Constant Angle Surfaces in §3(1) x R*

Daguang Chen Gangyi Chen Hang Chen Franki Dillen

Abstract

In this article we study surfaces in $%(1) x R for which the R-direction
makes a constant angle with the normal plane. We give a complete classifi-
cation for such surfaces with parallel mean curvature vector.

1 Introduction

In recent years, there has been done some research about surfaces in a 3-dimen-
sional Riemannian product of a surface M?(c) x R ([1, 9, 11, 14], etc.), where
M2 (c) is the simply-connected 2-dimensional space form of constant curvature c,
in particular M?(c) = R?, H?, S forc =0, —1, 1 respectively.

Recently, constant angle surfaces were studied in product spaces M?(c) x R
(see [3,4, 5, 6,12, 13]), where the angle was considered between the unit normal
of the surface M and the tangent direction to R. For example, F. Dillen et al.
gave the complete classification for constant angle surfaces in S x R in [4]. The
problem of constant angle surfaces was also investigated in the 3-dimensional
Heisenberg group (see [8]) and in Minkowski space (see [10]). In [15], R. Tojeiro
gave a complete description of all hypersurfaces in the product spaces 5" x R
and H" x R that have flat normal bundle when regarded as submanifolds with
codimension two of the underlying flat spaces R"*2 O §" x R and IL"*2 D> H" x
R. In [7], helix submanifolds in Euclidean space were studied by solving the
Eikonal equation. The applications of constant angle surfaces in the theory of

*This research was supported by Tsinghua University and K.U.Leuven Bilateral scientific co-
operation Fund, project BIL09/10
Received by the editors May 2011.
Communicated by L. Vanhecke.
2000 Mathematics Subject Classification : 53B25.
Key words and phrases : Constant angle surfaces, Parallel mean curvature vector, Minimal
surfaces.

Bull. Belg. Math. Soc. Simon Stevin 19 (2012), 289-304



290 D. Chen - G. Chen — H. Chen - E Dillen

liquid crystals and of layered fluids were considered by P. Cermelli and A. J. Di
Scala in [2].

In this article we study surfaces in $%(1) x R for which the R-direction makes
a constant angle with the normal plane. In Section 2, we first review some basic
equations for constant angle surfaces in (1) x R. In Section 3, we will prove
that the constant angle surfaces in $3(1) x R with parallel mean curvature vector
are minimal (see Theorem 1). In Section 4, we will give a complete classification
for minimal constant angle surfaces in $®(1) x R (see Theorem 3).

2 Preliminaries

Let M = S3(1) x R be the Riemannian product of $3(1) and R with the stan-
dard metric {,) and the Levi-Civita connection V. We denote by t the (global)
coordinate on R and hence d; = % is the unit vector field in the tangent bundle
T(S3(1) x R) that is tangent to the R-direction.

For p € $3(1) x R, the Riemann-Christoffel curvature tensor R of $3(1) x R is
given by

(R(X,Y)Z,W) = (Xg31), Wes(1)) (Ys3(1) Zs3(1)) — (Xs3(1), Zsa(1)) (Ys31), Wes (1))

where R(X,Y) = [Vx,Vy] = Vixy; X,Y,Z,W € T,(5*(1) x R) and Xgs(y) =
X — (X, 0¢)0; is the projection of X to the tangent space of $3(1).
Now consider a surface M in $3(1) x IR. We can decompose 9; as

d¢ = sin 0T + cos 6¢, (2.1)

where 6 is the angle between ¢ and d;, ¢ is a unit normal vector to M and T is a
unit tangent vector to M.

For a constant angle surface M in S3(1) x IR, we mean a surface for which
the angle function 6 is constant on M. There are two trivial cases, § = 0 and
6 = 7. The condition § = 0 means that o; is always normal, so we get a surface
Y2 x {to}, where X2 is a surface in $3(1). In the second case, 9; is always tangent.
This corresponds to the Riemannian product of a curve in $3(1) and RR.

From now on, in the rest of this paper, we only consider the constant angle
surface M with constant angle 6 € (0,%). We extend {T,} to an orthonormal
frame {T,Q,&, 1} on $3(1) x R, where T, Q are tangent to M and ¢, ;7 are normal
to M. Since 9 is a parallel vector field in g3 (1) x R, we can obtain from (2.1) that,
for any X € TM,

0= Vxd; = sinOV T + sin Oh(X,T) — cos Az X + cos 9V§§, (2.2)

where we use the formulas of Gauss and Weingarten, / is the second fundamen-
tal form of M, A; is the shape operator associated to ¢, and V= is the normal
connection.

