Representation of Banach lattices as L^1_w spaces of a vector measure defined on a δ -ring

O. Delgado^{*} M. A. Juan[†]

Abstract

In this paper we prove that every Banach lattice having the Fatou property and having its σ -order continuous part as an order dense subset, can be represented as the space $L_w^1(\nu)$ of weakly integrable functions with respect to some vector measure ν defined on a δ -ring.

1 Introduction

The interplay among the properties of a vector measure ν , its range and its integration operator allows us to understand the behavior of the space $L^1(\nu)$ of integrable functions with respect to ν . This makes desirable to know which spaces can be described as such L^1 spaces. In [2, Theorem 8], Curbera proves that every order continuous Banach lattice *E* with a weak unit is order isometric to a space $L^1(\nu)$ where ν is a vector measure defined on a σ -algebra. The result remains true if *E* has not a weak unit but for ν defined on a δ -ring. This was stated in [1, pp. 22-23] but the proof there is just outlined. We present here a proof of this fact in full detail. Note that the differences between the integration theory with respect to vector measures on σ -algebras and the integration theory with respect to vector measures on δ -rings are significant. For instance, bounded functions are always integrable for the first one while they are not necessarily integrable for the second one.

*Supported by MEC (MTM2009-12740-C03-02) and UPV (PAID-10 Ref. 2149)

Bull. Belg. Math. Soc. Simon Stevin 19 (2012), 239-256

⁺Supported by MEC (MTM2008-04594), GV (2009/102) and UPV (PAID-06-08 Ref. 3093) Received by the editors January 2011.

Communicated by F. Bastin.

²⁰⁰⁰ Mathematics Subject Classification : Primary 46G10, Secondary 46E30, 46B42.

Key words and phrases : Banach lattice, δ -ring, Fatou property, Order density, Order continuity, Integration with respect to vector measures.

Associated to ν there is another interesting space whose properties can be studied through the properties of ν . Namely, the space $L_w^1(\nu)$ of weakly integrable functions. In [3, Theorem 2.5], Curbera and Ricker show that every Banach lattice E satisfying the σ -Fatou property and with a weak unit belonging to the σ -order continuous part E_a of E is order isometric to a space $L_w^1(\nu)$ for a vector measure ν defined on a σ -algebra. The aim of this paper is to prove the corresponding result in the case when E has not a weak unit by using a vector measure defined on a δ -ring.

Given an order continuous Banach lattice *E*, Section 3 is devoted to the construction of a vector measure ν defined on a δ -ring associated to *E*. In Section 4, we show that $L^1(\nu)$ is order isometric to *E* via the integration operator. This fact is the starting point for proving our main result in Section 6, namely, every Banach lattice *E* with the Fatou property such that its σ -order continuous part E_a is order dense in *E* is order isometric to the L^1_w space of the vector measure associated to E_a which in this case is also order continuous. This L^1_w space is studied first in Section 5. We end with two examples of Banach lattices which can be represented as $L^1_w(\nu)$ with ν defined on a δ -ring, but cannot be represented in the same way for any vector measure defined on a σ -algebra.

2 Preliminaries

2.1 Banach lattices.

Let *E* be a Banach lattice with norm $\|\cdot\|$ and order \leq . A *weak unit* of *E* is an element $0 \leq e \in E$ such that $x \wedge e = 0$ implies x = 0. A closed subspace *F* of *E* is an *ideal* of *E* if $y \in F$ whenever $y \in E$ with $|y| \leq |x|$ for some $x \in F$. An ideal *F* in *E* is said to be *order dense* if for every $0 \leq x \in E$ there exists an upwards directed system $0 \leq x_{\tau} \uparrow x$ such that $(x_{\tau})_{\tau} \subset F$. We will say that *E* has the *Fatou property* if for every $(x_{\tau})_{\tau} \subset E$ upwards directed system $0 \leq x_{\tau} \uparrow$ such that $\sup_{\tau} ||x_{\tau}|| < \infty$ it follows that there exists $x = \sup_{\tau} x_{\tau}$ in *E* and $||x|| = \sup_{\tau} ||x_{\tau}||$. We will say that *E* has the *σ*-*Fatou property* if for every $(x_n)_{n\geq 1} \subset E$ increasing sequence $0 \leq x_n \uparrow$ such that $\sup_{n\geq 1} ||x_n|| < \infty$ it follows that there exists $x = \sup_{n\geq 1} x_n$ in *E* and $||x|| = \sup_{n\geq 1} x_n$ in *E* and $||x|| = \sup_{n\geq 1} ||x_n||$. The Banach lattice *E* is *order continuous* if for every $(x_{\tau})_{\tau} \subset E$ downwards directed system $x_{\tau} \downarrow 0$ it follows that $||x_{\tau}|| \downarrow 0$. If $||x_n|| \downarrow 0$ for any $(x_n)_{n\geq 1} \subset E$ decreasing sequence $x_n \downarrow 0$, then *E* is said to be *σ*-*order continuous*. We call *order continuous part* E_{an} of *E* to the largest order continuous ideal in *E*. It can be described as

$$E_{an} = \{ x \in E : |x| \ge x_{\tau} \downarrow 0 \text{ implies } \|x_{\tau}\| \downarrow 0 \}.$$

Similarly, the σ -order continuous part E_a of E is the largest σ -order continuous ideal in E, which can be described as

$$E_a = \{ x \in E : |x| \ge x_n \downarrow 0 \text{ implies } ||x_n|| \downarrow 0 \}.$$

The Banach lattice *E* is said to be σ -complete if every order bounded sequence has a supremum.

An operator $T: E \to F$ between Banach lattices is said to be an *order isometry* if it is a linear isometry which is also an order isomorphism, that is, *T* is linear, one to one, onto, $||Tx||_F = ||x||_E$ for all $x \in E$ and $T(x \land y) = Tx \land Ty$ for all $x, y \in E$.

For these and other issues related to Banach lattices, see for instance [6], [7] and [10].

2.2 Integration with respect to vector measures on δ -rings.

This integration theory is due to Lewis [5] and Masani and Niemi [8], [9]. See also [4].

Let \mathcal{R} be a δ -*ring* of subsets of an abstract set Ω (i.e. a ring of sets closed under countable intersections). Associated to \mathcal{R} we have the σ -algebra \mathcal{R}^{loc} of subsets A of Ω such that $A \cap B \in \mathcal{R}$ for every $B \in \mathcal{R}$. The space of measurable real functions on $(\Omega, \mathcal{R}^{loc})$ will be denoted by $\mathcal{M}(\mathcal{R}^{loc})$ and the space of simple functions by $\mathcal{S}(\mathcal{R}^{loc})$. A special role will be played by the simple functions based on \mathcal{R} . The space of these functions will be denoted by $\mathcal{S}(\mathcal{R})$.

