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Abstract

In this article we study surfaces in S3(1) × R for which the R-direction
makes a constant angle with the normal plane. We give a complete classifi-
cation for such surfaces with parallel mean curvature vector.

1 Introduction

In recent years, there has been done some research about surfaces in a 3-dimen-
sional Riemannian product of a surface M2(c) × R ([1, 9, 11, 14], etc.), where
M2(c) is the simply-connected 2-dimensional space form of constant curvature c,
in particular M2(c) = R2, H2, S2 for c = 0, − 1, 1 respectively.

Recently, constant angle surfaces were studied in product spaces M2(c) × R

(see [3, 4, 5, 6, 12, 13]), where the angle was considered between the unit normal
of the surface M and the tangent direction to R. For example, F. Dillen et al.
gave the complete classification for constant angle surfaces in S2 × R in [4]. The
problem of constant angle surfaces was also investigated in the 3-dimensional
Heisenberg group (see [8]) and in Minkowski space (see [10]). In [15], R. Tojeiro
gave a complete description of all hypersurfaces in the product spaces Sn × R

and Hn × R that have flat normal bundle when regarded as submanifolds with
codimension two of the underlying flat spaces Rn+2 ⊃ Sn × R and Ln+2 ⊃ Hn ×
R. In [7], helix submanifolds in Euclidean space were studied by solving the
Eikonal equation. The applications of constant angle surfaces in the theory of
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liquid crystals and of layered fluids were considered by P. Cermelli and A. J. Di
Scala in [2].

In this article we study surfaces in S3(1)× R for which the R-direction makes
a constant angle with the normal plane. In Section 2, we first review some basic
equations for constant angle surfaces in S3(1) × R. In Section 3, we will prove
that the constant angle surfaces in S

3(1)× R with parallel mean curvature vector
are minimal (see Theorem 1). In Section 4, we will give a complete classification
for minimal constant angle surfaces in S3(1)× R (see Theorem 3).

2 Preliminaries

Let M̃ = S3(1) × R be the Riemannian product of S3(1) and R with the stan-

dard metric 〈, 〉 and the Levi-Civita connection ∇̃. We denote by t the (global)

coordinate on R and hence ∂t =
∂
∂t is the unit vector field in the tangent bundle

T(S3(1)× R) that is tangent to the R-direction.
For p ∈ S3(1)× R, the Riemann-Christoffel curvature tensor R̃ of S3(1)× R is

given by

〈R̃(X, Y)Z, W〉 = 〈XS3(1), WS3(1)〉〈YS3(1), ZS3(1)〉 − 〈XS3(1), ZS3(1)〉〈YS3(1), WS3(1)〉,

where R̃(X, Y) = [∇̃X, ∇̃Y] − ∇̃[X,Y]; X, Y, Z, W ∈ Tp(S3(1) × R) and XS3(1) =

X − 〈X, ∂t〉∂t is the projection of X to the tangent space of S3(1).
Now consider a surface M in S3(1)× R. We can decompose ∂t as

∂t = sin θT + cos θξ, (2.1)

where θ is the angle between ξ and ∂t, ξ is a unit normal vector to M and T is a
unit tangent vector to M.

For a constant angle surface M in S3(1) × R, we mean a surface for which
the angle function θ is constant on M. There are two trivial cases, θ = 0 and
θ = π

2 . The condition θ = 0 means that ∂t is always normal, so we get a surface

Σ2 × {t0}, where Σ2 is a surface in S3(1). In the second case, ∂t is always tangent.
This corresponds to the Riemannian product of a curve in S3(1) and R.

From now on, in the rest of this paper, we only consider the constant angle
surface M with constant angle θ ∈ (0, π

2 ). We extend {T, ξ} to an orthonormal

frame {T, Q, ξ, η} on S3(1)× R, where T, Q are tangent to M and ξ, η are normal
to M. Since ∂t is a parallel vector field in S3(1)× R, we can obtain from (2.1) that,
for any X ∈ TM,

0 = ∇̃X∂t = sin θ∇XT + sin θh(X, T) − cos θAξ X + cos θ∇⊥
X ξ, (2.2)

where we use the formulas of Gauss and Weingarten, h is the second fundamen-
tal form of M, Aξ is the shape operator associated to ξ, and ∇⊥ is the normal
connection.

Comparing the tangent part and the normal part in (2.2), we have
{

∇XT = cot θAξ X,

h(X, T) = − cot θ∇⊥
X ξ.

(2.3)
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From (2.3), we have

〈Aξ X, T〉 = 〈Aξ T, X〉 = 0, ∀X ∈ TM,

that is,

AξT = 0.