Comparing the tangent part and the normal part in (2.2), we have

(2.3)

VxT = CO’[@A@’X,
h(X,T) = — cotOV+¢.
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From (2.3), we have
(AeX, T) = (A:T,X) =0, VXecTM,
that is,
AT =0.

Therefore, we can suppose the shape operators with respect to ¢ and 7 are,

respectively,
00

where A, Bi (j = 1,2,3) are smooth functions defined on the surface M.
From (2.3) and (2.4), we obtain that
V1T =V7Q =0,
VT = AcotfQ, (2.5)
VoQ = —AcotfT,

hT,T) = By,
h(T,Q) = Bar, (2.6)
h(Q,Q) = A¢ + Ban,

Vié& = —tanf By,
Vin = tan By,
Véé = —tanf By,
Vgn = tan6 Bol.

Now we can take coordinates (x,y) on M with 9, = BT, dy = aQ where B,
are positive functions. From (2.5) and the condition [0y, 8y] = 0, we find that

ﬁy — O, (2.8)
ay = afBA cotf.

(2.7)

Equation (2.8) implies that, after a change of the x-coordinate, we can assume
B =1 and thus the metric takes the form

ds* = dx® + o?(x, y)dy>.

The Gauss and Ricci equation are, respectively, given by

(R(T,QT)" = R(T, Q)T + Ay1,1)Q = Ayon T,

(R(T, Q)n)* = RE(T, Q) +h(A)T,Q) — h(A4,Q,T),

where
R(X,YV)Z =({Y,Z) — (Y,0:)(Z,0:)) X — ({X, Z) — (X,0:)(Z,0))Y
— (Y, Z)(X,0t) — (X, Z)(Y,0¢))0:, VX, Y,Z € T(S*(1) x R)

RH(T, Q) =(ViVg — VoVt = Vir )1
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The Codazzi equations are

(R(T,Q)T)" = (VFh)(Q, T) — (VGh)(T, T),

(R(T,Q)Q)" = (Vrh)(Q,Q) — (Vgh)(T, Q),
where (Vh)(Y,Z) = Vx(h(Y,Z)) —h(VxY,Z) — h(Y,VxZ) forany X, Y, Z €
TM.

By a direct computation with (2.5)-(2.7), the equations of Gauss, Ricci and
Codazzi yield

A% cot? 0 + Ay cotf + cos® 6 + B1B3 — ﬁ% =0, (2.9)
('B 2y | ) cotfsec? 0B1 — A cotBs — (Ba)x = O, (2.10)
(51) —2AcotfB; — (Ba)x = 0. (2.11)

In fact, the Codazzi equations imply all three equations above, while the Gauss
and Ricci equations coincide with (2.9) and (2.11) respectively.

3 Constant angle surfaces with parallel mean curvature vector

In this section, we will discuss the constant angle surface M with parallel mean
curvature vector in $3(1) x R. In fact, we have

Theorem 1. If M is a constant angle surface in S3(1) x R with parallel mean curvature
vector H, then H = 0, that is, M is a minimal surface in S3(1) x R.

Proof. Since the mean curvature vector H of M is parallel, that is, VLH =0, from
(2.7), we have

Ay = —(B1+ B3)B1 tan 6, (3.1)
(B1)x + (B3 ) Aﬁl tan 0, (3.2)
and
Ay = —a(B1 + B3)B2 tan b, (3.3)
(B1)y + (B3)y = aABa tan 6. (3.4)

From (2.9) and (3.1), we get
B2 + B3 = cot? (A% + sin?6).
Thus we can set

(3.5)

By = cotfV/ A2 4 sin?fsiny,

for some function 7y on M.

