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Abstract

We study, in an abstract axiomatic setting, the notion of sectional category
of a morphism. From this, we unify and generalize known results about this
invariant in different settings as well as we deduce new applications.

Introduction

The sectional category secat (p) of a fibration p : E ։ B, originally introduced
by A. Schwarz [20], is defined as the least integer n such that B admits a cover
constituted by n + 1 open subsets, on each of which p has a local section. It is
a lower bound of the Lusternik-Schnirelmann category of the base space and it
is also a generalization of this invariant since secat (p) = cat (B) when E is con-
tractible. Apart from the original applications of the sectional category in the
classification of bundles or the embedding problem [20], this numerical invariant
has proved to be useful in different settings. For instance, Smale [21] showed that
the sectional category of a certain fibration provides a lower bound for the com-
plexity of algorithms computing the roots of a complex polynomial. We can also
mention the work of M. Farber [8, 9] who introduced the topological complexity
of a given space X as the sectional category of the path fibration X I → X × X,
α 7→ (α(0), α(1)). In robotics, when X is thought to be the configuration space
associated to the motion of a given mechanical system, this invariant measures,
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roughly speaking, the minimum amount of instructions of any algorithm control-
ling the given system.

In general, the sectional category of a fibration is hard to compute. The no-
tion of Lusternik-Schnirelmann category (L.-S. category, for short) has the same
disadvantage. In order to face this problem for L.-S. category there have been
several attempts to describe it in a more functorial and therefore manageable
form; among the most successful ones we can mention the Whitehead and Ganea
characterizations. Many other approximations of L.-S. category have been in-
troduced. One of them relies in an important algebraic technique for obtaining
lower bounds. It consists of taking models of spaces in an algebraic category
where a notion of L.-S.-category type invariant is given. Such algebraic category
must posses an abstract notion of homotopy, usually established in an axiomatic
homotopy setting, such as a Quillen model category. Then the algebraic L.-S.
category of the model of X is a lower bound of the original L.-S. category of X.
During the progress of this technique, several algebraic notions of L.-S. category
have been appearing. In 1993, in order to give a common point for all of them,
Doeraene [6] introduced the notion of L.-S. category in a Quillen model category.
Actually, in his work Doeraene develops two different notions of L.-S. category,
which are the analogous to the Ganea and Whitehead characterizations in the
topological case and proves that, under the crucial cube axiom, these notions
agree, as expected. As far as the sectional category is concerned, not much has
been done in this direction. In the work of A. Schwarz [20] it was established
a Ganea-type characterization of sectional category. Namely, if p : E ։ B is a
fibration we can consider jn : ∗n

BE → B, which is the n-th fold join of p. If the
base space B is paracompact, then A. Schwarz proved that secat (p) ≤ n if and
only if jn admits a (homotopy) section. Clapp and Puppe [5, Cor. 4.9] also ob-
tained a Whitehead-type characterization of sectional category; more precisely,
for a given map p : E → B with associated cofibration p̂ : E → B̂, secat (p) ≤ n if
and only if the diagonal map ∆n+1 : B̂ → B̂n+1 factors, up to homotopy, through
the n-th fat wedge Tn(p̂) = {(b0, b1, ..., bn) ∈ B̂n+1 : xi ∈ E, for some i}. With this
characterization Fassò [10] studied the sectional category of the corresponding
algebraic model of p in rational homotopy. These functorial characterizations in
the topological case open a door through an axiomatization of sectional category.
In this direction an initial advance has been made by T. Kahl in [15]. In his work
he gives the notion of abstract sectional category through a certain variation of
inductive L.-S. category in the sense of Hess-Lemaire [12].

Our aim in this paper is to develop, in the same spirit as Doeraene did in
[6] with the L.-S. category, the notion of abstract sectional category through a
Whitehead-Ganea approach, and to deduce some applications. In the first section
we recall some background to set the axiomatic framework in which we shall
work as well as the main tools that will be used. In §2 we introduce, under such
approach, the concept of sectional category of a given morphism. Then, in §3 we
present the main properties of this invariant and finally, in the fourth section, we
give some applications.
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1 Preliminaries: J-category and main notions.

In this paper we shall work in a J-category [6], which includes the cases of a
pointed cofibration and fibration category in the sense of Baues [2] or a pointed
proper model category [18, 19] as long as they satisfy the “cube lemma”. The
aim of this section is to provide some of the most important notions and proper-
ties given in such a homotopy setting. For proofs and more details the reader is
referred to Doeraene’s paper [6] or his thesis [7].

Explicitly, a J-category C is a category with a zero object 0 and endowed with
three classes of morphisms called fibrations (։), cofibrations () and weak equi-
valences (

∼
→), satisfying the following set of axioms (J1)-(J5) below. Recall that a

morphism which is both a fibration (resp. cofibration) and a weak equivalence is
called trivial fibration (resp. trivial cofibration). An object B is called cofibrant model

if every trivial fibration p : E
∼

։ B admits a section.

(J1) Isomorphisms are trivial cofibrations and also trivial fibrations. Fibrations
and cofibrations are closed by composition. If any two of f , g, g f are weak
equivalences, then so is the third.

(J2) The pullback of a fibration p : E ։ B and any morphism f : B′ → B

E′

p
����

f
// E

p
����

B′
f

// B

always exists and p is a fibration. Moreover, if f (resp.p) is a weak equiva-

lence, then so is f (resp. p). The dual assertion is also required.