Therefore, we can suppose the shape operators with respect to ξ and η are,
respectively,

Aξ =

(
0 0
0 λ

)
, Aη =

(
β1 β2

β2 β3

)
, (2.4)

where λ, β j (j = 1, 2, 3) are smooth functions defined on the surface M.
From (2.3) and (2.4), we obtain that





∇TT = ∇TQ = 0,

∇QT = λ cot θQ,

∇QQ = −λ cot θT,

(2.5)





h(T, T) = β1η,

h(T, Q) = β2η,

h(Q, Q) = λξ + β3η,

(2.6)





∇⊥
T ξ = − tan θ β1η,

∇⊥
T η = tan θ β1ξ,

∇⊥
Qξ = − tan θ β2η,

∇⊥
Qη = tan θ β2ξ.

(2.7)

Now we can take coordinates (x, y) on M with ∂x = βT, ∂y = αQ where β, α
are positive functions. From (2.5) and the condition [∂x, ∂y] = 0, we find that

βy = 0, (2.8)

αx = αβλ cot θ.

Equation (2.8) implies that, after a change of the x-coordinate, we can assume
β = 1 and thus the metric takes the form

ds2 = dx2 + α2(x, y)dy2.

The Gauss and Ricci equation are, respectively, given by

(R̃(T, Q)T)⊤ = R(T, Q)T + Ah(T,T)Q − Ah(Q,T)T,

(R̃(T, Q)η)⊥ = R⊥(T, Q)η + h(Aη T, Q)− h(Aη Q, T),

where

R̃(X, Y)Z =
(
〈Y, Z〉 − 〈Y, ∂t〉〈Z, ∂t〉

)
X −

(
〈X, Z〉 − 〈X, ∂t〉〈Z, ∂t〉

)
Y

−
(
〈Y, Z〉〈X, ∂t〉 − 〈X, Z〉〈Y, ∂t〉

)
∂t, ∀X, Y, Z ∈ T(S3(1)× R)

R⊥(T, Q)η =
(
∇⊥

T ∇⊥
Q −∇⊥

Q∇⊥
T −∇⊥

[T,Q]

)
η.
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The Codazzi equations are

(R̃(T, Q)T)⊥ = (∇⊥
T h)(Q, T)− (∇⊥

Qh)(T, T),

(R̃(T, Q)Q)⊥ = (∇⊥
T h)(Q, Q)− (∇⊥

Qh)(T, Q),

where (∇⊥
X h)(Y, Z) = ∇⊥

X

(
h(Y, Z)

)
− h(∇XY, Z)− h(Y,∇XZ) for any X, Y, Z ∈

TM.
By a direct computation with (2.5)–(2.7), the equations of Gauss, Ricci and

Codazzi yield

λ2 cot2 θ + λx cot θ + cos2 θ + β1β3 − β2
2 = 0, (2.9)

(β2)y

α
+ λ cot θ sec2 θβ1 − λ cot θβ3 − (β3)x = 0, (2.10)

(β1)y

α
− 2λ cot θβ2 − (β2)x = 0. (2.11)

In fact, the Codazzi equations imply all three equations above, while the Gauss
and Ricci equations coincide with (2.9) and (2.11) respectively.

3 Constant angle surfaces with parallel mean curvature vector

In this section, we will discuss the constant angle surface M with parallel mean
curvature vector in S3(1)× R. In fact, we have

Theorem 1. If M is a constant angle surface in S3(1)× R with parallel mean curvature

vector ~H, then ~H = 0, that is, M is a minimal surface in S3(1)× R.

Proof. Since the mean curvature vector ~H of M is parallel, that is, ∇⊥~H = 0, from
(2.7), we have

λx = −(β1 + β3)β1 tan θ, (3.1)

(β1)x + (β3)x = λβ1 tan θ, (3.2)

and

λy = −α(β1 + β3)β2 tan θ, (3.3)

(β1)y + (β3)y = αλβ2 tan θ. (3.4)

From (2.9) and (3.1), we get

β2
1 + β2

2 = cot2 θ(λ2 + sin2 θ).