Let $\lambda: \mathcal{R} \to \mathbb{R}$ be a countably additive measure, that is, $\sum_{n\geq 1} \lambda(A_n)$ converges to $\lambda(\bigcup_{n\geq 1}A_n)$ whenever $(A_n)_{n\geq 1}$ are pairwise disjoint sets in \mathcal{R} with $\bigcup_{n\geq 1}A_n \in \mathcal{R}$. The *variation* of λ is the countably additive measure $|\lambda|: \mathcal{R}^{loc} \to [0, \infty]$ given by

$$|\lambda|(A) = \sup \left\{ \sum |\lambda(A_i)| : (A_i) \text{ finite disjoint sequence in } \mathcal{R} \cap 2^A \right\}.$$

The space $L^1(\lambda)$ of integrable functions with respect to λ is defined just as $L^1(|\lambda|)$ with the same norm. The space $S(\mathcal{R})$ is dense in $L^1(\lambda)$. For each $\varphi = \sum_{i=1}^n \alpha_i \chi_{A_i} \in S(\mathcal{R})$, the integral of φ with respect to λ is defined as usual, $\int \varphi \, d\lambda = \sum_{i=1}^n \alpha_i \lambda(A_i)$. For every $f \in L^1(\lambda)$, the integral of f with respect to λ is defined as $\int f \, d\lambda = \lim_{n \to \infty} \int \varphi_n \, d\lambda$ for any sequence $(\varphi_n)_{n \ge 1} \subset S(\mathcal{R})$ converging to f in $L^1(\lambda)$.

Let $v: \mathcal{R} \to X$ be a *vector measure* with values in a real Banach space X, that is, $\sum_{n\geq 1} \nu(A_n)$ converges to $\nu(\bigcup_{n\geq 1}A_n)$ in X whenever $(A_n)_{n\geq 1}$ are pairwise disjoint sets in \mathcal{R} with $\bigcup_{n\geq 1}A_n \in \mathcal{R}$. Denoting by X^* the dual space of X and by B_{X^*} the unit ball of X^* , the *semivariation* of ν is the map $\|\nu\|: \mathcal{R}^{loc} \to [0, \infty]$ given by $\|\nu\|(A) = \sup\{|x^*\nu|(A) : x^* \in B_{X^*}\}$ for all $A \in \mathcal{R}^{loc}$, where $|x^*\nu|$ is the variation of the measure $x^*\nu: \mathcal{R} \to \mathbb{R}$. A set $B \in \mathcal{R}^{loc}$ is ν -null if $\|\nu\|(B) = 0$. A property holds ν -almost everywhere (ν -a.e.) if it holds except on a ν -null set.

We will denote by $L^1_w(\nu)$ the space of functions in $\mathcal{M}(\mathcal{R}^{loc})$ which are integrable with respect to $|x^*\nu|$ for all $x^* \in X^*$. Functions which are equal ν -a.e. are identified. The space $L^1_w(\nu)$ is a Banach space with the norm

$$||f||_{\nu} = \sup \Big\{ \int |f| \, d|x^* \nu| : x^* \in B_{X^*} \Big\}.$$

Moreover, it is a Banach lattice having the σ -Fatou property for the ν -a.e. pointwise order and it is an ideal of measurable functions, that is, if $|f| \leq |g| \nu$ -a.e. with $f \in \mathcal{M}(\mathcal{R}^{loc})$ and $g \in L^1_w(\nu)$, then $f \in L^1_w(\nu)$. Also, note that convergence in norm of a sequence implies ν -a.e. convergence of some subsequence. A function

 $f \in L^1_w(\nu)$ is *integrable with respect to* ν if for each $A \in \mathcal{R}^{loc}$ there exists a vector denoted by $\int_A f d\nu \in X$, such that

$$x^* \left(\int_A f \, d\nu \right) = \int_A f \, dx^* \nu \text{ for all } x^* \in X^*.$$

We will write $\int f d\nu$ for $\int_{\Omega} f d\nu$. We will denote by $L^1(\nu)$ the space of integrable functions with respect to ν . It is an order continuous Banach lattice when endowed with the norm and the order structure of $L^1_w(\nu)$. Even more, it is an ideal of measurable functions and so an ideal of $L^1_w(\nu)$. Note that if $\varphi = \sum_{i=1}^n a_i \chi_{A_i} \in$ $S(\mathcal{R})$ then $\varphi \in L^1(\nu)$ with $\int_A \varphi d\nu = \sum_{i=1}^n a_i \nu(A_i \cap A)$ for all $A \in \mathcal{R}^{loc}$. The space $S(\mathcal{R})$ is dense in $L^1(\nu)$. The integration operator $I_\nu: L^1(\nu) \to X$ given by $I_\nu(f) = \int f d\nu$ is linear and continuous with $||I_\nu(f)|| \leq ||f||_\nu$.

A vector measure $\nu : \mathcal{R} \to E$ with values in a Banach lattice *E* is *positive* if $\nu(A) \ge 0$ for all $A \in \mathcal{R}$. In this case, the integration operator $I_{\nu} : L^{1}(\nu) \to E$ is positive (i.e. $I_{\nu}(f) \ge 0$ whenever $0 \le f \in L^{1}(\nu)$) and it can be checked that $\|f\|_{\nu} = \|I_{\nu}(|f|)\|$ for all $f \in L^{1}(\nu)$.

We know that the space $L^1_w(\nu)$ has the σ -Fatou property for every vector measure $\nu \colon \mathcal{R} \to X$, but what about the Fatou property? The following proposition, which will be needed later on, gives a sufficient condition for $L^1_w(\nu)$ to have the Fatou property.

Proposition 1. If $v \colon \mathcal{R} \to X$ is a σ -finite vector measure, that is, there exists a sequence $(A_n)_{n\geq 1} \subset \mathcal{R}$ and a v-null set $N \in \mathcal{R}^{loc}$ such that $\Omega = (\bigcup_{n\geq 1} A_n) \cup N$, then $L^1_w(v)$ has the Fatou property.

Proof. Let $\nu : \mathcal{R} \to X$ be a σ -finite vector measure. Then, by [4, Remark 3.4], there exists $x_0^* \in B_{X^*}$ such that $|x_0^*\nu|$ is a local control measure for ν , that is, $|x_0^*\nu|$ has the same null sets as ν .

Let $(f_{\tau})_{\tau} \subset L^{1}_{w}(\nu)$ be such that $0 \leq f_{\tau} \uparrow \nu$ -a.e. and $\sup_{\tau} ||f_{\tau}||_{\nu} < \infty$. Then, $0 \leq f_{\tau} \uparrow |x_{0}^{*}\nu|$ -a.e. and $\sup_{\tau} \int f_{\tau} d |x_{0}^{*}\nu| \leq \sup_{\tau} ||f_{\tau}||_{\nu} < \infty$. Since $L^{1}(x_{0}^{*}\nu)$ has the Fatou property, there exists $f = \sup_{\tau} f_{\tau}$ in $L^{1}(x_{0}^{*}\nu)$. On the other hand $L^{1}(x_{0}^{*}\nu)$ is order separable, so we can take a sequence $f_{\tau_{n}} \uparrow f$ in $L^{1}(x_{0}^{*}\nu)$. Then, $f_{\tau_{n}} \uparrow f |x_{0}^{*}\nu|$ a.e. (equivalently ν -a.e.) and so $|x^{*}\nu|$ -a.e. for all $x^{*} \in X^{*}$. By using the monotone convergence theorem, we have that

$$\int |f| \, d|x^* \nu| = \lim_n \int |f_{\tau_n}| \, d|x^* \nu| \le \|x^*\| \cdot \sup_{\tau} \|f_{\tau}\|_{\nu} < \infty,$$

and so $f \in L^1(x^*\nu)$ for all $x^* \in X^*$. Hence, $f \in L^1_w(\nu)$ and $||f||_{\nu} \leq \sup_{\tau} ||f_{\tau}||_{\nu}$.