(J3) For any map f : X → Y there exist an F-factorization (i.e., f = pτ where τ
is a weak equivalence and p is a fibration) and a C-factorization (i.e., f = σi,
where i is a cofibration and σ is a weak equivalence).

(J4) For any object X in C, there exists a trivial fibration pX : X
∼

։ X, in which X

is a cofibrant model. The morphism pX : X
∼

։ X is called cofibrant replace-
ment for X.

A commutative square

D

g′

��

f ′
// C

g
��

A
f

// B

is said to be a homotopy pullback if for some (equivalently any) F-factorization of g
(equivalently f or both), the induced map from D to the pullback E′ = A ×B E is
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a weak equivalence

D

g′

��

f ′
//

""

C

g

��

τ
∼

}}{{
{{

{{

E′

p||||yyy
yy

y f
// E

p

!! !!C
CC

CC
C

A
f

// B

The notion of homotopy pushout is dually defined.

(J5) The cube axiom. Given any commutative cube where the bottom face is a
homotopy pushout and the vertical faces are homotopy pullbacks, then the
top face is a homotopy pushout.

Remark 1. As pointed out by Doeraene, (J1)-(J4) axioms allow us to replace ‘some’ by
‘any’ in the definition of homotopy pullback, or to use an F-factorization of f instead of g.

We are particularly interested in knowledge of objects and morphisms up to
weak equivalence. Two objects A and A′ in C are said to be weakly equivalent if there
exists a finite chain of weak equivalences joining A and A′

A
∼ • ∼ • · · · · · · • ∼

A′

where the symbol • • means an arrow with either left or right orientation.
One can analogously define the notion of weakly equivalent morphisms by consid-
ering a finite chain of weak equivalences in the category Pair(C) of morphisms in
C ([2] Def. II.1.3)

A

f
��

∼ •

��

∼ •

��

∼ •

��

∼ •

��

∼
A′

f ′

��
B ∼ • ∼ • ∼ • ∼ • ∼ B′

Definition 2. Given two morphisms f : A → B and g : C → B, consider any

F-factorization of g = pτ and the pullback of f and p. Let f and p the base ex-

tensions of f and p respectively. Then, take any C-factorization of f = σi and the
pushout of p and i. This pushout object is denoted by A ∗B C and is called the join
of A and C over B. The dotted induced map from A ∗B C to B is called the join
morphism of f and g.

E′
f

//
$$

i $$J
JJJJJ

p

����

E

p

����

C
τ
∼

oo

g



��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Z
σ

∼

::uuuuuuu

��
A ∗B C

$$
A

::

::uuuuuu

f
// B
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The object A ∗B C and the join map are well defined and they are symmetrical
up to weak equivalence [6, 7].

An important result that allows us to see that if a property holds for some
F-factorization, then it also holds for any F-factorization is the following lemma.
Recall from [2] that in a fibration category a relative cocylinder of a fibration p :
E ։ B is just an F-factorization of the morphism (idE, idE) : E → E ×B E, where
E ×B E denotes the pullback of p with itself

E
(idE,idE) //

∼ ��?
??

??
??

? E ×B E

Zp

(d0,d1)

;; ;;wwwwwwwww

Then, given f , g : X → E such that p f = pg, it is said that f is homotopic to g
relative to p ( f ≃ g rel. p) if there exists a morphism F : X → Zp such that d0F = f
and d1F = g. When p = 0 : E ։ 0 is the zero morphism we obtain the notion of
non relative homotopy (and write f ≃ g). In this case, the cocylinder of 0 : E ։ 0
will be denoted by EI .

Lemma 3. [2, II.1.11] Consider a commutative diagram of unbroken arrows:

D

∼τ
��

g
// E

p
����

A
f

//
l

??

B

(a) If A is a cofibrant model, then there is a morphism l : A → E such that
pl = f .

(b) If A and D are cofibrant models, then there is a morphism l : A → E for
which pl = f and lτ ≃ g rel. p. Moreover, if g is a weak equivalence, then
so is l.

We also recall the notion of weak lifting.

Definition 4. Let f : A → B and g : C → B be morphisms in C. We say that f
admits a weak lifting along g if for some F-factorization g = pτ of g and for some

cofibrant replacement pA : A
∼
→ A of A there exists a commutative diagram

C

g

��

τ
∼
�����

�

E p
�� ��=

==
=

A

s @@

f pA

// B

In the particular case f = idB we say that g : C → B admits a weak section.

This notion does not depend on the choice of the F-factorization nor on the
cofibrant replacement. In order to check this fact one has to use Lemma 3 above
and the following result. The details are left to the reader.
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Lemma 5. [2, II.1.6] Let p : X
∼
։ Y be a trivial fibration and f : A → Y any

morphism, with A a cofibrant model. Then there exists a lift of f with respect to
p, i.e. a morphism f̃ : A → X such that p f̃ = f

X

p∼
����

A
f

//

f̃
??

Y

Another important notion that will be used in this paper is the one of weak
pullback.