Thus we can set 



β1 = cot θ
√

λ2 + sin2 θ cos γ,

β2 = cot θ
√

λ2 + sin2 θ sin γ,
(3.5)

for some function γ on M.
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Since β2
1 + β2

2 = cot2 θ(λ2 + sin2 θ) > 0, taking the derivatives of (3.5), we
obtain

(β1)x = −β2γx +
λλx

β2
1 + β2

2

β1 cot2 θ, (3.6)

(β1)y = −β2γy +
λλy

β2
1 + β2

2

β1 cot2 θ, (3.7)

(β2)x = β1γx +
λλx

β2
1 + β2

2

β2 cot2 θ, (3.8)

(β2)y = β1γy +
λλy

β2
1 + β2

2

β2 cot2 θ. (3.9)

Using (3.1)–(3.3), (3.6) and (3.9), from (2.10) we get

β1

α
γy − β2γx = 2λβ3 cot θ. (3.10)

Using (3.1), (3.3), (3.7) and (3.8), from (2.11) we get

β2

α
γy + β1γx = −2λβ2 cot θ. (3.11)

From (3.10) and (3.11) we have





γx =
−2λ cot θ

β2
1 + β2

2

β2(β1 + β3),

γy =
2αλ cot θ

β2
1 + β2

2

(β1β3 − β2
2).

(3.12)

Putting (3.12) into (3.6)–(3.9), from (3.1), (3.3) and (3.4), we have

λxy = − tan θ
[
(β1)y(β1 + β3) + β1(β1 + β3)y

]

= − tan θ

{
(β1 + β3)

[
− β2γy −

αλ cot θ

β2
1 + β2

2

β1β2(β1 + β3)
]
+ αλβ1β2 tan θ

}

= tan θ

{
(β1 + β3)

αλ cot θ

β2
1 + β2

2

[
2β2(β1β3 − β2

2) + β1β2(β1 + β3)
]
− αλβ1β2 tan θ

}

= β2(β1 + β3)
αλ

β2
1 + β2

2

(3β1β3 − 2β2
2 + β2

1)− αλβ1β2 tan2 θ.

Similarly, we also obtain

λyx = − tan θ
[

αxβ2(β1 + β3) + αβ2(β1 + β3)x + α(β2)x(β1 + β3)
]

= − tan θ
[

αλ cot θβ2(β1 + β3) + αλβ1β2 tan θ − α
λ cot θ

β2
1 + β2

2

3β1β2(β1 + β3)
2
]

= β2(β1 + β3)
αλ

β2
1 + β2

2

(3β1β3 + 2β2
1 − β2

1)− αλβ1β2 tan2 θ.
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Since α > 0, from the integrability condition λxy = λyx, we have

λβ2(β1 + β3) = 0. (3.13)

We claim that λ(p) = 0 for any p ∈ M. Then from (3.1) and (3.3) we get
β1 + β3 = 0 since β1 and β2 cannot be zero simultaneously. Hence M is minimal
in S3(1)× R.

To prove the claim, we discuss the equation (3.13) in two cases.
Case 1. β2 6= 0 at some point p ∈ M.
In this case, there exists a neighborhood U of p such that λ(β1 + β3) = 0 in U.

If λ(p) 6= 0, then there exists a neighborhood V ⊂ U such that β1 + β3 = 0 in V.
This contradicts (3.4). Hence λ(p) = 0.

Case 2. β2 = 0 at some point p ∈ M.
First we assume that there exists a neighborhood U of p such that β2 = 0 in

U. Then we get, in U,

(β1)x = −λ cot θ(β1 − β3)

from (2.10) and (3.2). On the other hand, from (3.6) and (3.1) we have, in U,

(β1)x = −λ cot θ(β1 + β3).

If λ(p) 6= 0, there exists a neighborhood V ⊂ U such that λ 6= 0 in V. Then
β3 = 0 in V. Hence, β1 = 0 in V from (2.10). This contradicts β2

1 + β2
2 > 0. Hence

λ(p) = 0.
Otherwise, there exists a sequence {qi}∞

i=1 approaching p such that β2(qi) 6=
0. Then λ(qi)(β1 + β3)(qi) = 0. By taking the limit, λ(p)(β1 + β3)(p) = 0. If
λ(p) 6= 0, then (β1 + β3)(p) = 0. From (3.13), there exists a neighborhood U of
p such that λ 6= 0 in U, which implies β2(β1 + β3) = 0 in U. Taking derivatives
with respect to x and y, using (3.1)–(3.4), (3.8), (3.9) and (3.12), we get

−λβ1β2(β1 + β3)
2 cot θ

β2
1 + β2

2

+ λβ1β2 tan θ = 0, (3.14)

2αλβ1(β1 + β3)(β1β3 − β2
2) cot θ

β2
1 + β2

2

+ αλβ2
2 tan θ = 0. (3.15)

From (3.14) and (3.15), we have, in U,

αλ cot θ

β2
1 + β2

2

β1(β1 + β3)(2β2
1β3 − β1β2

2 + β3β2
2) = 0. (3.16)

Since β2(p) = 0, we can assume β1(p) > 0 without loss of generality. Hence
β3(p) < 0 from (β1 + β3)(p) = 0. Then there exists a neighborhood V ⊂ U such
that β1 > 0, β3 < 0 in V. Thus in V, we have

2β2
1β3 − β1β2

2 + β3β2
2 < 0.