Since the $|x_0^*\nu|$ -a.e. pointwise order coincides with the ν -a.e. one and $0 \le f_{\tau} \uparrow f$ in $L^1(|x_0^*\nu|)$, it follows that $0 \le f_{\tau} \uparrow f$ in $L^1_w(\nu)$. Indeed if $g \in L^1_w(\nu)$ is such that $f_{\tau} \le g \nu$ -a.e. for all τ , then $g \in L^1_w(|x_0^*\nu|)$ is such that $f_{\tau} \le g |x_0^*\nu|$ -a.e. for all τ , and so $f \le g |x_0^*\nu|$ -a.e. or equivalently ν -a.e. Moreover, since $||f_{\tau}||_{\nu} \le ||f||_{\nu}$ for all τ , we have that $||f||_{\nu} = \sup_{\tau} ||f_{\tau}||_{\nu}$. Therefore, $L^1_w(\nu)$ has the Fatou property.

In particular, from Proposition 1, we have that $L_w^1(\nu)$ has the Fatou property for every vector measure ν defined on a σ -algebra.

3 Vector measure associated to an order continuous Banach lattice

Let *E* be an order continuous Banach lattice. We will prove that there exists a vector measure ν defined on a δ -ring and with values in *E*, such that the space $L^1(\nu)$ of integrable functions with respect to ν is order isometric to *E*. More precisely, the integration operator $I_{\nu}: L^1(\nu) \to E$ is an order isometry.

As it has been remarked in the Introduction, in the case when *E* has a weak unit this result was proved in [2, Theorem 8] with ν defined in a σ -algebra. In the general case, there is an outlined proof in [1, pp. 22-23]. For completeness, we include in this paper a detailed proof.

In this section, we construct a vector measure ν for which we will see in Section 4 that the order isometry works.

The key for constructing our vector measure is the following result of Lindenstrauss and Tzafriri [6, Proposition 1.a.9]: *E* can be decomposed into an unconditionally direct sum of a family of mutually disjoints ideals $\{E_{\alpha}\}_{\alpha \in \Delta}$, each E_{α} having a weak unit. That is, every $e \in E$ has a unique representation $e = \sum_{\alpha \in \Delta} e_{\alpha}$ with $e_{\alpha} \in E_{\alpha}$, only countably many $e_{\alpha} \neq 0$ and the series converging unconditionally.

Each E_{α} is an order continuous Banach lattice with a weak unit. Then, from [2, Theorem 8], there is a σ -algebra Σ_{α} of subsets of an abstract set Ω_{α} and a positive vector measure $\nu_{\alpha} \colon \Sigma_{\alpha} \to E_{\alpha}$ such that the integration operator $I_{\nu_{\alpha}} \colon L^{1}(\nu_{\alpha}) \to E_{\alpha}$ is an order isometry.

Consider the set $\Omega = \bigcup_{\alpha \in \Delta} (\{\alpha\} \times \Omega_{\alpha})$, that is

$$\Omega = \{ (\alpha, \omega) : \alpha \in \Delta \text{ and } \omega \in \Omega_{\alpha} \}.$$

In a similar way, we denote $\cup_{\alpha \in \Delta} \{\alpha\} \times A_{\alpha} = \{(\alpha, \omega) : \alpha \in \Delta \text{ and } \omega \in A_{\alpha}\}$, where $A_{\alpha} \subset \Omega_{\alpha}$ for all $\alpha \in \Delta$. For every $\Gamma \subset \Delta$ we write $\cup_{\alpha \in \Gamma} \{\alpha\} \times A_{\alpha} = \cup_{\alpha \in \Delta} \{\alpha\} \times A_{\alpha}$ whenever $A_{\alpha} = \emptyset$ for all $\alpha \in \Delta \setminus \Gamma$. Note that if $A_n = \cup_{\alpha \in \Delta} \{\alpha\} \times A_{\alpha}^n$ for $n \geq 1$,

$$\bigcup_{n\geq 1}A_n=\bigcup_{\alpha\in\Delta}\left(\{\alpha\}\times\bigcup_{n\geq 1}A_\alpha^n\right) \text{ and } \bigcap_{n\geq 1}A_n=\bigcup_{\alpha\in\Delta}\left(\{\alpha\}\times\bigcap_{n\geq 1}A_\alpha^n\right).$$

Also, if $A = \bigcup_{\alpha \in \Delta} \{\alpha\} \times A_{\alpha}$ and $B = \bigcup_{\alpha \in \Delta} \{\alpha\} \times B_{\alpha}$,

$$A \backslash B = \bigcup_{\alpha \in \Delta} \left(\{ \alpha \} \times A_{\alpha} \backslash B_{\alpha} \right)$$

Then the family \mathcal{R} of sets $\cup_{\alpha \in \Delta} \{\alpha\} \times A_{\alpha}$ satisfying that $A_{\alpha} \in \Sigma_{\alpha}$ for all $\alpha \in \Delta$ and there exists a finite set $I \subset \Delta$ such that A_{α} is ν_{α} -null for all $\alpha \in \Delta \setminus I$, is a δ -ring of subsets of Ω . Moreover,

$$\mathcal{R}^{loc} = \big\{ \cup_{\alpha \in \Delta} \{ \alpha \} \times A_{\alpha} : A_{\alpha} \in \Sigma_{\alpha} \text{ for all } \alpha \in \Delta \big\}.$$

Indeed, given $A \in \mathcal{R}^{loc}$, if we take $B_{\alpha} = \{\omega \in \Omega_{\alpha} : (\alpha, \omega) \in A\}$ we have that

$$A=\cup_{\alpha\in\Delta}\{\alpha\}\times B_{\alpha},$$

where $\{\alpha\} \times B_{\alpha} = A \cap (\{\alpha\} \times \Omega_{\alpha}) \in \mathcal{R}$ (as $\{\alpha\} \times \Omega_{\alpha} \in \mathcal{R}$). So, $B_{\alpha} \in \Sigma_{\alpha}$.

Conversely, take $A = \bigcup_{\alpha \in \Delta} \{\alpha\} \times A_{\alpha}$ with $A_{\alpha} \in \Sigma_{\alpha}$ for every $\alpha \in \Delta$. If $B = \bigcup_{\alpha \in \Delta} \{\alpha\} \times B_{\alpha} \in \mathcal{R}$,

$$A \cap B = \bigcup_{\alpha \in \Delta} (\{\alpha\} \times A_{\alpha} \cap B_{\alpha}) \in \mathcal{R}$$

and so $A \in \mathcal{R}^{loc}$.