Definition 6. Let f : A → B, f ′ : A′ → B′ and b : B → B′ be morphisms in C.
It is said that A-A′-B′-B is a weak pullback if for some F-factorization f ′ = pτ and

some cofibrant replacement pA : A
∼
։ A of A there exists a homotopy pullback

A

f pA h.p.b.
��

x // X

p �� ��@
@@

@@
@@

@ A′

f ′

��

τ
∼

oo

B
b

// B′

Remark 7. Any homotopy pullback is a weak pullback. Again, Lemma 3, axiom (J4)
and Lemma 5 allow us to replace the word ‘some’ by ‘any’ in the above definition. We
also have to take into account that the composition of homotopy pullbacks is a homotopy
pullback (in fact there is a Prism Lemma for homotopy pullbacks [6, Prop. 1.1]) and that
the weak equivalences in the category Pair(C) of morphisms in C are homotopy pullbacks.

2 Sectional category. Ganea and Whitehead approaches.

As in Doeraene’s work, from now on we will assume that C is a J-category in which
all objects are cofibrant models. Therefore we will take as cofibrant replacements the
corresponding identities. It is important to remark that in a general J-category we
will also obtain the same results. However, the exposition and/or the arguments
in this general case would be affected by unessential technical complications. So
just for the sake of simplicity and comfort we admit this assumption without loss
of generality. Essentially, the key to pass from our assumption to the general case
is established by considering cofibrant replacements:

• Any object X in C has a cofibrant replacement, that is, a trivial fibration pX : X
∼

։

X, in which X is a cofibrant model. ((J4) axiom )

• Any morphism f : X → Y in C has a cofibrant replacement, that is, given cofibrant
replacements pX , pY of X and Y, there exists an induced morphism f : X → Y
making commutative the following square

X

∼pX
����

f
// Y

∼ pY
����

X
f

// Y
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Observe that the second statement holds thanks to Lemma 5. Using these simple
facts when necessary and working a little bit harder the reader should be able to
prove our results when not all objects are cofibrant models.

We are now prepared for the definition of sectional category of a morphism
in C under two different approaches. In the following definition, only axioms
(J1)-(J4) are needed.

Definition 8. Let p : E → B be any morphism in C (not necessarily a fibration).
We consider for each n a morphism hn : ∗n

BE → B inductively defined as follows:

1. h0 = p : E → B (so ∗0
BE = E)

2. Assume that hn−1 : ∗n−1
B E → B is already constructed. Then hn is the join

morphism of p and hn−1 :

• //
%%

%%LL
LLLLL

L

����

E′

����

E∼
oo

p



��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

•

∼
;;xxxxxx

��
∗n

BE
hn

  
∗n−1

B E

;;
;;vvvvv

hn−1

// B

Then, the Ganea sectional category of p, Gsecat(p), is the least integer n ≤ ∞

such that hn admits a weak section

∗n
BE

hn

��

∼

}}zz
zz

•
"" ""F

FF
FF

B

??

idB

∼ // // B

Remark 9. Observe that Gsecat(p) = 0 if and only if p has a weak section. Moreover,
in the topological setting this invariant coincides with secat(p), the classical sectional
category of a given fibration p : E ։ B, with B paracompact. In fact, the n-th iterated
join of p over B, hn : ∗n

BE → B has a homotopy section if and only if B can be covered by
n + 1 open subsets, each of them having a local homotopy section [14, 20].

Now we show that Gsecat is invariant up to weak equivalence.

Proposition 10. If p : E → B and p′ : E′ → B′ are weakly equivalent morphisms,
then Gsecat(p) = Gsecat(p′).

For the proof we shall use the following result.
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Lemma 11. [6, Lemma 3.5] Consider the following commutative diagram in C

A

x
��

f
// B

b

��

C
g

oo

y

��
•

'' ''NNNNNNNNNNNNN •

wwwwppppppppppppp

A′

∼

OO

f ′
// B′ C′

g′
oo

∼

OO

That is, b f admits a weak lifting along f ′ and bg admits a weak lifting along g′.
Let j : A ∗B C → B and j′ : A′ ∗B′ C′ → B′ denote the corresponding join maps.
Then bj admits a weak lifting along j′

A ∗B C

j
��

// •

## ##H
HH

HH
HH

HH
HH A′ ∗B′ C′

j′

��

∼
oo

B
b

// B′

Furthermore, if b, x and y are weak equivalences, then A ∗B C is weakly equiva-
lent to A′ ∗B′ C′ via the above diagram.

Proof of Proposition 10. We can suppose without loss of generality that there is a
commutative diagram of the following form

E

p

��

u
∼

// E′

p′

��
B

∼
v

// B′

Let us see by induction on n that hn : ∗n
BE → B and h′n : ∗n

B′E′ → B′ are weakly
equivalent morphisms. Indeed, for n = 0 it is certainly true. Now suppose that
hn−1 and h′n−1 are weakly equivalent. Again we can assume, without loss of
generality, that there is a commutative square

∗n−1
B E

hn−1

��

w
∼

// ∗n−1
B′ E′

h′n−1
��

B
∼
v

// B′

Now take h′n−1 = qλ and p′ = rµ F-factorizations. Then we have a commutative
diagram

∗n−1
B E

λw ∼

��

hn−1 // B

v∼

��

E
p

oo

µu∼

��
•

q

'' ''OOOOOOOOOOOOOOOO •
r

xxxxqqqqqqqqqqqqq

∗n−1
B′ E′

∼λ

OO

h′n−1

// B′ E′
p′

oo

∼ µ

OO
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which, applying Lemma 11, gives rise to this one

∗n
BE

hn

��

∼
// •

!! !!B
BB

BB
BB

BB
∗n

B′E′

h′n
��

∼
oo

B v
∼ // B′

Now we have that hn admits a weak section if and only if h′n admits a weak
section. In order to check this assertion, one has just to take into account Lemma

3 and the fact that the pullback of • ։ B′ and v : B
∼
→ B′ gives rise to an

F-factorization of hn in a natural way.