Then (3.16) implies that β1 + β3 = 0 in V. This contradicts (3.2). Therefore,
λ(p) = 0.

Hence we have proved the claim and completed the proof of Theorem 1.
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4 Classification of minimal constant angle surfaces

In this section, we consider the minimal constant angle surface M in S3(1)× R.

Lemma 2. Let M be a minimal constant angle surface in S3(1) × R. Then the shape
operators with respect to ξ and η are, respectively,

Aξ =

(
0 0
0 0

)
, Aη =

(
β1 β2

β2 −β1

)
,

where β1 and β2 are constants, satisfying β2
1 + β2

2 = cos2 θ.

Proof. From (2.4) and the minimality of M in S3(1) × R, the shape operator Aξ

associated to ξ is

Aξ =

(
0 0
0 0

)
(4.1)

Hence, we have

∇TT = ∇TQ = ∇QT = ∇QQ = 0,

which means that M is flat. The coordinates (x, y) on M now can be chosen such
that ∂x = T, ∂y = Q (i.e. α = 1).

From the minimality of M in S
3(1)× R, the shape operator Aη becomes

Aη =

(
β1 β2

β2 −β1

)
.

The equations of Gauss, Ricci, and Codazzi (2.9)–(2.11) are

β2
1 + β2

2 = cos2 θ,

(β2)y = −(β1)x,

(β1)y = (β2)x.

The above equations yield that both β1 and β2 are constant.

Now let us consider S3(1) × R as a hypersurface in E5 and denote ∂t by
(0, 0, 0, 0, 1). We obtain the following classification theorem.

Theorem 3. A surface M immersed in S3(1)× R is a minimal constant angle surface if
and only if the immersion

F : M → S
3(1)× R ⊂ E

5

(x, y) 7→ F(x, y)

is (up to isometries of S
3(1)× R) locally given by

F(x, y) = (c1 cos(µ1x + ν2y), c1 sin(µ1x + ν2y), c2 cos(µ2x − ν1y),

c2 sin(µ2x − ν1y), x sin θ),
(4.2)
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where θ ∈ (0, π
2 ) is the constant angle, ν1 ∈ [1, 1+ cos2 θ] is a constant, and ν2, µ1, µ2,

c1, c2 are nonnegative constants given by

ν2
2 =

1 + cos2 θ − ν2
1

1 − ν2
1 sin2 θ

, µ2
1 =

ν2
1 cos4 θ

1 − ν2
1 sin2 θ

, µ2
2 = 1 + cos2 θ − ν2

1 ,

c2
1 =

1 − ν2
1 sin2 θ

1 + cos2 θ − ν2
1 sin2 θ

, c2
2 =

cos2 θ

1 + cos2 θ − ν2
1 sin2 θ

.

Proof. First we prove that the given immersion (4.2) is a minimal constant angle
surface in S3(1)× R. To see this, we calculate the tangent vectors

Fx =(−µ1c1 sin(µ1x + ν2y), µ1c1 cos(µ1x + ν2y),−µ2c2 sin(µ2x − ν1y),

µ2c2 cos(µ2x − ν1y), sin θ),

Fy =(−ν2c1 sin(µ1x + ν2y), ν2c1 cos(µ1x + ν2y), ν1c2 sin(µ2x − ν1y),

− ν1c2 cos(µ2x − ν1y), 0).

The normal N of S3(1)× R in E5 is

N = (c1 cos(µ1x + ν2y), c1 sin(µ1x + ν2y), c2 cos(µ2x − ν1y), c2 sin(µ2x − ν1y), 0).

Let

ξ =(µ1c1 tan θ sin(µ1x + ν2y),−µ1c1 tan θ cos(µ1x + ν2y), µ2c2 tan θ sin(µ2x − ν1y),

− µ2c2 tan θ cos(µ2x − ν1y), cos θ),

η =(−c2 cos(µ1x + ν2y),−c2 sin(µ1x + ν2y), c1 cos(µ2x − ν1y), c1 sin(µ2x − ν1y), 0).

We can verify that Fx , Fy, ξ, η, N are orthonormal in E5. Thus {ξ, η} is a basis of

the normal plane of M in S3(1)× R. Moreover, we have

∂t = sin θFx + cos θξ,

which means that the angle between ∂t and the normal plane is constant θ.
Furthermore, we can calculate the shape operators with respect to ξ and η on

M in S3(1)× R respectively,

Aξ =

(
0 0
0 0

)
, Aη =

(
β1 β2

β2 β3

)
,

where

β1 = −β3 =
(ν2

1 − 1) cos θ√
1 − ν2

1 sin2 θ
, β2 =

ν1 cos θ
√

1 + cos2 θ − ν2
1√

1 − ν2
1 sin2 θ

.