Let $\nu \colon \mathcal{R} \to E$ be the set function defined by

$$u \big(\cup_{\alpha \in \Delta} \{ \alpha \} \times A_{\alpha} \big) = \sum_{\alpha \in \Delta} \nu_{\alpha}(A_{\alpha}).$$

Let us see that ν is a vector measure. Given $A_n = \bigcup_{\alpha \in \Delta} \{\alpha\} \times A^n_{\alpha} \in \mathcal{R}$ for $n \ge 1$ mutually disjoint sets such that $\bigcup_{n \ge 1} A_n \in \mathcal{R}$, we have that

$$\bigcup_{n\geq 1}A_n=\bigcup_{\alpha\in\Delta}\left(\{\alpha\}\times\bigcup_{n\geq 1}A_\alpha^n\right)$$

where $\bigcup_{n\geq 1} A^n_{\alpha}$ is a disjoint union for every $\alpha \in \Delta$ and there exists a finite set $I \subset \Delta$ such that $\bigcup_{n\geq 1} A^n_{\alpha}$ is ν_{α} -null for all $\alpha \in \Delta \setminus I$. Since for each $\alpha \in \Delta$ the sum $\sum_{n\geq 1} \nu_{\alpha}(A^n_{\alpha})$ converges to $\nu_{\alpha}(\bigcup_{n\geq 1} A^n_{\alpha})$ in E_{α} and so in E, then we have that

$$\nu\Big(\bigcup_{n\geq 1}A_n\Big)=\sum_{\alpha\in I}\nu_{\alpha}\Big(\bigcup_{n\geq 1}A_{\alpha}^n\Big)=\sum_{\alpha\in I}\sum_{n\geq 1}\nu_{\alpha}(A_{\alpha}^n)=\sum_{n\geq 1}\sum_{\alpha\in I}\nu_{\alpha}(A_{\alpha}^n)=\sum_{n\geq 1}\nu(A_n).$$

Note that a set $A = \bigcup_{\alpha \in \Delta} \{\alpha\} \times A_{\alpha} \in \mathcal{R}^{loc}$ is ν -null if and only if A_{α} is ν_{α} -null for all $\alpha \in \Delta$. Also note that ν is positive as every ν_{α} is so.

Remark 2. Let $f \in \mathcal{M}(\mathcal{R}^{loc})$. For each $\alpha \in \Delta$, we denote by f_{α} the function $f_{\alpha} \colon \Omega_{\alpha} \to \mathbb{R}$ given by $f_{\alpha}(\omega) = f(\alpha, \omega)$ for all $\omega \in \Omega_{\alpha}$. Since for every Borel set *B* on \mathbb{R} we have that

$$f^{-1}(B) = \cup_{lpha \in \Delta} \{ lpha \} imes f_{lpha}^{-1}(B) \in \mathcal{R}^{loc}$$
,

then $f_{\alpha}^{-1}(B) \in \Sigma_{\alpha}$ for each $\alpha \in \Delta$. Hence, $f_{\alpha} \in \mathcal{M}(\Sigma_{\alpha})$ for each $\alpha \in \Delta$. In particular, if $\varphi = \sum_{j=1}^{n} a_{j} \chi_{A_{j}}$ with $A_{j} = \bigcup_{\alpha \in \Delta} \{\alpha\} \times A_{\alpha}^{j} \in \mathcal{R}^{loc}$, then $\varphi_{\alpha} = \sum_{j=1}^{n} a_{j} \chi_{A_{\alpha}^{j}} \in \mathcal{S}(\Sigma_{\alpha})$.

From now and on, f_{α} will denote the functions defined in Remark 2 for some function $f \in \mathcal{M}(\mathcal{R}^{loc})$. The following lemma will allow us to give useful descriptions of the spaces $L^{1}(\nu)$ and $L^{1}_{w}(\nu)$ in next sections.

Lemma 3. Let $f \in \mathcal{M}(\mathcal{R}^{loc})$ and $\alpha \in \Delta$. Then,

- a) $f\chi_{\{\alpha\}\times\Omega_{\alpha}} \in L^1_w(\nu)$ if and only if $f_{\alpha} \in L^1_w(\nu_{\alpha})$.
- b) $f\chi_{\{\alpha\}\times\Omega_{\alpha}} \in L^{1}(\nu)$ if and only if $f_{\alpha} \in L^{1}(\nu_{\alpha})$. In this case

$$\int f\chi_{\{\alpha\}\times\Omega_{\alpha}}\,d\nu=\int f_{\alpha}\,d\nu_{\alpha}.$$

Banach lattices as $L^1_w(v)$

Proof. Let $x^* \in E^*$ and $x^*_{\alpha} \in E^*_{\alpha}$ be the restriction of x^* to E_{α} . For each function $\varphi = \sum_{j=1}^{n} a_j \chi_{A_j} \in S(\mathcal{R}^{loc})$ with $A_j = \bigcup_{\beta \in \Delta} \{\beta\} \times A^j_{\beta}$, we have that $\varphi \chi_{\{\alpha\} \times \Omega_{\alpha}} = \sum_{j=1}^{n} a_j \chi_{\{\alpha\} \times A^j_{\alpha}} \in S(\mathcal{R})$ and $\varphi_{\alpha} = \sum_{j=1}^{n} a_j \chi_{A^j_{\alpha}} \in S(\Sigma_{\alpha})$, then

$$\int \varphi \chi_{\{\alpha\} \times \Omega_{\alpha}} dx^* \nu = \sum_{j=1}^n a_j x^* \nu(\{\alpha\} \times A_{\alpha}^j) = \sum_{j=1}^n a_j x^* \nu_{\alpha}(A_{\alpha}^j)$$
$$= \sum_{j=1}^n a_j x_{\alpha}^* \nu_{\alpha}(A_{\alpha}^j) = \int \varphi_{\alpha} dx_{\alpha}^* \nu_{\alpha}.$$

It is routine to check that $|x^*\nu|(\{\alpha\} \times A_{\alpha}) = |x_{\alpha}^*\nu_{\alpha}|(A_{\alpha})$ for every $A_{\alpha} \in \Sigma_{\alpha}$. Then, in a similar way as for $x^*\nu$, we have that $\int \varphi \chi_{\{\alpha\} \times \Omega_{\alpha}} d|x^*\nu| = \int \varphi_{\alpha} d|x_{\alpha}^*\nu_{\alpha}|$.

Let $(\varphi_n)_{n\geq 1} \subset S(\mathcal{R}^{loc})$ be a sequence such that $0 \leq \varphi_n \uparrow |f|$ pointwise. Then, $0 \leq \varphi_n \chi_{\{\alpha\} \times \Omega_{\alpha}} \uparrow |f| \chi_{\{\alpha\} \times \Omega_{\alpha}}$ and $0 \leq (\varphi_n)_{\alpha} \uparrow |f_{\alpha}|$ pointwise. Using the monotone convergence theorem, we have that

$$\int |f|\chi_{\{\alpha\}\times\Omega_{\alpha}} d|x^*\nu| = \lim_{n\to\infty} \int \varphi_n \chi_{\{\alpha\}\times\Omega_{\alpha}} d|x^*\nu|$$

$$= \lim_{n\to\infty} \int (\varphi_n)_{\alpha} d|x^*_{\alpha}\nu_{\alpha}| = \int |f_{\alpha}| d|x^*_{\alpha}\nu_{\alpha}|.$$
(1)

Then, $f_{\alpha} \in L^1_w(\nu_{\alpha})$ implies $f\chi_{\{\alpha\}\times\Omega_{\alpha}} \in L^1_w(\nu)$.

Let now $y^* \in E^*_{\alpha}$ and define $\tilde{y}^* \colon E \to \mathbb{R}$ as $\tilde{y}^*(e) = y^*(e_{\alpha})$ for $e = \sum_{\beta \in \Delta} e_{\beta}$. Then, $\tilde{y}^* \in E^*$ and the restriction of \tilde{y}^* to E_{α} coincides with y^* . So, by (1),

$$\int |f_{\alpha}| \, d|y^* \nu_{\alpha}| = \int |f| \chi_{\{\alpha\} \times \Omega_{\alpha}} \, d|\tilde{y}^* \nu|.$$

Hence, $f\chi_{\{\alpha\}\times\Omega_{\alpha}} \in L^1_w(\nu)$ implies $f_{\alpha} \in L^1_w(\nu_{\alpha})$. Therefore, a) holds.