{ B1 = cotfV/ A2 +sin?f cos 7,
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Since B2 + B3 = cot?0(A% +sin?6) > 0, taking the derivatives of (3.5), we
obtain

(B1)x = —Bavyx+ %ﬁl cot? 6, (3.6)
(B1)y = —B2ry + ﬁz ﬁzﬁl cot?6, (3.7)
(B2)x = B17x + ﬁﬁz cot® 6, (3.8)
(B2)y = B11y + [52 [52 ——7 B, cot? 6. (3.9)

Using (3.1)—(3.3), (3.6) and (3.9), from (2.10) we get
%'Yy — B2vx = 2AB3 cot 6. (3.10)
Using (3.1), (3.3), (3.7) and (3.8), from (2.11) we get

&’yy + B1yx = —2AB cotb. (3.11)

From (3.10) and (3.11) we have

Yx = 22/\ Cogeﬁz(& + B3),
P17+ P (3.12)
ZZaAcotG(ﬁ Bs — 2) )
T e PR

Putting (3.12) into (3.6)—(3.9), from (3.1), (3.3) and (3.4), we have

Axy = —tane[(ﬁl)y(ﬁl + B3) + B1(P1+ B3) }

aA cotf

= —tan6 {(,B1 + B3) [ Bavy — /32 T /32 ———=PB1B2(B1 + ,33)} +aAB1B2 tan@}

aA cotf
ﬁz + B3
(3183 — 23 + B3) — aAB By tan? 6.

= tan® {(m + B) 282(B1Bs — B3) + B1a(B1 + )| — wABipo tane}

- ﬁ2(ﬁ1 + 163)‘32 I ‘32

Similarly, we also obtain
Ay = —tan | axPa(B1 + Ba) + aPa(Br + Ba)s + a(p2)x(B1 + )]

l?zCOtﬁez 3B1B2(B1 + B3)

(3B1B3 + 287 — B) — aAB1 B2 tan? 6.

= —tan6 [oc/\ cot0B2(B1 + B3) + aAB1Batant —

A

= B2(pf1 + ﬁa)ﬁ Iy
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Since & > 0, from the integrability condition Ay, = Ayx, we have

AB2(B1+ B3) = 0. (3.13)

We claim that A(p) = 0 for any p € M. Then from (3.1) and (3.3) we get
B1 + B3 = 0 since B; and B, cannot be zero simultaneously. Hence M is minimal
in $3(1) x R.

To prove the claim, we discuss the equation (3.13) in two cases.

Case 1. B # 0 at some point p € M.

In this case, there exists a neighborhood U of p such that A(f; + f3) = 0in U.
If A(p) # 0, then there exists a neighborhood V C U such that 1 + f3 = 0in V.
This contradicts (3.4). Hence A(p) = 0.

Case 2. B, = 0 at some point p € M.

First we assume that there exists a neighborhood U of p such that , = 0 in
U. Then we get, in U,

(B1)x = —Acotf(B1 — B3)
from (2.10) and (3.2). On the other hand, from (3.6) and (3.1) we have, in U,

(,Bl)x = —)LCO’(G(,B1 +ﬁ3).

If A(p) # O, there exists a neighborhood V' C U such that A # 0 in V. Then
Bs = 0in V. Hence, B = 0in V from (2.10). This contradicts g7 + p3 > 0. Hence
Ap) =0.

Otherwise, there exists a sequence {g,}?°, approaching p such that B(g;) #
0. Then A(g;)(B1 + B3)(g:) = 0. By taking the limit, A(p)(B1 + B3)(p) = 0. If
A(p) # 0, then (B1 + B3)(p) = 0. From (3.13), there exists a neighborhood U of
p such that A # 0 in U, which implies B(B1 + B3) = 0 in U. Taking derivatives
with respect to x and y, using (3.1)—(3.4), (3.8), (3.9) and (3.12), we get

_AB1B2(B1 + B3)* cot

1 B + AB1B2tand = 0, (3.14)
2aAB1(B1 + ﬁg)(/ﬁfzz — B3) cot 6 AR tan6 = 0. 615
Bi+ B3
From (3.14) and (3.15), we have, in U,
“;\Cio,tgﬁl(/ﬁ + B3)(2B1B3 — P15 + B3p3) = 0. (3.16)
Bi+ B3

Since B2(p) = 0, we can assume B1(p) > 0 without loss of generality. Hence
B3(p) < 0 from (B1 + B3)(p) = 0. Then there exists a neighborhood V' C U such
that 81 > 0,83 < 0in V. Thus in V, we have

213 — P13 + P33 < 0.

Then (3.16) implies that f; + B3 = 0 in V. This contradicts (3.2). Therefore,
A(p) = 0.

Hence we have proved the claim and completed the proof of Theorem 1. =
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4 Classification of minimal constant angle surfaces

In this section, we consider the minimal constant angle surface M in $3(1) x R.