Therefore, M is a minimal surface in S3(1)×R. Moreover, we can see that (β1)
2 +

(β2)
2 = cos2 θ.

Conversely, let us consider M as an immersed surface in E5 with codimension
3. Denote by D, ∇̃⊥ the Euclidean connection and the normal connection of M in
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E
5, respectively. For the immersion F = (F1, F2, F3, F4, F5) : M → S

3(1)× R ⊂ E
5,

we have three unit normals

N = (F1, F2, F3, F4, 0),

ξ = (ξ1, ξ2, ξ3, ξ4, cos θ),

η = (η1, η2, η3, η4, 0),

where N is normal to S
3(1)× R with the shape operator ÃN .

For simplicity, we denote the first four components of a vector in E5 by adding
a tilde on it, say F = (F̃, F5), etc.

Noticing that 〈T, ∂t〉 = (F5)x = sin θ, 〈Q, ∂t〉 = (F5)y = 0, we can take F5 =
x sin θ without loss of generality.

For any X ∈ TpM, we have

∇̃⊥
X N = 〈DX N, ξ〉ξ + 〈DX N, η〉η

= 〈X − 〈X, ∂t〉∂t, ξ〉ξ + 〈X − 〈X, ∂t〉∂t, η〉η
= − sin θ cos θ〈X, T〉ξ.

By the Weingarten formula, we have

ÃNT = −DTN + ∇̃⊥
T N

= −(F̃x , 0)− sin θ cos θ(ξ̃ , cos θ), (4.3)

ÃNQ = −DQN + ∇̃⊥
QN

= −(F̃y, 0).

Thus the shape operator associated to N is

ÃN =

(
− sin2 θ 0

0 −1

)
.

Comparing the first four components of (4.3), we get

ξi = − tan θ(Fi)x.

Taking (X, Y) = (T, T), (T, Q), (Q, Q) in DXY = ∇̃XY + h̃(X, Y), and X =
T, Q in DXη = −ÃηX + ∇̃⊥

X η respectively, we get the PDE system for i = 1, 2, 3, 4,

(Fi)xx = β1ηi − cos2 θFi , (4.4)

(Fi)xy = β2ηi, (4.5)

(Fi)yy = −β1ηi − Fi, (4.6)

(ηi)x = − β1

cos2 θ
(Fi)x − β2(Fi)y, (4.7)

(ηi)y = − β2

cos2 θ
(Fi)x + β1(Fi)y, (4.8)

where β1 and β2 are as in Lemma 2. Obviously, the integrable conditions are
all satisfied. Moreover, we have ξi = − tan θ(Fi)x and F5 = x sin θ, ξ5 = cos θ,
η5 = 0.



298 D. Chen – G. Chen – H. Chen – F. Dillen

In the following, we will solve the above PDE system in three cases.
Case 1. β2 = 0.
In this case, we can choose the direction of η such that β1 = cos θ > 0, and

then the PDE system becomes

(Fi)xx = cos θηi − cos2 θFi , (4.9)

(Fi)xy = 0, (4.10)

(Fi)yy = − cos θηi − Fi, (4.11)

(ηi)x = − 1

cos θ
(Fi)x, (4.12)

(ηi)y = cos θ(Fi)x. (4.13)

From (4.10), we know that the solution has a separating form: Fi(x, y) = fi(x) +

gi(y). Denote ρ =
√

1 + cos2 θ. Taking the derivative of (4.9) with respect to x
and using (4.12), we get

f ′′′i = −ρ2 f ′i ,

and then f ′i (x) = ki cos(ρx) + li sin(ρx). Taking the same operation with respect
to y, we find the solution has the form

Fi(x, y) = Ai cos(ρx) + Bi sin(ρx) + Ci cos(ρy) + Di sin(ρy).

We can derive from (4.9) that

ηi(x, y) = − Ai

cos θ
cos(ρx)− Bi

cos θ
sin(ρx) + Ci cos θ cos(ρy) + Di cos θ sin(ρy),

and we can also check that (4.11)–(4.13) are all satisfied.
Since

(Fi)x = ρ
(

Bi cos(ρx)− Ai sin(ρx)
)
,

(Fi)y = ρ
(

Di cos(ρy)− Ci sin(ρy)
)
,

ξi = −ρ tan θ
(

Bi cos(ρx)− Ai sin(ρx)
)
,

and Fx , Fy are orthonormal, we have

cos2 θ = ∑
i

((Fi)x)
2 =ρ2

(
∑

i

B2
i cos2(ρx) + ∑

i

A2
i sin2(ρx)− ∑

i

AiBi sin(2ρx)
)
,

1 = ∑
i

((Fi)y)
2 =ρ2

(
∑

i

D2
i cos2(ρy) + ∑

i

C2
i sin2(ρy)−∑

i

CiDi sin(2ρy)
)
,

0 = ∑
i

(Fi)x(Fi)y =ρ2
(
∑

i

BiDi cos(ρx) cos(ρy) + ∑
i

AiCi sin(ρx) sin(ρy)

−∑
i

BiCi cos(ρx) sin(ρy)−∑
i

AiDi sin(ρx) cos(ρy)
)
.