In the case when $\int |f|\chi_{\{\alpha\}\times\Omega_{\alpha}} d|x^*\nu| < \infty$, that is, $f\chi_{\{\alpha\}\times\Omega_{\alpha}} \in L^1(x^*\nu)$, there exists a sequence $(\varphi_n)_{n\geq 1} \subset S(\mathcal{R})$ such that $\varphi_n \to f\chi_{\{\alpha\}\times\Omega_{\alpha}}$ in $L^1(x^*\nu)$ and so $\varphi_n\chi_{\{\alpha\}\times\Omega_{\alpha}} \to f\chi_{\{\alpha\}\times\Omega_{\alpha}}$ in $L^1(x^*\nu)$. Also, by (1), which holds for every function in $\mathcal{M}(\mathcal{R}^{loc})$, we have that $\int |f_{\alpha} - (\varphi_n)_{\alpha}| d|x^*_{\alpha}\nu_{\alpha}| = \int |f - \varphi_n|\chi_{\{\alpha\}\times\Omega_{\alpha}} d|x^*\nu|$, and so $(\varphi_n)_{\alpha} \to f_{\alpha}$ in $L^1(x^*_{\alpha}\nu_{\alpha})$. Hence,

$$\int f \chi_{\{\alpha\} \times \Omega_{\alpha}} dx^* \nu = \lim_{n \to \infty} \int \varphi_n \chi_{\{\alpha\} \times \Omega_{\alpha}} dx^* \nu$$

$$= \lim_{n \to \infty} \int (\varphi_n)_{\alpha} dx^*_{\alpha} \nu_{\alpha} = \int f_{\alpha} dx^*_{\alpha} \nu_{\alpha}.$$
(2)

Suppose that $f\chi_{\{\alpha\}\times\Omega_{\alpha}} \in L^{1}(\nu)$. In particular, $f\chi_{\{\alpha\}\times\Omega_{\alpha}} \in L^{1}_{w}(\nu)$ and so, by a), $f_{\alpha} \in L^{1}_{w}(\nu_{\alpha})$. On other hand, taking a sequence $(\varphi_{n})_{n\geq 1} \subset S(\mathcal{R})$ such that $\varphi_{n} \to f\chi_{\{\alpha\}\times\Omega_{\alpha}}$ in $L^{1}(\nu)$ and so $\varphi_{n}\chi_{\{\alpha\}\times\Omega_{\alpha}} \to f\chi_{\{\alpha\}\times\Omega_{\alpha}}$ in $L^{1}(\nu)$, we have that $\int \varphi_{n}\chi_{\{\alpha\}\times\Omega_{\alpha}} d\nu$ converges to $\int f\chi_{\{\alpha\}\times\Omega_{\alpha}} d\nu$ in *E*. Since $\int \varphi_{n}\chi_{\{\alpha\}\times\Omega_{\alpha}} d\nu = \int (\varphi_{n})_{\alpha} d\nu_{\alpha} \in E_{\alpha}$ and E_{α} is closed in *E*, we have that $\int f\chi_{\{\alpha\}\times\Omega_{\alpha}} d\nu \in E_{\alpha}$. Given $y^{*} \in E_{\alpha}^{*}$ and $\tilde{y}^{*} \in E^{*}$ defined as above, it follows

$$y^* \Big(\int f \chi_{\{\alpha\} \times \Omega_{\alpha}} \, d\nu \Big) = \tilde{y}^* \Big(\int f \chi_{\{\alpha\} \times \Omega_{\alpha}} \, d\nu \Big) = \int f \chi_{\{\alpha\} \times \Omega_{\alpha}} \, d\tilde{y}^* \nu = \int f_{\alpha} \, dy^* \nu_{\alpha},$$

where we have used (2) in the last equality. Hence, $f_{\alpha} \in L^{1}(\nu_{\alpha})$ and $\int f_{\alpha} d\nu_{\alpha} = \int f \chi_{\{\alpha\} \times \Omega_{\alpha}} d\nu$.

Suppose now that $f_{\alpha} \in L^{1}(\nu_{\alpha})$. In particular, $f_{\alpha} \in L^{1}_{w}(\nu_{\alpha})$ and so, by a), $f\chi_{\{\alpha\}\times\Omega_{\alpha}} \in L^{1}_{w}(\nu)$. Since $\int f_{\alpha} d\nu_{\alpha} \in E_{\alpha} \subset E$, for every $x^{*} \in E^{*}$ we have that

$$x^* \Big(\int f_{\alpha} \, d\nu_{\alpha} \Big) = x^*_{\alpha} \Big(\int f_{\alpha} \, d\nu_{\alpha} \Big) = \int f_{\alpha} \, dx^*_{\alpha} \nu_{\alpha} = \int f \chi_{\{\alpha\} \times \Omega_{\alpha}} \, dx^* \nu,$$

where $x_{\alpha}^* \in E_{\alpha}^*$ is the restriction of x^* to E_{α} . Then, $f\chi_{\{\alpha\}\times\Omega_{\alpha}} \in L^1(\nu)$. Therefore, b) holds.

4 Description of an order continuous Banach lattice as an $L^{1}(\nu)$

Let *E* be an order continuous Banach lattice and ν the associated vector measure constructed in Section 3. Let us give a description of the space $L^1(\nu)$ which will be helpful to prove that *E* is order isometric to $L^1(\nu)$.

Proposition 4. The space $L^1(\nu)$ can be described as the space of all functions $f \in \mathcal{M}(\mathcal{R}^{loc})$ such that $f_{\alpha} \in L^1(\nu_{\alpha})$ for all $\alpha \in \Delta$ and $\sum_{\alpha \in \Delta} \int |f_{\alpha}| d\nu_{\alpha}$ is unconditionally convergent in E, where f_{α} is defined as in Remark 2. Moreover, if $f \in L^1(\nu)$ we have that

$$\int f\,d\nu = \sum_{\alpha\in\Delta}\int f_{\alpha}\,d\nu_{\alpha}.$$

Proof. Let $f \in L^1(\nu)$. Then, for every $\alpha \in \Delta$, we have that $f\chi_{\{\alpha\}\times\Omega_{\alpha}} \in L^1(\nu)$ and so, by Lemma 3.b), $f_{\alpha} \in L^1(\nu_{\alpha})$. Let $(\varphi_n)_{n\geq 1} \subset S(\mathcal{R})$ be a sequence such that $\varphi_n \to f$ in $L^1(\nu)$ and ν -a.e. Since each φ_n is supported in \mathcal{R} , we can write Supp $\varphi_n = \bigcup_{\alpha \in \Delta} \{\alpha\} \times A^n_{\alpha}$ where A^n_{α} is ν_{α} -null for all $\alpha \in \Delta \setminus I_n$ with $I_n \subset \Delta$ finite. Then,

$$\operatorname{Supp} f \subset \bigcup_{n \ge 1} \operatorname{Supp} \varphi_n = \bigcup_{n \ge 1} \bigcup_{\alpha \in \Delta} \{\alpha\} \times A^n_{\alpha} = \bigcup_{\alpha \in \Delta} \{\alpha\} \times \Big(\bigcup_{n \ge 1} A^n_{\alpha}\Big).$$

