Permanence properties of amenable, transitive and faithful actions (Erratum)*

Soyoung Moon

P. Fima correctly pointed out that, in the proof of the genericity of O_2 in the proof of Proposition 4 appeared in [Moo], the permutation σ' is *a priori* not well defined. This can be easily corrected if we can assume the Følner sequences in question to be *A*-invariant. The following lemma allows us to make this assumption:

Lemma 1. Let X be a G-set, Y be a H-set and A be a common finite subgroup of G and H such that the A-actions are free. Let $\{C_n\}_{n\geq 1}$ be a Følner sequence of $G \curvearrowright X$ and $\{D_n\}_{n\geq 1}$ be a Følner sequence of $H \curvearrowright Y$ such that $|C_n| = |D_n|, \forall n \geq 1$. Then there exist A-invariant Følner sequences $\{C'_n\}_{n\geq 1}$ for $G \curvearrowright X$ and $\{D'_n\}_{n\geq 1}$ for $H \curvearrowright Y$ such that $|C'_n| = |D'_n|, \forall n \geq 1$.

Proof. First of all, remark that the set $\{AC_n\}_{n\geq 1}$ is a *A*-invariant Følner sequence of *G*. Indeed, for every $g \in G$, we have

$$\frac{|AC_n \triangle gAC_n|}{|AC_n|} = \frac{|\cup_{a \in A} aC_n \triangle \cup_{b \in A} gbC_n|}{|AC_n|} \le \frac{|\cup_{a,b \in A} (aC_n \triangle gbC_n)|}{|AC_n|} \le \sum_{a,b \in A} \frac{|C_n \triangle a^{-1}gbC_n|}{|AC_n|} \xrightarrow[n \to \infty]{} 0.$$

Since $\lim_{n\to\infty} \frac{|AC_n|}{|C_n|} = 1$, by passing to a subsequence if necessary, we can suppose that $|AD_n| \leq |AC_n| \leq (1 + \frac{1}{n})|C_n|$, for all *n*. Since the *A*-actions are free, there exists an injection $f_n : AD_n \hookrightarrow AC_n$ which is *A*-equivariant. Let $D'_n := AD_n$ and $C'_n := f_n(AD_n)$. Then $C'_n \subseteq AC_n$ and clearly $\frac{|C'_n|}{|AC_n|} \leq 1$. Moreover $\frac{|C'_n|}{|AC_n|} \geq \frac{1}{1+\frac{1}{n}}$, so that $\lim_{n\to\infty} \frac{|C'_n|}{|AC_n|} = 1$.

Bull. Belg. Math. Soc. Simon Stevin 19 (2012), 383-384

^{*}Paper published in Bull. Belgian Math. Soc. Simon Stevin, Volume 18, Number 2 (2011), 287-296.

Claim. If $\{F_n\}_{n\geq 1}$ is a Følner sequence of $G \curvearrowright X$ and $F'_n \subset F_n$ is such that $\lim_{n\to\infty} \frac{|F'_n|}{|F_n|} = 1, \text{ then } \{F'_n\}_{n\geq 1} \text{ is a Følner sequence of } G \curvearrowright X.$ Indeed, for $g \in G$, we have $gF'_n \setminus F'_n \subseteq gF_n \setminus F'_n \subseteq (gF_n \setminus F_n) \cup (F_n \setminus F'_n).$

Therefore,

$$\frac{|gF'_n \setminus F'_n|}{|F'_n|} \leq \frac{|gF_n \setminus F_n|}{|F_n|} \cdot \frac{|F_n|}{|F'_n|} + \left(\frac{|F_n|}{|F'_n|} - 1\right) \xrightarrow[n \to \infty]{} 0.$$

Thus, the sequences $\{C'_n\}_{n>1}$ and $\{D'_n\}_{n>1}$ are *A*-invariant Følner sequences of *G* and *H* respectively having the same cardinality.

Now we give the correction of the proof of the genericity of \mathcal{O}_2 appeared in the proof of Proposition 4 in [Moo]:

Let

 $\mathcal{O}_2 = \{ \sigma \in Z | \text{ there is a subsequence } \{n_k\} \text{ of } n \text{ such that } \sigma(C_{n_k}) = D_{n_k} \}$

where $\{C_n\}_{n\geq 1}$ (resp. $\{D_n\}_{n\geq 1}$) is pairwise disjoint Følner sequence of $G \curvearrowright X$ (resp. $H \curvearrowright Y$) as in Definition 2.1. in [Moo]. By Lemma 1, we can suppose that they are A-invariant Følner sequences such that $|C_n| = |D_n|, \forall n \ge 1$. We show that \mathcal{O}_2 is generic in $Z = \{ \sigma \in Sym(X) | \sigma a = a\sigma, \forall a \in A \}$. Let us write $\mathcal{O}_2 =$ $\bigcap_{N \in \mathbb{N}} \{ \sigma \in Z | \text{ there exists } m \ge N \text{ such that } \sigma(C_m) = D_m \}.$ We shall show that for every $N \in \mathbf{N}$, the set $\mathcal{V}_N = \{ \sigma \in Z | \forall m \ge N, \sigma(C_m) \neq D_m \}$ is of empty interior (the closedness is clear). Let $F \subset X$ be a finite subset and $\sigma \in \mathcal{V}_N$. Let $m \geq N$ large enough such that $C_m \cap (F \cup \sigma^{\pm 1}(F)) = \emptyset$ and $D_m \cap (F \cup \sigma^{\pm 1}(F)) = \emptyset$. Since $\{C_n\}_{n\geq 1}$ and $\{D_n\}_{n\geq 1}$ are *A*-invariant and have the same cardinality for every *n*, we can write $C_m = \Box_{i=1}^d A x_i$ and $D_m = \sqcup_{i=1}^d A y_i$. We then define

$$\sigma'(ax_i) := ay_i \text{ and } \sigma'(a\sigma^{-1}(y_i)) := a\sigma(x_i),$$

for every $1 \le i \le d$ and $a \in A$. For all other points, we define σ' to be equal to σ so that $\sigma' \in Z \setminus \mathcal{V}_N$ and $\sigma'|_F = \sigma|_F$. This proves that \mathcal{V}_N has no interior point, and establishes the genericity of \mathcal{O}_2 in Z.

We thank Alain Valette for his help with the above lemma.

References

[Moo] Soyoung Moon, Permanence properties of amenable, transitive and faithful actions, Bull. Belgian Math. Soc. Simon Stevin, Volume 18, Number 2 (2011), 287-296.

Institut de Mathématiques de Bourgogne UMR 5584 du CNRS Université de Bourgogne 9 avenue Alain Savary - BP 47870 21078 Dijon cedex, France E-mail: soyoung.moon@u-bourgogne.fr