Now we give a Whitehead-type definition of sectional category.

Definition 12. Let p : E → B be any morphism in C where B is e-fibrant, that is,
the zero morphism B → 0 is a fibration. We define jn : Tn(p) → Bn+1 inductively
as follows:

1. j0 = p : E → B (so T0(p) = E)

2. If jn−1 : Tn−1(p) → Bn is constructed, then jn is the following join construc-
tion:

• //))

))RRRRRRRRRRRR

����

•

����

Bn × E∼
oo

idBn×p

��









•

∼

88qqqqqqqqq

��
Tn(p)

jn

$$
Tn−1(p)× B

77
77oooooo

jn−1×idB

// Bn+1

Then the Whitehead sectional category of p, Wsecat(p), is the least integer n ≤ ∞

such that the diagonal morphism ∆n+1 : B → Bn+1 admits a weak section along
jn : Tn(p) → Bn+1 :

Tn(p)

jn

��

∼

{{vvv
vv

•
$$ $$HH

HH
H

B

@@

∆n+1

// Bn+1

Observe that, in order to define Wsecat(p), B must be e-fibrant to ensure that
all products Bn, Tn(p)× B and Bn × E exist (n ≥ 0). Now we extend Wsecat(p) to
the general case, in which B need not be e-fibrant. For this, consider an

F-factorization B ∼
τ // F // // 0 of the zero morphism. Then we define

Wsecat(p) := Wsecat(τp)
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Lemma 13. If p : E → B is any morphism, then Wsecat(p) does not depend on
the choice of the F-factorization for B → 0.

Proof. Consider two such factorizations B ∼
τ // F // // 0 and B ∼

τ′
// F′ // // 0 .

Then, by Lemma 3(b) applied to the following commutative diagram

B
τ
∼

//

τ′ ∼
��

F

����
F′

∼

h

??

// // 0

there exists a weak equivalence h : F′ ∼
→ F such that hτ′ ≃ τ. Take a homotopy

H : B → FI satisfying d0H = hτ′ and d1H = τ and consider the commutative
diagram, where the codomain of each vertical arrow is an e-fibrant object

E

τ′p
��

E

hτ′p
��

E

Hp
��

E

τp

��
F′ ∼

h
// F FI∼

d0

oo ∼

d1

// F

This diagram shows that τp and τ′p are weakly equivalent morphisms. Observe
that, since F × F is e-fibrant and (by definition) there is a fibration (d0, d1) : FI

։

F × F, we have that the cocylinder object FI is also e-fibrant. Finally, considering
a similar argument to that given in the proof of Proposition 10 we obtain the
identity Wsecat(τp) = Wsecat(τ′p).

Proposition 14. If p : E → B and p′ : E′ → B′ are weakly equivalent morphisms,
then Wsecat(p) = Wsecat(p′).

Proof. We can suppose, without loss of generality, that there is a commutative
square

E

p

��

u
∼

// E′

p′

��
B

∼
v

// B′

Now, if B′
∼
τ′

// F′ // // 0 is an F-factorization of the zero morphism, then an

F-factorization B ∼
τ // F

w // // F′ of τ′v gives rise to B ∼
τ // F // // 0 , another

F-factorization, and a commutative square

E

τp

��

u
∼

// E′

τ′p′

��
F

∼
w

// // F′

Again, the result follows considering a similar argument to that given in the proof
of Proposition 10.

We now see that Gsecat and Wsecat coincide in a J-category.
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Theorem 15. If p : E → B is any morphism, then

Gsecat(p) = Wsecat(p).

We first recall some useful properties about weak pullbacks. Again we refer
the reader to [6].

Lemma 16 (Prism Lemma for weak pullbacks). [6, Prop. 2.5] Consider the fol-
lowing diagram

A

��

B

��

C

��
X // Y // Z

If B-C-Z-Y is a weak pullback, then A-B-Y-X is a weak pullback if and only if
A-C-Z-X is a weak pullback.

Lemma 17. [6, Lemma 3.5] Consider a weak pullback

D

g h.p.b.
��

// •

�� ��>
>>

>>
>>

> C

g′

��

∼
oo

A
f

// B

and let h : X → A be any morphism. Then h admits a weak lifting along g if and
only if f h admits a weak lifting along g′.

And now we come to the Join Theorem. This result relies strongly on the cube
axiom (J5 axiom) and therefore it does not admit a dual version.

Lemma 18 (Join Theorem). [6, Th. 2.7] If there are weak pullbacks

A

f h.p.b.
��

// X

p �� ��?
??

??
??

