 ≥ πρ4(1 − α −
Cρ

ε
−

C

ε2
ρ2)2. (3.20)

Let ε be small such that

ρ =
ε(1 − α)

4C
. (3.21)

Hence

ε2o(1) ≥ π
ε2(1 − α)2

4C2

(1 − α)2

16
(3.22)

and therefore

(1 − α)4 ≤ o(1) (3.23)
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i.e., |Ψε| → 1 uniformly on R
2 × (0, T). The proof of Step 1 is completed.

Step 2: (Bochner type inequality) Let

e(Ψε) =
1

2
|∇Ψε|

2 +
1

4ε2
(1 − |Ψε|

2)2 +
1

2
β(ε)|u1 |

2|u2|
2.

We have the following Bochner type inequality

(∂t −△)e(Ψε) ≤ C(1 + e(Ψε))e(Ψε). (3.24)

Now we prove (3.24). Note that

(∂t −△)(
1

2
|∇Ψε|

2) = −|∇2Ψε|
2 +∇(∂tΨε −△Ψε) · ∇Ψε. (3.25)

Using equation (1.2) we find

ujtxi
−△ujxi

= −β(ε) ∑
i 6=j

(|ui |
2uj)xi

−
2

ε2
(ΨεΨεxi

)uj +
1

ε2
(1 − |Ψε|

2)ujxi
.

Inserting this into (3.25) and using (1.2) we see that

(∂t −△)(
1

2
|∇Ψε|

2) = −|∇2Ψε|
2 −

1

ε2 ∑
k

(Ψε · Ψεxk
)2

−β(ε)∑
k

∑
i 6=j

(|ui|
2uj)xk

ujxk
+ |∇Ψε|

2 1

ε2
(1 − |Ψε|

2)

≤ −|∇2Ψε|
2 −

1

ε2 ∑
k

(Ψε · Ψεxk
)2 − β(ε)∑

k
∑
i 6=j

(|ui |
2uj)xk

ujxk
(3.26)

+
|∇Ψε|2

|Ψε|
(|∂tΨε|+ |△Ψε|+ β(ε) ∑

i 6=j

|ui||uj||Ψε|).

Since |△Ψε| ≤ |∇2Ψε| and |Ψε| ≥
1
2 when ε is small, using the Hölder inequality, we

have

(∂t −△)(
1

2
|∇Ψε|

2) ≤ −
7

8
|∇2Ψε|

2 + C(1 + e(Ψε))e(Ψε) (3.27)

+
1

8
β2(ε) ∑

i 6=j

|ui|
4|uj|

2 +
1

64
|∂tΨε|

2.

Similarly, using (1.2), we have

(∂t −△)(
(1 − |Ψε|2)2

ε2
) = −

1

ε2 ∑
k

(ΨεΨεxk
)2 + |∇Ψε|

2 1

ε2
(1 − |Ψε|

2)

−
1

ε2
(1 − |Ψε|

2)Ψε(∂tΨε −△Ψε) ≤
3

16
|△Ψε|

2 + C(1 + e(Ψε))e(Ψε)

+
5

8
β2(ε) ∑

i 6=j

|ui|
4|uj|

2 −
1

16
|∂tΨε|

2. (3.28)
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Using equation (1.2), the same computing of (3.27) gives

((∂t −△)β(ε) ∑
i 6=j

|ui|
2))|uj|

2

= −2β(ε) ∑
i 6=j

|ui|
2|∇uj|

2 − 2β(ε) ∑
i 6=j

ui∇uiuj∇uj − β2(ε) ∑
i 6=j

|ui|
4|uj|

2

+
2

ε2
(1 − |Ψε|

2)β(ε) ∑
i 6=j

|ui|
2|uj|

2

≤ −2β(ε) ∑
i 6=j

|ui|
2|∇uj|

2 +
1

4
|∇2Ψε|

2 −
7

8
β2(ε) ∑

i 6=j

|ui|
4|uj|

2+

C(1 + e(Ψε))e(Ψε) +
1

64
|∂tΨε|

2. (3.29)

Combining (3.27), (3.28) with (3.29) we obtain (3.24).
Step 3: (Small energy regularity theorem) Let z = (x, t), z0 = (x0, t0), R, λ > 0

and

PR(z) = {z = (x, t) : |x − x0| < R, |t − t0| < R2}. (3.30)

There are two positive constants θ0 ∈ (0, 1) and K0 such that

1

R2

∫

PR(z)
e(Ψε) ≤ θ0 (3.31)

then

(
1

2
R)2 sup

PR/2(z)

e(Ψε)(x, t) ≤ K0
1

R2

∫

PR(z)
e(Ψε). (3.32)

The proof of [[4]; Lemma 2.4] carries over almost literally.
Step 4: We choose r0 > 0 such that

1

r2
0

∫

Pr0
(z)

|∇W|2 ≤ θ0/2. (3.33)

By Lemma 3.1, for all ε small,

1

r2
0

∫

Pr0
(z)

e(Ψε) ≤ θ0. (3.34)

Now using the small energy regularity theorem we have that

e(Ψε)(z) ≤ Cθ0, x ∈ Pr0/2(z). (3.35)

Then, using the finite covering theorem, for any compact subset K ⊂ R2 × (0, ∞), we
have

e(Ψε) ≤ CK in K. (3.36)

Step 5: Let Qr,s = Br(x0)× [t0 − s; t0 + s]. Then for any q > 2, there are a constant
Cq > 0 independent of ε and a constant ε0 > 0 such that