Lemma 2. Let M be a minimal constant angle surface in S3(1) x R. Then the shape
operators with respect to ¢ and 1 are, respectively,

w(38) w-( )

where By and B, are constants, satisfying B3 + B> = cos? 6.

Proof. From (2.4) and the minimality of M in $°>(1) x R, the shape operator Az

associated to ¢ is
00
Ag = < 00 ) 4.1)

Hence, we have
VT =V71Q=VoT =Vp0Q =0,

which means that M is flat. The coordinates (x,y) on M now can be chosen such
thatdy = T,9, = Q (i.e. « = 1).
From the minimality of M in $%(1) x R, the shape operator A, becomes

w=(h )

The equations of Gauss, Ricci, and Codazzi (2.9)—(2.11) are

,B% + ,B% = cos’ 0,
(ﬁZ)y = _(ﬁl)xr
(B1)y = (B2)x-

The above equations yield that both 8; and 3, are constant. n

Now let us consider $3(1) x R as a hypersurface in [E°> and denote 9; by
(0,0,0,0,1). We obtain the following classification theorem.

Theorem 3. A surface M immersed in $3(1) x R is a minimal constant angle surface if
and only if the immersion

F: M — S](1)xRCE°
(xy) = Fxy)
is (up to isometries of S3(1) x R) locally given by

F(x,y) = (c1 cos(p1x +12y), c1 sin(p1x + vpy), ca cos(pax — 11y),

4.2
cp sin(ppx — v1y), xsin @), (42)
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where 6 € (0, 7 ) is the constant angle, v1 € 1,1+ cos? 0] is a constant, and va, u1, uz,
c1, ¢y are nonnegative constants given by

2 2 2 4
» 1+4cos*0—vy ,  wvicos*f 2 _q 29,2
vy = 2 .2, 7M1 2 .2 , W = 1+ cos™ 0 —vg,
1 —v7sin 0 1 —vfsin 0
1—12sin%0 cos? 0
2 1 2
1 = r €2 =

1+ cos?6 — 1/1 sinZ9’ 1+ cos?26 — 1/1 sinZ @

Proof. First we prove that the given immersion (4.2) is a minimal constant angle
surface in $3(1) x R. To see this, we calculate the tangent vectors

Fr =(—p1c1 sin(prx + vay), p1cq cos(prx + vay), —paco sin(pox — 11y),
pocy cos(pax — v1y),sinf),

Fy =(—vyc1 sin(pyx + v2y), vacy cos(p1x + voy), vica sin(ppx — 11y),
— v1¢p cos(pax —11Yy), 0).

The normal N of $3(1) x R in [E° is

N = (c1 cos(p1x + voy), c1 sin(p1x + v2y), 2 cos(pax — 11Yy), c2 sin(pax — v1y),0).
Let

¢ =(pqc1 tan O sin(pyx + 1py), —p1cq tan 6 cos(p1x + voy), Hacp tan @ sin(pprx — 11y),
— Hocp tan 0 cos(pax — v1y),cos6),

7 =(—cp cos(p1x + 1oy), —ca sin(pyx + v2y), c1 cos(pax — v1y), c1 sin(pax — v1y),0).

We can verify that Fy, F, ¢, 17, N are orthonormal in [E°. Thus {¢, 7} is a basis of
the normal plane of M in $3(1) x IR. Moreover, we have

dt = sin 0F, + cos 6¢,

which means that the angle between d; and the normal plane is constant 6.
Furthermore, we can calculate the shape operators with respect to ¢ and # on
M in S3(1) x R respectively,

w=(o0) w=(R k)

—1)(:059 V1C089\/1—|—C0529—V%
B1 = = :

vlsm 6 \/1—v%sin26

Therefore, M is a minimal surface in $3(1) x IR. Moreover, we can see that (81)% +
(B2)? = cos? 6.