Since x, y are arbitrary, we have

∑
i

A2
i = ∑

i

B2
i =

cos2 θ

ρ2
, ∑

i

C2
i = ∑

i

D2
i =

1

ρ2
,
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∑
i

AiBi = ∑
i

CiDi = ∑
i

BiDi = ∑
i

AiCi = ∑
i

BiCi = ∑
i

AiDi = 0,

and we can check that Fx , Fy, ξ, η are orthonormal. Hence, we have

F̃(x, y) =
cos θ

ρ
cos(ρx)~e1 +

cos θ

ρ
sin(ρx)~e2 +

1

ρ
cos(ρy)~e3 +

1

ρ
sin(ρy)~e4.

where {~ei}4
i=1 is a fixed orthonormal basis of E4. If we choose ~e1 = (1, 0, 0, 0),

~e2 = (0, 1, 0, 0),~e3 = (0, 0, 1, 0),~e4 = (0, 0, 0,−1), the surface is locally given by

F(x, y) =

(
cos θ

ρ
cos(ρx),

cos θ

ρ
sin(ρx),

1

ρ
cos(ρy),−1

ρ
sin(ρy), x sin θ

)
.

This is the case ν1 = ρ =
√

1 + cos2 θ (hence µ1 = ρ, µ2 = ν2 = 0, c1 = cos θ
ρ ,

c2 = 1
ρ ) in (4.2).

Case 2. β1 = 0.
In this case, we can choose the direction of η such that β2 = cos θ > 0. The

PDE system becomes

(Fi)xx = − cos2 θFi , (4.14)

(Fi)xy = cos θηi, (4.15)

(Fi)yy = −Fi, (4.16)

(ηi)x = − cos θ(Fi)y, (4.17)

(ηi)y = − 1

cos θ
(Fi)x. (4.18)

Solving (4.14) and (4.16), we find that the solution has the form

Fi(x, y) = Ai cos(x cos θ) cos y + Bi cos(x cos θ) sin y

+ Ci sin(x cos θ) cos y + Di sin(x cos θ) sin y.

We can derive from (4.15) that

ηi = Di cos(x cos θ) cos y − Ci cos(x cos θ) sin y

− Bi sin(x cos θ) cos y + Ai sin(x cos θ) sin y,

and we can check that (4.17) and (4.18) are satisfied. Moreover, we have

(Fi)x = cos θ(Ci cos(x cos θ) cos y + Di cos(x cos θ) sin y

− Ai sin(x cos θ) cos y − Bi sin(x cos θ) sin y),

(Fi)y = Bi cos(x cos θ) cos y − Ai cos(x cos θ) sin y

+ Di sin(x cos θ) cos y − Ci sin(x cos θ) sin y,

ξi = − sin θ
(
Ci cos(x cos θ) cos y + Di cos(x cos θ) sin y

− Ai sin(x cos θ) cos y − Bi sin(x cos θ) sin y
)
.

From the fact that Fx, Fy, ξ, η are orthonormal, a similar discussion as in Case 1
yields

F̃(x, y) = cos(x cos θ) cos y~e1 + cos(x cos θ) sin y~e2

+ sin(x cos θ) cos y~e3 + sin(x cos θ) sin y~e4,
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where {~ei}4
i=1 is a fixed orthonormal basis of E

4. If we choose~e1 = ( 1√
2
, 0, 1√

2
, 0),

~e2 = (0, 1√
2
, 0,− 1√

2
),~e3 = (0, 1√

2
, 0, 1√

2
),~e4 = (− 1√

2
, 0, 1√

2
, 0), the surface is locally

given by

F(x, y) =

(
1√
2

cos(x cos θ + y),
1√
2

sin(x cos θ + y),
1√
2

cos(x cos θ − y),

1√
2

sin(x cos θ − y), x sin θ

)
.

This is the case ν1 = 1
(
hence µ1 = µ2 = cos θ, ν2 = 1, c1 = c2 = 1√

2

)
in (4.2).