‖|uε
j |

2‖
W2,1

q (Qr/2,s/2)
≤ Cq, j = 1, 2, ε < ε0. (3.37)
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First of all, we have from Step 4 that ‖Ψε‖
q
L(Qr,s) ≤ Cq. Moreover, we have for

Φ = (1−|Ψε|2)
ε2

ε2Φt − ε2△Φ +
1

2
Φ ≤ 2β|u1|

2|u2|
2 + 2|∇Ψε|

2 in Qr,s. (3.38)

Here we have used the fact that |Ψε| ≥ 1/2.
Take cut-off function ξ(x) ∈ C∞

0 (Br(x0)), ξ = 1 in Br/2(x0), η(t) ∈
C∞

0 ([t0 − s, t0 + s]), η = 1 in [t0 − s/2, t0 + s/2], |∇ξ| ≤ C/r, |∇η| ≤ C/s,
0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1. Multiply (3.38) by ξ2(x)η2(t)Φq−1 and integrate it over
Qr,s to give

ε2

q

∫

Br

ξ2(x)η2(t)Φq|t0+s
t0−s − ε2

∫

Qr,s

ξ2(x)η2(t)Φq−1△Φ +
1

2

∫

Qr,s

ξ2(x)η2(t)Φq

≤
∫

Qr,s

ξ2(x)η2(t)(β|u1 |
2|u2|

2 + |∇Ψε|
2)Φq−1. (3.39)

i.e.

1

2
ε2(q − 1)

∫

Qr,s

ξ2(x)η2(t)Φq−2|∇Φ|2 +
1

2

∫

Qr,s

ξ2(x)η2(t)Φq

≤ σ
∫

Qr,s

ξ2(x)η2(t)Φq + Cσ

∫

Qr,s

ξ2(x)η2(t)Φq−1(β|u1 |
2|u2|

2 + |∇Ψε|
2)q/2

+
2ε2

q

∫

Qr,s

ξ(x)η(t)|ηt |Φ
q +

2ε2

q − 1

∫

Qr,s

|∇ξ(x)|2η2(t)Φq (3.40)

Set σ = 1
4 , we have

1

4

∫

Qr,s

ξ2(x)η2(t)Φq ≤ C
∫

Qr,s

ξ2(x)η2(t)Φq−1(β|u1|
2|u2|

2 + |∇Ψε|
2)q/2

+
2ε2

q

∫

Qr,s

ξ(x)η(t)|ηt |Φ
q +

2ε2

q − 1

∫

Qr,s

|∇ξ(x)|2η2(t)Φq (3.41)

Hence

1

4

∫

Qr,s

ξ2(x)η2(t)Φq ≤ Cq + Cε2
∫

Qr,s\Qr/2,s/2

(
1

r2
Φq +

1

s
Φq). (3.42)

Fixing r, s and taking ε small enough such that

Cε2

r2
≤

1

16
,

Cε2

s
≤

1

16
. (3.43)

We have

1

4

∫

Qr,s

ξ2(x)η2(t)Φq ≤ Cq +
1

16

∫

Qr,s\Qr/2,s/2

Φq. (3.44)

It follows that
∫

Qr/2,s/2

Φq ≤ Cq ∀q > 2. (3.45)
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Note that

(∂t −△)|ui |
2 = −2(|∇ui |

2 + β ∑
i 6=j

|ui|
2|uj|

2) + 2Φ|ui|
2. (3.46)

From Step 4, (3.45) and Lp-theory of parabolic equations, we obtain (3.37).
From the Sobolev imbedding,we have, for some γ ∈ (0, 1), that

‖|uj|
2‖

C
1+γ,(1+γ)/2
loc (R2×(0,∞))

≤ C, j = 1, 2. (3.47)

Hence, |w1| and |w2| are continuous functions. From (3.9), we have |w1||w2| = 0.
Step 6: Let K ⊆ Ωj be any compact subdomain. By step 5, we have wi = 0 in Ωj,

i 6= j, and

|uε
i | → 0 uniformly in K ⊂ Ωj as ε → 0. (3.48)

We may assume that ε is sufficiently small so that

|uε
j | ≥ 1/4 in K ⊂ Ωj. (3.49)

Thus we may write

uε
j(x, t) = ρε(x, t) exp(iϕε(x, t)) in K,

and we may assume
1

|K|

∫

K
ϕε ∈ [0, 2π). (3.50)

Using (1.2), we have

ρ2
ε

∂ϕε

∂t
− div(ρ2

ε∇ϕε) = 0 in K, (3.51)

∂ρε

∂t
−△ρε + ρε |∇ϕ|2 + 2β ∑

i 6=j

|ui|
2ρε =

1

ε2
(1 − |Ψ|2)ρε in K. (3.52)

By Step 5, we have, for 0 < γ < 1,

‖ρε‖C1+γ,(1+γ)/2(K) ≤ C. (3.53)

Using Schauder theory [6], it follows that, for ε < ε0 and K1 ⊂ K,

‖ϕε‖C2+γ,1+γ/2(K1)
≤ C‖ϕε‖Cγ,γ/2(K) ≤ C. (3.54)

Combing (3.53) with (3.54), we obtain (3.17).

Lemma 3.3. Under the assumption of Proposition 3.2, we have w1 = 0 or w2 = 0.

Proof . By Lemma 3.1 and Proposition 3.2, we have |w1|
2 + |w2|

2 = 1, |w1||w2| = 0,
|w1| and |w2| are continuous. Hence, w1 = 0 or w2 = 0.

From Lemma 3.1, Proposition 3.2 and Lemma 3.3, we prove Theorem 1.1.
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