Conversely, let us consider M as an immersed surface in [E®> with codimension
3. Denote by D, V* the Euclidean connection and the normal connection of M in

where
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E>, respectively. For the immersion F = (F;, F,, F3, Fy, F5) : M — S3(1) xR C E?,
we have three unit normals

N = (F1/F2/F3/F4/0)/
g - (gll 52/ 63/ 64/ COS 9)/
;7 = (771/ 772/ 773/ 774/ 0)/
where N is normal to $3(1) x R with the shape operator Ay.
For simplicity, we denote the first four components of a vector in [E° by adding
a tilde on it, say F = (F,F5), etc.
Noticing that (T,d;) = (F5)x = sin6, (Q,d;) = (F5)y = 0, we can take F5 =

x sin 8 without loss of generality.
For any X € T,M, we have

VN = (DxN, )¢ + (DxN, 1)
= (X = (X,01)01,§) + (X = (X, 01)01, 7)1
= —sinfcos (X, T)¢.

By the Weingarten formula, we have

ANT = —=DrN 4+ V7N

= —(F,,0) —sinf cos 8(¢, cos9), (4.3)
ANQ = —DgN + VN
— _(Fy, O).

Thus the shape operator associated to N is

102
i [ —sin“8 O
Av=(7500).

Comparing the first four components of (4.3), we get
¢i = —tan0(F)x.

Taking (X,Y) = (T,T),(T,Q),(Q,Q) in DxY = VxY +h(X,Y), and X =
T,QinDxn = —Ay X+ V%n respectively, we get the PDE system fori =1, 2,3, 4,

(F)xx = Bari — cos’ 0F;, (4.4)
(Fi)xy = Ba1i, 4.5)
(Fi)yy = —B1mi — F, 4.6)
(i) = LA (B~ pa(B)y, 47)
(771')]/ = _CO‘BSZZ 0 (F)x + B1 (Fi)yz (4.8)

where B; and B, are as in Lemma 2. Obviously, the integrable conditions are
all satisfied. Moreover, we have §; = —tan6(F;)y and F5 = xsin6, {5 = cos#,
5 = 0.
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In the following, we will solve the above PDE system in three cases.

Casel. 3, = 0.

In this case, we can choose the direction of 7 such that f; = cosf > 0, and
then the PDE system becomes

(F;)xx = cos 0n; — cos” OF;, (4.9)

(Fi)xy =0, (4.10)

(Fi)yy = —cosby; — F, (4.11)
1

(1)x = =5 (Fi)x (4.12)

(11:)y = cos O(F;)x. (4.13)

From (4.10), we know that the solution has a separating form: F;(x,y) = fi(x) +

gi(y). Denote p = V14 cos?6. Taking the derivative of (4.9) with respect to x
and using (4.12), we get
/// _ 2 f
i’

and then f/(x) = k; cos(px) + I, sm(px). Taking the same operation with respect
to y, we find the solution has the form

Fi(x,y) = Ajcos(px) + B;sin(px) + C; cos(py) + D; sin(py).

We can derive from (4.9) that

. 4 B ‘ . )
ni(x,y) = p—— cos(px) p—r sin(px) + C;cos 6 cos(py) + D; cos 6 sin(py),

and we can also check that (4.11)—(4.13) are all satisfied.
Since

(F;)x = p(Bjcos(px) — A;sin(px)),
(F)y = p(D;cos(py) — Cisin(py)),
¢ = —ptan6(B; cos(px) — A;sin(px)),

and F,, Fy are orthonormal, we have

cos?0 =Y ((F)x)* =p*( ZBZ cos?(px) ZAz sin?(px) ZA B; sin(2px)),

i

1=Y ((F)y)* =p*( ZDZCOS oY) —i—ZCZsm oY) ZCD sin(2py)),

i

0= (F)x(F)y ZB ;D; cos(px) cos(py) + ZA .C; sm(px) sin(py)

— ZB .C; cos(px) sin(py) ZA ;D; sin(px) cos(py)).

Since x, y are arbitrary, we have

1

6
YA =) B == LG =LDi= 5
1 1
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Y AiBi=) CD;=) BDi=) ACi =) BC =) AD;=0,
i i i i i i
and we can check that Fy, F, {, 7 are orthonormal. Hence, we have

- cos 0 cos 0

F(x,y) = 5 cos(px)e; +

1 1
sin(px)é, + Ecos(py)e} + Esin(py)é;.

where {¢;}? ;| is a fixed orthonormal basis of E*. If we choose &; = (1,0,0,0),
e = (0,1,0,0),e3 = (0,0,1,0), &, = (0,0,0, —1), the surface is locally given by
cosf

cos 6
Fow) = ( :

This is the case v = p = V14 cos?0 (hence yy = p, o = vo = 0, ¢; = %/
Qzam@u
Case 2. 31 = 0.