Case 3. β1β2 6= 0.
Taking the derivative of equation (4.4) with respect to x, and using equation

(4.7), we get

(Fi)xxx = − β2
1

cos2 θ
(Fi)x − cos2 θ(Fi)x − β1β2(Fi)y.

Taking the derivative with respect to x again, and using equations (4.5), (4.4), we
get

(Fi)xxxx =

(
− β2

1

cos2 θ
− β2

2 − cos2 θ

)
(Fi)xx − β2

2 cos2 θFi . (4.19)

Similarly, taking the derivative of equation (4.6) with respect to y twice, and using
equations (4.8), (4.5), (4.6), we get

(Fi)yyy =
β1β2

cos2 θ
(Fi)x − β2

1(Fi)y − (Fi)y,

and

(Fi)yyyy =

(
− β2

2

cos2 θ
− β2

1 − 1

)
(Fi)yy −

β2
2

cos2 θ
Fi. (4.20)

The characteristic equation of (4.19) is

z4 +

(
β2

1

cos2 θ
+ β2

2 + cos2 θ

)
z2 + β2

2 cos2 θ = 0. (4.21)

Denote b1 =
β2

1

cos2 θ
+ β2

2 + cos2 θ and c1 = β2
2 cos2 θ. Considering equation (4.21)

as a quadratic equation in u = z2, the discriminant is

∆1 = b2
1 − 4c1 =

β4
1

cos4 θ
+

2β2
1β2

2

cos2 θ
+ 2β2

1 + β4
1 > 0.

Since c1 > 0, the two negative roots u = −µ2
1 and u = −µ2

2 of the equation are

−µ2
1 = −1

2
(b1 +

√
∆1), − µ2

2 = −1

2
(b1 −

√
∆1),

where we assume µ1 > 0, µ2 > 0.
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Similarly, the characteristic equation of (4.20) is

w4 +

(
β2

2

cos2 θ
+ β2

1 + 1

)
w2 +

β2
2

cos2 θ
= 0. (4.22)

Denote b2 =
β2

2
cos2 θ

+ β2
1 + 1 and c2 =

β2
2

cos2 θ
. Considering equation (4.22) as a

quadratic equation as above, the discriminant is

∆2 = b2
2 − 4c2 = ∆1 > 0

and the two negative roots are

−ν2
1 = −1

2
(b2 +

√
∆2), − ν2

2 = −1

2
(b2 −

√
∆2),

where we assume ν1 > 0, ν2 > 0.
Now we denote ∆ = ∆1 = ∆2. Since (Fi)xx + (Fi)yy = −(1 + cos2 θ)Fi and

µ2
1 + ν2

2 = µ2
2 + ν2

1 = 1 + cos2 θ, the solution takes the form

Fi(x, y) = c
(i)
1 cos(µ1x) cos(ν2y) + c

(i)
2 cos(µ1x) sin(ν2y) + c

(i)
3 sin(µ1x) cos(ν2y)

+ c
(i)
4 sin(µ1x) sin(ν2y) + c

(i)
5 cos(µ2x) cos(ν1y) + c

(i)
6 cos(µ2x) sin(ν1y)

+ c
(i)
7 sin(µ2x) cos(ν1y) + c

(i)
8 sin(µ2x) sin(ν1y).

We can derive ηi from (4.4),

ηi =
1

β1
((Fi)xx + cos2 θFi)

=
cos2 θ − µ2

1

β1

(
c
(i)
1 cos(µ1x) cos(ν2y) + c

(i)
2 cos(µ1x) sin(ν2y)

+ c
(i)
3 sin(µ1x) cos(ν2y) + c

(i)
4 sin(µ1x) sin(ν2y)

)

+
cos2 θ − µ2

2

β1

(
c
(i)
5 cos(µ2x) cos(ν1y) + c

(i)
6 cos(µ2x) sin(ν1y)

+ c
(i)
7 sin(µ2x) cos(ν1y) + c

(i)
8 sin(µ2x) sin(ν1y)

)
.

(4.23)

On the other hand, from (4.5)

ηi =
1

β2
(Fi)xy

=
µ1ν2

β2

(
c
(i)
4 cos(µ1x) cos(ν2y)− c

(i)
3 cos(µ1x) sin(ν2y)

− c
(i)
2 sin(µ1x) cos(ν2y) + c

(i)
1 sin(µ1x) sin(ν2y)

)

+
µ2ν1

β2

(
c
(i)
8 cos(µ2x) cos(ν1y)− c

(i)
7 cos(µ2x) sin(ν1y)

− c
(i)
6 sin(µ2x) cos(ν1y) + c

(i)
5 sin(µ2x) sin(ν1y)

)
.