Note that $\bigcup_{n\geq 1} A^n_{\alpha}$ is ν_{α} -null for every $\alpha \notin I = \bigcup_n I_n$. So, $\bigcup_{\alpha \in \Delta \setminus I} \{\alpha\} \times (\bigcup_{n\geq 1} A^n_{\alpha})$ is ν -null and thus

$$f = f \chi_{\bigcup_{\alpha \in I} \{\alpha\} \times (\bigcup_{n \ge 1} A_{\alpha}^n)} \quad \nu\text{-a.e.}$$

For every $\alpha \in \Delta \setminus I$, from Lemma 3.b) and since $f\chi_{\{\alpha\} \times \Omega_{\alpha}} = 0 \nu$ -a.e., we have that

$$\int |f_{\alpha}| \, d\nu_{\alpha} = \int |f| \chi_{\{\alpha\} \times \Omega_{\alpha}} \, d\nu = 0.$$

Write $I = {\alpha_j}_{j\geq 1}$ and $g_n = \sum_{j=1}^n |f| \chi_{{\alpha_j} \times \Omega_{\alpha_j}}$. Note that $0 \le g_n \uparrow |f| \in L^1(\nu)$. Then, since $L^1(\nu)$ is order continuous, $g_n \to |f|$ in $L^1(\nu)$ and so

$$\sum_{j=1}^n \int |f_{\alpha_j}| \, d\nu_{\alpha_j} = \sum_{j=1}^n \int |f| \chi_{\{\alpha_j\} \times \Omega_{\alpha_j}} \, d\nu = \int g_n \, d\nu \to \int |f| \, d\nu \text{ in } E.$$

Therefore, $\sum_{\alpha \in \Delta} \int |f_{\alpha}| d\nu_{\alpha}$ is unconditionally convergent in *E*.

Conversely, let $f \in \mathcal{M}(\mathcal{R}^{loc})$ be a function such that $f_{\alpha} \in L^{1}(\nu_{\alpha})$ for all $\alpha \in \Delta$ and $\sum_{\alpha \in \Delta} \int |f_{\alpha}| d\nu_{\alpha}$ is unconditionally convergent in *E*. From this and since ν_{α} is positive, we have that there exists a countable set $N \subset \Delta$ such that

$$||f_{\alpha}||_{\nu_{\alpha}} = \left\| \int |f_{\alpha}| d\nu_{\alpha} \right\|_{E} = 0 \text{ for all } \alpha \in \Delta \setminus N.$$

That is, $f_{\alpha} = 0 \nu_{\alpha}$ -a.e. for all $\alpha \in \Delta \setminus N$. So, for each $\alpha \in \Delta \setminus N$, there exists a ν_{α} -null set Z_{α} such that

$$f_{\alpha}(\omega) = 0 \text{ for all } \omega \in \Omega_{\alpha} \setminus Z_{\alpha}.$$

Note that the set $\cup_{\alpha \in \Delta \setminus N} {\alpha} > Z_{\alpha} \in \mathcal{R}^{loc}$ is ν -null, then

$$f = \sum_{\alpha \in N} f \chi_{\{\alpha\} \times \Omega_{\alpha}} \quad \nu\text{-a.e.}$$

Write $N = {\alpha_j}_{j\geq 1}$ and take $f_n = \sum_{j=1}^n f \chi_{{\alpha_j} \times \Omega_{\alpha_j}}$ which belongs to $L^1(\nu)$ from Lemma 3.b). Then, for m < n,

$$\|f_n - f_m\|_{\nu} = \left\| \int |f_n - f_m| \, d\nu \right\|_E$$

=
$$\left\| \sum_{j=m+1}^n \int |f| \chi_{\{\alpha_j\} \times \Omega_{\alpha_j}} \, d\nu \right\|_E$$

=
$$\left\| \sum_{j=m+1}^n \int |f_{\alpha_j}| \, d\nu_{\alpha_j} \right\|_E \to 0$$

as $m, n \to \infty$. Since $f_n \to f \nu$ -a.e., it follows that $f \in L^1(\nu)$. Moreover, $f_n \to f$ in $L^1(\nu)$, so

$$\int f \, d\nu = \lim_n \int f_n \, d\nu = \sum_{\alpha \in \Delta} \int f_\alpha \, d\nu_\alpha.$$

We go on now to show that $L^1(v)$ and *E* are order isometric.

Theorem 5. The space $L^1(\nu)$ is order isometric to E. Even more, the integration operator $I_{\nu}: L^1(\nu) \to E$ is an order isometry.

Proof. The integration operator I_{ν} : $L^{1}(\nu) \rightarrow E$ is a positive (as ν is positive) continuous linear operator satisfying that $||I_{\nu}(f)||_{E} \leq ||f||_{\nu} = ||I_{\nu}(|f|)||_{E}$ for every $f \in L^{1}(\nu)$. Let us see that I_{ν} is an isometry. Fix $f \in L^{1}(\nu)$. From Proposition 4, it follows

$$\|f\|_{\nu} = \left\| \int |f| \, d\nu \right\|_{E} = \sup_{x^{*} \in B_{E^{*}}} \left| x^{*} \left(\int |f| \, d\nu \right) \right|$$

$$= \sup_{x^{*} \in B_{E^{*}}} \left| x^{*} \left(\sum_{\alpha \in \Delta} \int |f_{\alpha}| \, d\nu_{\alpha} \right) \right|$$

$$= \sup_{x^{*} \in B_{E^{*}}} \left| \sum_{\alpha \in \Delta} x^{*} \left(\int |f_{\alpha}| \, d\nu_{\alpha} \right) \right|.$$
(3)

Let $x^* \in E^*$. Note that $x^* \circ I_{\nu_{\alpha}} \in L^1(\nu_{\alpha})^*$ for all $\alpha \in \Delta$ (recall $I_{\nu_{\alpha}} \colon L^1(\nu_{\alpha}) \to E_{\alpha}$ is an order isometry). Taking $\xi_{\alpha} = \chi_{\{f_{\alpha} \ge 0\}} - \chi_{\{f_{\alpha} < 0\}}$, we define $\tilde{x}^* \colon E \to \mathbb{R}$ by

$$ilde{x}^*(e) = \sum_{lpha \in \Delta} x^* \circ I_{
u_lpha} ig(\xi_{lpha} I_{
u_lpha}^{-1}(e_{lpha}) ig)$$

for all $e \in E$ with $e = \sum_{\alpha \in \Delta} e_{\alpha}$ such that $e_{\alpha} \in E_{\alpha}$ and the sum is unconditionally convergent. Let us see that \tilde{x}^* is well defined and belongs to E^* . Take an element $e = \sum_{\alpha \in \Delta} e_{\alpha} \in E$ as above. Then, $|e| = \sum_{\alpha \in \Delta} |e_{\alpha}|$ where the sum is also unconditionally convergent. Let $N \subset \Delta$ be a countable set such that $e_{\alpha} = 0$ for all $\alpha \in \Delta \setminus N$. Then, $\xi_{\alpha} I_{\nu_{\alpha}}^{-1}(e_{\alpha}) = 0$ and so $x^* \circ I_{\nu_{\alpha}}(\xi_{\alpha} I_{\nu_{\alpha}}^{-1}(e_{\alpha})) = 0$ for all $\alpha \in \Delta \setminus N$. Writing $N = \{\alpha_i\}_{i \geq 1}$ we have that

$$\left| \sum_{j=n}^{m} x^{*} \circ I_{\nu_{\alpha_{j}}}(\xi_{\alpha_{j}}I_{\nu_{\alpha_{j}}}^{-1}(e_{\alpha_{j}})) \right| = \left| x^{*} \left(\sum_{j=n}^{m} I_{\nu_{\alpha_{j}}}(\xi_{\alpha_{j}}I_{\nu_{\alpha_{j}}}^{-1}(e_{\alpha_{j}})) \right) \right| \\ \leq \left\| x^{*} \right\| \cdot \left\| \sum_{j=n}^{m} I_{\nu_{\alpha_{j}}}(\xi_{\alpha_{j}}I_{\nu_{\alpha_{j}}}^{-1}(e_{\alpha_{j}})) \right\|_{E}$$