? A′

��

∼
oo C

g h.p.b.
��

// Y

q �� ��@
@@

@@
@@

@ C′

��

∼
oo

B
b

// B′ B
b

// B′,

then there is a weak pullback

A ∗B C

h.p.b.
��

// •

## ##H
HH

HH
HH

HH
HH A′ ∗B′ C′

��

∼
oo

B
b

// B′

Proof of Theorem 15. First suppose that B is e-fibrant. We will see by induction on
n ≥ 0 that for any map p : E → B, there is weak pullback:

∗n
BE

hn h.p.b.
��

// •

!! !!D
DD

DD
DD

DD
Tn(p)

jn
��

∼
oo

B
∆n+1

// Bn+1
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For n = 0 it is trivially true. Suppose the statement true for n − 1 and consider
the diagram

∗n−1
B E

hn−1

��

1©

Tn−1(p)× B
pr

//

jn−1×idB
��

Tn−1(p)

jn−1

��
B

∆n+1

// Bn × B pr
// // Bn

where the right square is a pullback in which pr : Bn × B ։ Bn is a fibration
(observe that B is e-fibrant and use (J2) axiom). Therefore this pullback is also
a homotopy pullback and a weak pullback. Now, applying the Prism Lemma
together with the induction hypothesis we deduce that diagram 1© is also a weak
pullback.

The same argument applied to the diagram

E

p

��

(p,p,...,p,idE) //

2©

Bn × E

idBn×p
��

pr
// // E

p

��
B

∆n+1

// Bn × B pr
// // B

implies that 2© is a weak pullback. We obtain the expected result by applying the
Join Theorem to the weak pullbacks 1© and 2©. The theorem easily follows now
from this fact together with Lemma 17.

When B is not e-fibrant, consider B ∼
τ // F // // 0 an F-factorization. Then

we have that Gsecat(p) = Gsecat(τp) by Proposition 10. But we have already
proved that Gsecat(τp) = Wsecat(τp) (=Wsecat(p)).

Remark 19. When our category C does not satisfy the cube axiom (J5), the most we can
say is that Wsecat(p) ≤ Gsecat(p). Indeed, an argument similar to the one used in
Theorem 15 using Lemma 11 instead of Lemma 18, proves that for each n ≥ 0, ∆n+1hn

admits a weak lifting along jn, i.e., there is a commutative diagram

∗n
BE

hn

��

// •

!! !!D
DD

DD
DD

DD
Tn(p)

jn
��

∼
oo

B
∆n+1

// Bn+1

The general case, in which B is not necessarily e-fibrant, follows easily. Now, if idB

admits a weak lifting along hn, then it is easy to check that ∆n+1 = ∆n+1idB admits a
weak lifting along ∆n+1hn. Using Lemma 21 below we obtain that ∆n+1 admits a weak
lifting along jn.

From now on we will denote Gsecat(p) = Wsecat(p) by secat(p) and call it
the sectional category of p.
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3 Main properties of the sectional category

We begin by observing that the Lusternik Schnirelmann category of an object B
in C is the sectional category of the zero morphism 0 → B. Indeed (see [6]) the
n-th Ganea map pn : GnB → B is precisely the n-th join over B, hn : ∗n

BE → B, of
0 → B and therefore,

cat(B) = secat(0 → B).

On the other hand, given b : B → B′ any morphism, we define cat(b) as the
least integer n ≤ ∞ such that b admits a weak lifting along p′n : GnB′ → B′.
Compare the next result with [15].

Theorem 20. Let p : E → B, p′ : E′ → B′ and b : B → B′ be morphisms in C
defining a weak pullback. Then,

secat(p) ≤ min{cat(b), secat(p′)}.

For its proof we need the following lemma.

Lemma 21. [6, Lemma 3.4] Let f : A → B, g : C → B and h : D → B be
morphisms. If f admits a weak lifting along g and g admits a weak lifting along
h, then f admits a weak lifting along h.

Proof of 20. By induction, using the Join Theorem (Lemma 18) repeatedly on the
given weak pullback

E

p

��

// •

�� ��>
>>

>>
>>

> E′

p′

��

∼
oo

B
b

// B′

we obtain, for every n ≥ 0, a weak pullback of the form

∗n
BE

hn

��

// •

!! !!B
BB

BB
BB

BB
∗n

B′E
′

h′n
��

∼
oo

B
b

// B′

Hence, if secat(p′) ≤ n, h′n admits a weak section:

∗n
B′E′

h′n

��

∼

||yy
yy

•
## ##H

HH
HH

B′

s >>

idB′

// B′

In particular, b : B → B′ admits a weak lifting along h′n through the morphism
sb : B → •. By Lemma 17, hn admits a weak section and secat(p) ≤ n.
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Now suppose that cat(b) ≤ n, that is, b admits a weak lifting along
p′n : GnB′ → B′. Consider the following diagram obtained by simply choosing
any F-factorization of p′:

0

��

// •

�� ��>
>>

>>
>>

> E′

p′

��

∼
oo

B′
id

// B′

As this is not, in general, a weak pullback, apply Lemma 11 inductively to obtain
that p′n : GnB′ → B′ admits a weak lifting along h′n : ∗n

B′E′ → B′. Finally, by
Lemma 21 we conclude that b admits a weak lifting along h′n : ∗n

B′E
′ → B′, which

by Lemma 17, is equivalent to the fact that hn : ∗n
BE → B admits a weak section.

Even if our data is not a weak pullback, we can prove a similar result, which
should be compared with [15]:

Theorem 22. Let p : E → B and p′ : E′ → B be morphisms in C. If p admits a
weak lifting along p′, then secat(p′) ≤ secat(p). In particular,

secat(p) ≤ cat(B).