(4.24)
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Comparing the first four terms, we find that

cos2 θ − µ2
1

β1
c
(i)
1 =

µ1ν2

β2
c
(i)
4 ,

cos2 θ − µ2
1

β1
c
(i)
4 =

µ1ν2

β2
c
(i)
1 ,

cos2 θ − µ2
1

β1
c
(i)
2 =

µ1ν2

β2
c
(i)
3 ,

cos2 θ − µ2
1

β1
c
(i)
3 =

µ1ν2

β2
c
(i)
2 .

Since µ1 > 0, µ2 > 0, ν1 > 0, ν2 > 0,

2(cos2 θ − µ2
1) = β2

1 −
β2

1

cos2 θ
−
√

∆ < 0,

2(cos2 θ − µ2
2) = β2

1 −
β2

1

cos2 θ
+
√

∆ > 0,

we have that
(c

(i)
1 )2 = (c

(i)
4 )2, (c

(i)
2 )2 = (c

(i)
3 )2.

Similarly, comparing the last four terms of (4.23) and (4.24), we obtain that

(c
(i)
5 )2 = (c

(i)
8 )2, (c

(i)
6 )2 = (c

(i)
7 )2.

Furthermore, we have for β1β2 > 0,

c
(i)
1 = −c

(i)
4 , c

(i)
2 = c

(i)
3 , c

(i)
5 = c

(i)
8 , c

(i)
6 = −c

(i)
7 ;

and for β1β2 < 0,

c
(i)
1 = c

(i)
4 , c

(i)
2 = −c

(i)
3 , c

(i)
5 = −c

(i)
8 , c

(i)
6 = c

(i)
7 .

Hence, for β1β2 > 0, we can set

Fi(x, y) = Ai cos(µ1x + ν2y) + Bi sin(µ1x + ν2y)+

Ci cos(µ2x − ν1y) + Di sin(µ2x − ν1y).

In fact, we can easily verify that the solution above satisfies the PDE system
(4.4)–(4.8).

Moreover, using the fact that Fx , Fy, ξ, η are orthonormal, we can derive that

F̃(x, y) = c1 cos(µ1x + ν2y)~e1 + c1 sin(µ1x + ν2y)~e2

+ c2 cos(µ2x − ν1y)~e3 + c2 sin(µ2x − ν1y)~e4

where {~ei}4
i=1 is a fixed orthonormal basis of E4, c1, c2 are positive constants sat-

isfying c2
1 =

ν2
1−1

ν2
1−ν2

2
, c2

2 =
1−ν2

2

ν2
1−ν2

2
. If we choose the natural basis of E4, the surface is

locally given by

F(x, y) =
(
c1 cos(µ1x + ν2y), c1 sin(µ1x + ν2y), c2 cos(µ2x − ν1y),

c2 sin(µ2x − ν1y), x sin θ
)
.
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This is the case 1 < ν1 <
√

1 + cos2 θ in (4.2).
Similarly, for β1β2 < 0, the surface is locally given by

F(x, y) =
(
c1 cos(µ1x − ν2y), c1 sin(µ1x − ν2y), c2 cos(µ2x + ν1y),

c2 sin(µ2x + ν1y), x sin θ
)
.

If we change the coordinate to be {x,−y}, then this is the case 1 < ν1 <
√

1 + cos2 θ
in (4.2).

Here we need to derive the relations among the constants ν1, ν2, µ1, µ2, c1,

c2 when 1 < ν1 <
√

1 + cos2 θ. In fact, by the definitions of ν1 and ν2, we have

ν2
1ν2

2 =
β2

2
cos2 θ

and

ν2
1 + ν2

2 =
β2

2

cos2 θ
+ β2

1 + 1

= ν2
1ν2

2 + cos2 θ − cos2 θν2
1ν2

2 + 1

= ν2
1ν2

2 sin2 θ + cos2 θ + 1.

Since 1 + cos2 θ < 1
sin2 θ

when θ ∈ (0, π
2 ), we have ν2

2 =
1+cos2 θ−ν2

1

1−ν2
1 sin2 θ

. By a direct

computation, we have

µ2
1 = 1 + cos2 θ − ν2

2 =
ν2

1 cos4 θ

1 − ν2
1 sin2 θ

,

µ2
2 = 1 + cos2 θ − ν2

1 ,

c2
1 =

ν2
1 − 1

ν2
1 − ν2

2

=
1 − ν2

1 sin2 θ

1 + cos2 θ − ν2
1 sin2 θ

,

c2
2 =

1 − ν2
2

ν2
1 − ν2

2

=
cos2 θ

1 + cos2 θ − ν2
1 sin2 θ

.

Hence we complete the proof of Theorem 3.
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