Note that, since $I_{\nu_{\alpha}}$ is an order isometry, $|I_{\nu_{\alpha}}(h)| = I_{\nu_{\alpha}}(|h|)$ for all $h \in L^{1}(\nu_{\alpha})$ and $I_{\nu_{\alpha}}(\tilde{h}) \leq I_{\nu_{\alpha}}(h)$ whenever $\tilde{h} \leq h \in L^{1}(\nu_{\alpha})$ (the same holds for $I_{\nu_{\alpha}}^{-1}$). Then,

$$\begin{aligned} \left| \sum_{j=n}^{m} I_{\nu_{\alpha_{j}}} (\xi_{\alpha_{j}} I_{\nu_{\alpha_{j}}}^{-1}(e_{\alpha_{j}})) \right| &\leq \sum_{j=n}^{m} \left| I_{\nu_{\alpha_{j}}} (\xi_{\alpha_{j}} I_{\nu_{\alpha_{j}}}^{-1}(e_{\alpha_{j}})) \right| \\ &= \sum_{j=n}^{m} I_{\nu_{\alpha_{j}}} (\left| \xi_{\alpha_{j}} I_{\nu_{\alpha_{j}}}^{-1}(e_{\alpha_{j}}) \right|) \\ &\leq \sum_{j=n}^{m} I_{\nu_{\alpha_{j}}} (\left| I_{\nu_{\alpha_{j}}}^{-1}(e_{\alpha_{j}}) \right|) \\ &= \sum_{j=n}^{m} I_{\nu_{\alpha_{j}}} (I_{\nu_{\alpha_{j}}}^{-1}(|e_{\alpha_{j}}|)) = \sum_{j=n}^{m} |e_{\alpha_{j}}|. \end{aligned}$$

Therefore,

$$\left|\sum_{j=n}^{m} x^* \circ I_{\nu_{\alpha_j}} \left(\xi_{\alpha_j} I_{\nu_{\alpha_j}}^{-1}(e_{\alpha_j}) \right) \right| \le \|x^*\| \cdot \left\| \sum_{j=n}^{m} |e_{\alpha_j}| \right\|_E \to 0$$

as $n, m \to \infty$. So, \tilde{x}^* is well defined, obviously linear and continuous as $|\tilde{x}^*(e)| \le ||x^*|| \cdot ||e||_E$ for all $e \in E$, that is, $\tilde{x}^* \in E^*$ and $||\tilde{x}^*|| \le ||x^*||$. Moreover,

$$x^* \Big(\int |f_{\alpha}| \, d\nu_{\alpha} \Big) = x^* \circ I_{\nu_{\alpha}}(|f_{\alpha}|) = x^* \circ I_{\nu_{\alpha}}(\xi_{\alpha}f_{\alpha}) = x^* \circ I_{\nu_{\alpha}}(\xi_{\alpha}I_{\nu_{\alpha}}^{-1}(I_{\nu_{\alpha}}(f_{\alpha})))$$

for all $\alpha \in \Delta$. From Proposition 4, we have that $I_{\nu}(f) = \sum_{\alpha \in \Delta} I_{\nu_{\alpha}}(f_{\alpha})$ and so,

$$\tilde{x}^*(I_{\nu}(f)) = \sum_{\alpha \in \Delta} x^* \circ I_{\nu_{\alpha}}(\xi_{\alpha} I_{\nu_{\alpha}}^{-1}(I_{\nu_{\alpha}}(f_{\alpha}))) = \sum_{\alpha \in \Delta} x^*(\int |f_{\alpha}| \, d\nu_{\alpha}).$$

Hence, we have proved that for every $x^* \in B_{E^*}$ there exists $\tilde{x}^* \in B_{E^*}$ such that $\sum_{\alpha \in \Delta} x^* \left(\int |f_{\alpha}| d\nu_{\alpha} \right) = \tilde{x}^* (I_{\nu}(f))$. Then, from (3), $||f||_{\nu} \leq ||I_{\nu}(f)||_{E}$. Therefore, I_{ν} is a linear isometry.

Let us see now that I_{ν} is onto. Let $e = \sum_{\alpha \in \Delta} e_{\alpha} \in E$. Since each $e_{\alpha} \in E_{\alpha}$, there exists $h_{\alpha} \in L^{1}(\nu_{\alpha})$ such that $e_{\alpha} = I_{\nu_{\alpha}}(h_{\alpha})$. Define $f \colon \Omega \to \mathbb{R}$ by $f(\alpha, \omega) = h_{\alpha}(\omega)$ for all $(\alpha, \omega) \in \Omega$. Then, $f \in \mathcal{M}(\mathcal{R}^{loc})$ (as $f^{-1}(B) = \bigcup_{\alpha \in \Delta} \{\alpha\} \times h_{\alpha}^{-1}(B)$ for every Borel set B on \mathbb{R}), $f_{\alpha} = h_{\alpha} \in L^{1}(\nu_{\alpha})$ for all $\alpha \in \Delta$ and

$$\sum_{lpha\in\Delta} I_{
u_{lpha}}(f_{lpha}) = \sum_{lpha\in\Delta} I_{
u_{lpha}}(h_{lpha}) = \sum_{lpha\in\Delta} e_{lpha}$$

is unconditionally convergent in *E*. So, by Proposition 4, we have that $f \in L^1(\nu)$ and $I_{\nu}(f) = \sum_{\alpha \in \Delta} I_{\nu_{\alpha}}(f_{\alpha}) = e$. Note that if $e \ge 0$, that is, $e_{\alpha} \ge 0$ for all $\alpha \in \Delta$, then $h_{\alpha} \ge 0$ for all $\alpha \in \Delta$ and so $f \ge 0$. Hence, I_{ν}^{-1} is positive.

So, I_{ν} is positive, linear, one to one and onto with I_{ν}^{-1} positive. Then, by [6, p. 2], I_{ν} is an order isomorphism.

Let us show an example of the representation as an $L^1(\nu)$ of an order continuous Banach lattice without weak unit. This example has been already studied in [1, p. 23] and [4, Example 2.2].

Example 6. Consider an uncountable set Γ and the δ -ring $\mathcal{R} = \{A \subset \Gamma : A \text{ is finite}\}$. The space $\ell^1(\Gamma)$ is order continuous, so, by Theorem 5, $\ell^1(\Gamma)$ is order isometric to $L^1(\nu)$ for some vector measure ν defined on a δ -ring, via the integration operator. The vector measure $\nu : \mathcal{R} \to \ell^1(\Gamma)$ can be defined as $\nu(A) = \sum_{\gamma \in A} e_{\gamma}$, where e_{γ} is the characteristic function of the point γ . In this case, the integration operator is the identity map. Note that $\ell^1(\Gamma)$ cannot be represented as $L^1(\nu)$ with ν defined on a σ -algebra, as it has no weak unit.