In this case, we can choose the direction of # such that 8, = cos@ > 0. The
PDE system becomes

cos(px), sin(px), % cos(py), —% sin(py), x sin 9) .

(F;)xx = — cos? 0F;, (4.14)

(F;)xy = cos 6, (4.15)

(F)yy = —F, (4.16)

(1i)x = —cos 0(F;)y, (4.17)
1

1)y = = o og (Fi)x- (4.18)

Solving (4.14) and (4.16), we find that the solution has the form
Fi(x,y) = A;cos(x cos0) cosy + B;cos(x cos0) siny
+ C;sin(x cos 8) cos y + D; sin(x cos 0) siny.
We can derive from (4.15) that
#; = Djcos(x cos0) cosy — C; cos(x cos 0) siny
— B;sin(x cos ) cosy + A; sin(x cos ) siny,
and we can check that (4.17) and (4.18) are satisfied. Moreover, we have
(F)x = cos6(C; cos(x cosb) cosy + D;cos(x cosB)siny
— A;sin(xcos ) cosy — B;sin(x cos 0) siny),
(F;)y = Bicos(xcos®)cosy — A;cos(x cosf) siny
+ D; sin(x cos ) cos y — C;sin(x cos 0) siny,
gi = —sinf(C; cos(x cos 8) cos y + D; cos(x cos ) siny
— A;sin(x cos 0) cos y — B;sin(x cos 6) siny).
From the fact that Fy, F, {, 17 are orthonormal, a similar discussion as in Case 1
yields
F(x,y) = cos(x cos 0) cos y&; + cos(x cos ) sin &,
+ sin(x cos 0) cos ye3 + sin(x cos 6) sin yéy,
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where {2;}# | is a fixed orthonormal basis of [E*. If we choose &; = (\/LE’ 0, %, 0),

& = (0, %,0, —%), &5 = (0, \/_’ , \}—) ey = (— %,0,%,0), the surface is locally

given by

F(x,y) = (% cos(xcosf +y), % sin(x cos 0 +y), % cos(xcosf —y),

1
——sin(xcosf —vy),xsinf |.
V2 ( 2 )

This is the case v; = 1 (hence pi; = pp = cosb, 1, =1,¢c1 = = %) in (4.2).

Case 3. 31,2 # 0.
Taking the derivative of equation (4.4) with respect to x, and using equation

(4.7), we get

ﬁ2
(Fi)xxx = = (F;)x — cos” 8(F;)x — P12 (F)y-

cos? 0

Taking the derivative with respect to x again, and using equations (4.5), (4.4), we

get

(F)xxxx = (— Pi — B3 — cos 9) (F;)xx — B3 cos? OF;. (4.19)

cos? 0

Similarly, taking the derivative of equation (4.6) with respect to y twice, and using
equations (4.8), (4.5), (4.6), we get

(E)wy = 222 (), — B (E)y — (B,

cos? 6
and
BB 5
(B = (‘m - B - 1) (B)yy — =25 F (420)
The characteristic equation of (4.19) is
z* + <CO'BSZ + B3 + cos 6) 7% 4 B5 cos? 6 = 0. (4.21)

Denote b; = i + B5 4 cos? 6 and ¢; = B3 cos? 6. Considering equation (4.21)

2
cos- 0
as a quadratic equation in u = z?, the discriminant is

4 2
Ay =12 —dey = P14 2P0 2 0.
! 1 a cos49+c0529+ pi+Pi >

Since ¢1 > 0, the two negative roots u = —u? and u = —u3 of the equation are

1
—V%——— b1+ /M), %=—§(bl—\/A1),

where we assume 1 > 0, yp > 0.
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Similarly, the characteristic equation of (4.20) is

cos? cos2 0

w+< i +ﬁ1+1>w+ By (4.22)

2
Denote b, = £ + ﬁ2 +1and ¢, = Py Considering equation (4.22) as a

) cos? 0 T cos26°
quadratic equation as above, the discriminant is

Ny =b3—4cy =AM >0

and the two negative roots are

1
—1/1 bz + VA - Vz E(bz Y/ AZ)/

where we assume v; > 0, v, > 0.
Now we denote A = Ay = A,. Since (F)xx + (F)yy = —(1 + cos?6)F; and
ut 4+ v3 = p3 + v = 1+ cos? 6, the solution takes the form
Fi(x,y) = cgi) cos(p1x) cos(1py) + ng‘) cos(p1x) sin(voy) + cgi) sin(p1x) cos(voy)
-+ cgf) sin(p1x) sin(voy) + céi) cos(ppx) cos(v1y) + céi) cos(ppx) sin(v1y)
+ cgi) sin(ppx) cos(v1y) + cg) sin(ppx) sin(vqy).