Moreover, if p : E → B admits a weak lifting along the zero morphism 0 → B
(in particular, when E is weakly contractible, i.e., E and 0 are weakly equivalent)
then secat(p) = cat(B).

Proof. For the first assertion, apply Lemma 11 inductively to the diagram

E

p

��

// •

�� ��?
??

??
??

? E′

p′

��

∼
oo

B
idB

// B

to conclude that, for every n ≥ 0, hn admits a weak lifting along h′n. If secat(p) ≤
n, idB admits a weak lifting along hn and, by Lemma 21, idB admits a weak lifting
along h′n. Hence, secat(p′) ≤ n.

On the other hand, recall that cat(B) = secat(0 → B) and observe that the zero
morphism admits a weak lifting along any morphism. Thus, secat(p) ≤ cat(B).
Finally note that, if E is a weakly trivial object, by Lemma 3, p admits a weak
lifting along 0 → B.

3.1 Modelization functors.

We now study the behaviour of secat through a modelization functor. Recall from
[6] that a covariant functor µ : C → D between categories satisfying (J1)-(J4)
axioms is called a modelization functor if it preserves weak equivalences, homo-
topy pullbacks and homotopy pushouts. We say that µ is pointed if µ(0) = 0.
If µ : C → D is contravariant, it is said to be a modelization functor if the cor-
responding covariant functor µ : Cop → D is a modelization functor. Here we
prove:
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Theorem 23. If µ : C → D is a modelization functor between J-categories, then
for any morphism p : E → B of C

secat(µ(p)) ≤ secat(p)

For it we shall need the following

Lemma 24. [6, Prop. 6.7] Let µ : C → D be a modelization functor and let
j : A ∗B C → B denote the join map of f : A → B and g : C → B . Then,
there is a commutative diagram

µ(A ∗B C)
µ(j)

))SSSSSSSSSSSSSSSS

•

∼

OO

∼
��

// µ(B)

µ(A) ∗µ(B) µ(C)
j′

55kkkkkkkkkkkkkkkk

where j′ denotes the join morphism of µ( f ) and µ(g).

Proof of Theorem 23. In view of Lemma 21 it is sufficient to prove that, for each n,

h
µ(p)
n admits a weak lifting along µ(h

p
n)

µ(∗n
BE)

∼zzuuuu
u

µ(h
p
n)

��

•
$$ $$HH

HH
HH

∗n
µ(B)

µ(E)

99ssssss

h
µ(p)
n

// µ(B)

where h
p
n and h

µ(p)
n are the n-th join morphisms p and µ(p) respectively. For

n = 0 is trivially true. By assuming the assertion true for n − 1, and choosing any
F-factorization of µ(p) we obtain a commutative diagram of the form

∗n−1
µ(B)

µ(E)

��

h
µ(p)
n−1 // µ(B)

id

��

µ(E)
µ(p)

oo

∼

��
•

(( ((RRRRRRRRRRRRRRRRR •

wwwwnnnnnnnnnnnnnnn

µ(∗n−1
B E)

∼

OO

µ(h
p
n−1)

// µ(B) µ(E)
µ(p)

oo

∼

OO

By Lemma 11 h
µ(p)
n admits a weak section along the join morphism of µ(h

p
n−1)

and µ(p) :

∗n
µ(B)

µ(E)

h
µ(p)
n

��

// •

'' ''NNNNNNNNNNNNNNN µ(∗n−1
B E) ∗µ(B) µ(E)

��

∼
oo

µ(B)
id

// µ(B)

(3)



500 F.J. Dı́az – J.M. Calcines – P.R. Dı́az – A. Murillo Mas – J. Remedios

On the other hand, applying Proposition 24 above to the morphisms h
p
n−1 : ∗n−1

B E →
B and p : E → B, we obtain a commutative diagram

• ∼
//

∼
��

µ(∗n
BE)

µ(h
p
n)

��
µ(∗n−1

B E) ∗µ(B) µ(E) // µ(B)

Taking any F-factorization of µ(h
p
n) and applying Lemma 3 we deduce that the

join morphism µ(∗n−1
B E) ∗µ(B) µ(E) → µ(B) admits a weak lifting along µ(h

p
n).

Finally, by Lemma 21 applied to (3), we conclude the inductive step.

Remark 25. Observe that, for the proof of Theorem 23 we have used the Ganea-type
version of sectional category. If (J5) axiom is not satisfied, then using similar arguments
we can also obtain the same result for the Whitehead-type version of sectional category.
The same remark also applies to the remaining results of this section.

Corollary 26. Consider µ : C → D and ν : D → C modelization functors between
J-categories and let p : E → B be a morphism in C such that ν(µ(p)) is weakly
equivalent to p. Then

secat(µ(p)) = secat(p)

As an example we apply the theorem above to the abstract topological complexity
of a given object. For any e-fibrant object B we define its topological complexity,
TC(B), as the sectional category of the diagonal morphism ∆B : B → B × B. If B

is not e-fibrant consider any F-factorization B
∼ // F // // 0 and set

TC(B) := TC(F).

Then, TC(B) does not depend on the e-fibrant object F; indeed, if we take another

F-factorization B
∼ // F′ // // 0 , then there exists a weak equivalence h : F′ ∼

→ F
(see the proof of Lemma 13). The naturality of the diagonal morphism applied

to h together with the fact that h × h : F′ × F′ ∼
→ F × F is a weak equivalence

(by the dual of the Gluing Lemma [2, II.1.2]) prove that ∆F : F → F × F and
∆F′ : F′ → F′ × F′ are weakly equivalent morphisms. Therefore

TC(F) = secat(∆F) = secat(∆F′) = TC(F′).

The invariant TC(B) only depends on the weak type of B; given f : B
∼
→ B′ a

weak equivalence, if we consider an F-factorization B′
∼
τ′

// F′ // // 0 , then any

F-factorization of the composite τ′ f : B → F′

B
τ′ f

∼
//

∼
τ

��>
>>

>>
>>

F′

F

g

?? ??�������

gives rise to a trivial fibration g : F
∼
։ F′, which shows that

TC(B) = TC(F) = TC(F′) = TC(B′).
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Theorem 27. For any pointed modelization functor µ : C → D and any object B,

TC(µ(B)) ≤ TC(B)

Proof. Taking into account that µ preserves weak equivalences and TC only de-
pends on the weak type, we can suppose without loss of generality that B is an
e-fibrant object. Since µ(B) need not be e-fibrant we consider any F-factorization

µ(B) //

∼
τ

!!C
CC

CC
CC

C
0

F

AA AA��������

so that TC(µ(B)) = TC(F). Now consider the following commutative cube:

µ(B × B)
µ(pr2) //

ω

��

µ(pr1)

}}{{
{{

{{
{{

{
µ(B)

τ∼

��

��		
		

		
		

µ(B) //

τ ∼

��

0

id∼

��

F × F pr2

// //

pr1

||||yyy
yy

yyy
yy

F

������
��

��
��

F // // 0

Here pr1 and pr2 denote the projection morphisms. As µ is a pointed modeliza-
tion functor, the top face is a homotopy pullback. On the other hand, the bottom
face is a strict pullback (and a homotopy pullback) and ω = (τµ(pr1), τµ(pr2))
is the induced morphism from the universal property of the pullback. Since the
top and bottom faces are homotopy pullbacks and the unbroken vertical mor-
phisms are weak equivalences, by [6, Cor. 1.12] (or the dual of the Gluing Lemma
[2, II.1.2]) we see that ω is also a weak equivalence. From the following commu-
tative diagram

µ(B) τ
∼

//

µ(∆B)
��

F

∆F

��
µ(B × B) ∼

ω
// F × F

we deduce that µ(∆B) and ∆F are weakly equivalent morphisms. Then, by Propo-
sition 10 we have that TC(µ(B)) = secat(∆F) = secat(µ(∆B)) while, by Theorem
23, secat(µ(∆B)) ≤ secat(∆B) = TC(B).

Corollary 28. Consider two pointed modelization functors µ : C → D and
ν : D → C and let B be an object in C such that ν(µ(B)) is weakly equivalent
to B. Then

TC(µ(B)) = TC(B)
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4 Some applications.

We start by an immediate application in rational homotopy theory. A classical
fact [3, §8] assures the existence of an adjunction

CDGAε SSet∗

〈 · 〉
oo

APL //

between the categories of augmented commutative differential graded algebras
over a field K of characteristic zero, and pointed simplicial sets. The category
SSet∗ is known to be a J-category endowed with Kan fibrations, injective maps
and maps realizing to homotopy equivalences [18, Chap.III§.3], [6, Prop.A.8].
The category CDGAε is also a (proper) closed model category [3, §4] (and thus
J1-J4 are satisfied) in which fibrations are surjective morphisms, weak equiva-
lences are morphisms inducing homology isomorphisms (the so called “quasi-
isomorphisms”) and cofibrations are “relative Sullivan algebras” [11, §14], i.e.,
inclusions A → A ⊗ ΛV in which ΛV denotes the free commutative algebra
generated by the graded vector space V and the differential on A ⊗ ΛV satis-
fies a certain “minimality” condition. However, this is not a J-category and the
Eckmann-Hilton dual of a partial version of the cube axiom is satisfied when re-
stricting to 1-connected algebras [6, A.18]. The functors 〈 · 〉 and APL do not in
general respect weak equivalences although 〈 · 〉 sends cofibrations to fibrations
and 〈 · 〉 can be slightly modified to send fibrations to cofibrations [3, §8]. There-
fore, as they stand, they are not modelization functors. However, it is also known
[3, §8,9] that, restricting those functors to the categories

CDGA1
c f Q Kan-Complexes1

Qoo
//

of cofibrant 1-connected commutative differential graded algebras of finite type
over Q (known as Sullivan algebras [11, §12]) and 1-connected rational Kan com-
plexes of finite type, then they do preserve weak equivalences and via [6, Prop.6.5]
they are modelization functors.