We can derive 7; from (4.4),

1i = = ((F)xx + cos® 0F;)
B1

== lz & ()" cos(prx) cos(vay) + ¢} cos (1) sin(vay)
1

+ Cé) sin(p1x) cos(vay) + C‘(f) sin(p1x) sin(vay))

29
Tyz (c§” cos(uzx) cos(v1y) + ¢ cos(pzx) sin(v1y)

i C;i) sin(ppx) cos(v1y) + Cg) sin(pox) Sin(l/ly)).

(4.23)

On the other hand, from (4.5)

UiIE

V{ézz (Cz(Li) cos(p1x) cos(vay) — Cé) cos(p1x) sin(1oy)

_ cé) sin(p1x) cos(vay) + cgi) sin(p1x) sin(vay))

+ E (A cos(w) cos(ny) = Y cos(pa)sin(y)
_ Céi) sin(ppx) cos(v1y) + Céi) sin(pox) sin(l/ly)).

(4.24)
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Comparing the first four terms, we find that

cos? 6 — ;41 ) _ v (i) cos® 6 — V1 o) — V2 (i)
B! B2 B B2
cos?6 — i (i) _pava () 05?0 —pi () _ pva (i

R B B %

Since Ui > 0,]12 >0,11 >0,1p >0,

—VA <0,

2(cos0— ) = 3 - L1

2(cos? 0 — u3) = B3 — coﬁlze +VA >0,

(") = (e (&) = (1)
Similarly, comparing the last four terms of (4.23) and (4.24), we obtain that

we have that

and for 131,32 <0,

Hence, for 182 > 0, we can set

Fi(x,y) = Ajcos(pu1x + voy) + Bisin(pix + voy)+
C; cos(pax —11y) + D;sin(pax — 11y).

In fact, we can easily verify that the solution above satisfies the PDE system
(4.4)-(4.8).
Moreover, using the fact that Fy, F, ¢, 77 are orthonormal, we can derive that

F(x,y) = c1 cos(p1x + 10y)e1 + c1 sin(p1x + 10y)e>
+ ¢ cos(pax — v1y)es + ca sin(pax — v1y)éy

where {el __, is a fixed orthonormal basis of IE4, ¢1, c; are positive constants sat-
2—1 1-v2

isfying 7 = 24— ¢35 = 5—%. If we choose the natural basis of [E%, the surface is

1 vy 2

locally given by

F(x,y) = (c1 cos(prx + vay), c1 sin(p1x + 1Y), c2 cos(pax — 11y),
co sin(ppx — 11y), xsin6).
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This is the case 1 < 11 < V1 + cos? 6 in (4.2).
Similarly, for 182 < 0, the surface is locally given by

F(x,y) = (c1 cos(p1x — 1py), c1 sin(p1x — voy), ca cos(pax + 11y),
¢ sin(ppx + v1y), x sin ).

If we change the coordinate to be {x, —y}, then thisis the case 1 < 11 < V1 + cos? 6
in (4.2).
Here we need to derive the relations among the constants vy, va, p1, p2, c1,
cp when 1 < 11 < V14 cos?6. In fact, by the definitions of v; and 1,, we have
22_ B

vivy = —%5 and
2, .2 B 2
vi+vy = +p1+1
1TV2 052 0 B
= 1313 4 cos? f — cos® Bviva + 1
= V213 sin? 6 + cos? 6 + 1.
. 1+cos? 0—v? .
Since 1 + cos?6 < Siiz - when 6 € (0,5), we have V3 = %smz;. By a direct
!
computation, we have
2 et
vy cos™ 6
ur =1+cos?0 —1v3 = ﬁ,
1—wv7sin®6
13 =1+ cos?6 — 13,
, vi—1 1—1/%sin29
Cy = =
1 :
vi—v3  1+cos?0—17sin?6’
, 1—12 cos? 0
C2 = = - .
v —v3 1+ cos?0—v?sin? 6
Hence we complete the proof of Theorem 3. n
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