On the other hand, in [10, Ch.8], Fassò introduced, for a map of finite type
1-connected CW-complexes, or equivalently for a simplicial map of finite type

1-connected Kan complexes E
p
→ B, the rational sectional category of p, secat0(p)

which can be seen as the sectional category in the opposite category of CDGA1
c f Q

of APL(pQ), being pQ the map in Kan-Complexes1
Q obtained by rationalization

[3, §11]. Thus, by Corollary 26,

secat0(p) = secat(pQ)

Our second application concerns localization functors. Let P be a (possibly
empty) set of primes and

(−)P : CWN −→ CWN
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denotes the P-localization functor (see [13, §2] or [1, Chap.III] where it is shown
that localization can chosen to be a functor as it stands, not just in the homotopy
category) in the pointed category of spaces of the homotopy type of nilpotent CW-
complexes. Then, this functor sends homotopy pushouts to homotopy pushouts
and homotopy pullbacks (if the chosen homotopy pullback stays in this cate-
gory) to homotopy pullbacks [13, §7]. (Note that, considering closed cofibrations,
Hurewicz fibrations and homotopy equivalences, the category of well pointed
topological spaces Top∗ has the structure of a J-category; see [22, Thm.11] for ax-
ioms (J1)-(J4) plus [16, Thm.25] for (J5)). Thus, even though strictly speaking this
is not a modelization functor as it is defined on a certain subcategory of Top∗,
the arguments in Theorem 23 could be followed mutatis mutandi as long as all
constructions there remain within our category. But this is in fact the case as the
homotopy pullback (or pushout) of two maps in CWN can be chosen to live also
in this category [13, §7]. Hence,

secat( fP) ≤ secat f .

However, the situation is drastically different in the general case as all sort of
possible P-localizations (extending the one on nilpotent complexes) do not, in
general, preserve homotopy pullbacks and homotopy pushouts.

Here, we consider the Casacuberta-Peschke localization functor on Top∗ [4]
and start by setting some notation. Given a group G we denote by P[G] the
ring localization of the group ring ZPG obtained by inverting all of the elements
1 + g + · · ·+ gn−1, where g ∈ G, and (n, p) = 1 for any p ∈ P (see [4, §2]).

Following [17] we say that a P-torsion group G is an acting group for a space
X if there is an epimorphism f : π1X ։ G such that, for each m ≥ 2, the action
π1X → Aut(πmX) factors through G.

Proposition 29. Let f : X → Y a map for which:

(i) π1(∗
n
Y f ) : π1(∗

n
YX)

∼=
−→ π1Y is an isomorphism of P-local groups for any

n ≥ 0.

(ii) π1(∗
n
YX) and π1Y have a common acting group G for any n ≥ 0.

(iii) If we denote π1Y by π, the morphism ZPπ → P[π] induces isomorphisms
on homology with local coefficients H∗(−; ZPπ) → H∗(−; P[π]).

Then,

secat( fP) ≤ secat( f ).

Proof. Again, note that the argument in Theorem 23 could be applied if, for any
n ≥ 1, there is a homotopy commutative diagram of the form:

(∗n−1
Y X)P ∗YP

XP

(hn−1)P∗ fP &&NNNNNNNNNNNN

≃ // (∗n
YX)P

(hn)P{{ww
www

ww
ww

YP
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To this end, an inductive process, as in [6, Prop.6.7] will work as long as the
following two conditions hold:

(1) The localization of the homotopy pullback

Qn
//

��

X

f

��
∗n−1

Y X
hn−1

// Y

(Qn)P
//

��

XP

fP

��
(∗n−1

Y X)P hn−1P

// YP

is again a homotopy pullback.
(2) The localization of the homotopy pushout

Qn
//

��

X

��
∗n−1

Y X // ∗n
YX

(Qn)P
//

��

XP

��
(∗n−1

Y X)P
// (∗n

YX)P

is again a homotopy pushout.
However, by hypothesis, we may apply [17, Thm.4.3] to prove statement (1)

(respec. [17, Thm.2.1] to prove (2)).
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[10] A. Fassò Velenik, Relative homotopy invariants of the type of the Lusternik-
Schnirelmann category, Eingereichte Dissertation (Ph.D. Thesis), Freien Uni-
versität Berlin, 2002.

[11] Y. Félix, Stephen Halperin and Jean Claude Thomas, Rational Homotopy The-
ory, Graduate Texts in Math. 205, Springer (2000).

[12] K.P. Hess and J.M. Lemaire. Generalizing a definition of Lusternik and
Schnirelmann to model categories. J. Pure and Appl. Algebra, 91 (1994), 165-
182.

[13] P. Hilton, G. Mislin and J. Roitberg, Localization of Nilpotent Groups and Spaces,
Mathematics Studies 15, North-Holland (1975).

[14] I.M. James. On category in the sense of Lusternik-Schnirelmann. Topology 17
(1978), 331-348.

[15] T. Kahl. Lusternik-Schnirelmann-Kategorie und axiomatische Homotopietheorie.
Diplomarbeit, Freie Universität Berlin (1993).

[16] M. Mather. Pull-backs in Homotopy Theory. Can. J. Math. 28(2) (1976), 225-
263.

[17] G. Peschke and W. Shen. When does P-localization preserve homotopy
pushouts or pullbacks?, Topology and its Applications, 145 (2004), 1-10.

[18] D. Quillen. Homotopical Algebra, Lecture Notes in Math, 43, Springer, 1967.

[19] D. Quillen. Rational homotopy theory. Ann. Math. (2), 90 (1969), 205-295.

[20] A. Schwarz. The genus of a fiber space. A.M.S. Transl. 55 (1966), 49-140

[21] S. Smale. On the topology of algorithms. I, J. Complexity 3 (1987) 81-89.

[22] A. Strøm. The homotopy category is a homotopy category. Arch. Math., 23 (1972),
435-441.

Departamento de Matemática Fundamental
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