5 $L^1_w(\nu)$ for ν associated to an order continuous Banach lattice

Until now, we have considered an order continuous Banach lattice E. If we forget about the order continuity property, descriptions of E by means of a vector measure could exist. For instance, if *E* is a Banach lattice satisfying the σ -Fatou property with a weak unit belonging to the σ -order continuous part E_a of E, then there exists a vector measure ν defined on a σ -algebra such that E is order isometric to $L^1_{\mathcal{W}}(\nu)$, see [3, Theorem 2.5]. In this reference, it is noted that in this case E_a is also order continuous. Indeed, E_a is an ideal of E which is σ -complete as it is σ -Fatou ([10, Theorem 113.1]). Then, E_a is also σ -complete and, as it is σ -order continuous, it follows that it is order continuous ([6, Proposition 1.a.8]). The proof of the representation of *E* as an $L^1_w(v)$ consists in taking a vector measure v such that $L^1(\nu)$ is order isometric to E_a via the integration operator I_{ν} , and extending I_{ν} to $L^{1}_{w}(\nu)$. The result is that this extension is an order isometry from $L^{1}_{w}(\nu)$ onto E. Our question now is if a similar result is possible if we forget about the weak unit and consider vector measures defined on a δ -ring, as it happens in the case when *E* is order continuous. For solving this question, we will need a description of $L_w^1(\nu)$ along the lines of Proposition 4.

Let *E* be again an order continuous Banach lattice and ν the associated vector measure constructed in Section 3.

Proposition 7. The space $L^1_w(v)$ can be described as the space of all functions $f \in \mathcal{M}(\mathcal{R}^{loc})$ such that $f_\alpha \in L^1_w(v_\alpha)$ for all $\alpha \in \Delta$ and $\sum_{\alpha \in \Delta} \int |f_\alpha| \, d| x^* v_\alpha|$ converges for all $x^* \in E^*$, where f_α is defined as in Remark 2. Moreover, if $f \in L^1_w(v)$ and $x^* \in E^*$, then

$$\int f \, dx^* \nu = \sum_{\alpha \in \Delta} \int f_\alpha \, dx^* \nu_\alpha \quad and \quad \int f \, d|x^* \nu| = \sum_{\alpha \in \Delta} \int f_\alpha \, d|x^* \nu_\alpha|.$$

Proof. Let $f \in L^1_w(\nu)$. Then, $f\chi_{\{\alpha\}\times\Omega_\alpha} \in L^1_w(\nu)$ and so, by Lemma 3.a), $f_\alpha \in L^1_w(\nu_\alpha)$ for every $\alpha \in \Delta$. Take $x^* \in E^*$. For every $I \subset \Delta$ finite, by (1), we have that

$$\begin{split} \sum_{\alpha \in I} \int |f_{\alpha}| \, d|x^* \nu_{\alpha}| &= \sum_{\alpha \in I} \int |f| \chi_{\{\alpha\} \times \Omega_{\alpha}} \, d|x^* \nu| \\ &= \int |f| \chi_{\cup_{\alpha \in I} \{\alpha\} \times \Omega_{\alpha}} \, d|x^* \nu| \le \|x^*\| \cdot \|f\|_{\nu}. \end{split}$$

So, $\sum_{\alpha \in \Delta} \int |f_{\alpha}| d |x^* \nu_{\alpha}|$ is convergent.

Conversely, let $f \in \mathcal{M}(\mathcal{R}^{loc})$ be such that $f_{\alpha} \in L^{1}_{w}(\nu_{\alpha})$ for all $\alpha \in \Delta$ and $\sum_{\alpha \in \Delta} \int |f_{\alpha}| d |x^* \nu_{\alpha}|$ converges for all $x^* \in E^*$. Fix $x^* \in E^*$. There exists a countable set $N \subset \Delta$ such that

$$\int |f_{\alpha}| \, d|x^* \nu_{\alpha}| = 0 \, \text{ for all } \alpha \in \Delta \backslash N.$$

Then, for every $\alpha \in \Delta \setminus N$, there exists a $|x^*\nu_{\alpha}|$ -null set Z_{α} such that

$$f_{\alpha}(\omega) = 0$$
 for all $\omega \in \Omega_{\alpha} \setminus Z_{\alpha}$.

Noting that $\bigcup_{\alpha \in \Delta \setminus N} \{\alpha\} \times Z_{\alpha}$ is $|x^*\nu|$ -null, it follows

$$f = \sum_{\alpha \in N} f \chi_{\{\alpha\} \times \Omega_{\alpha}} |x^* \nu| \text{-a.e.}$$

Write $N = {\alpha_j}_{j\geq 1}$ and take $f_n = \sum_{j=1}^n f \chi_{{\alpha_j} \times \Omega_{\alpha_j}}$ which, by Lemma 3.a), is in $L^1_w(\nu)$. Then, for m < n, by (1),

$$\int |f_n - f_m| \, d|x^* \nu| = \sum_{j=m+1}^n \int |f| \chi_{\{\alpha_j\} \times \Omega_{\alpha_j}} \, d|x^* \nu| = \sum_{j=m+1}^n \int |f_{\alpha_j}| \, d|x^* \nu_{\alpha_j}| \to 0$$

as $m, n \to \infty$. Note that $f_n \to f |x^*\nu|$ -a.e. So, $f \in L^1(|x^*\nu|)$ and $f_n \to f$ in $L^1(|x^*\nu|)$. Therefore, $f \in L^1_w(\nu)$ and, by (1) and (2),

$$\int f \, dx^* \nu = \sum_{\alpha \in \Delta} \int f_\alpha \, dx^* \nu_\alpha \quad \text{and} \quad \int f \, d|x^* \nu| = \sum_{\alpha \in \Delta} \int f_\alpha \, d|x^* \nu_\alpha| \quad \text{for all } x^* \in E^*.$$

For the proof of our main result we will need the following fact which holds for the vector measure ν associated to the order continuous Banach lattice *E*.

Proposition 8. The space $L^1_w(\nu)$ has the Fatou property.

Proof. For every $I \subset \Delta$ finite, consider $\Omega_I = \bigcup_{\alpha \in I} \{\alpha\} \times \Omega_{\alpha}$ and the σ -algebra $\Sigma_I = \{ \bigcup_{\alpha \in I} \{\alpha\} \times A_{\alpha} : A_{\alpha} \in \Sigma_{\alpha} \text{ for all } \alpha \in I \}$ of parts of Ω_I . Note that $\Omega_I \subset \Omega$ and $\Sigma_I \subset \mathcal{R}$. Denote by $\nu_I : \Sigma_I \to E$ the restriction of ν to Σ_I . Since ν_I is a vector measure defined on a σ -algebra, $L^1_w(\nu_I)$ has the Fatou property, see Proposition 1.

For each $f \in \mathcal{M}(\mathcal{R}^{loc})$, denote by f^{I} the function resulting from the restriction of f to Ω_{I} . Of course, $f^{I} \in \mathcal{M}(\Sigma_{I})$. For every $x^{*} \in E^{*}$, it follows

$$\int |f^I| \, d|x^* \nu_I| = \int |f| \chi_{\Omega_I} \, d|x^* \nu|. \tag{4}$$

Indeed, for every $A \in \Sigma_I$ we have that $|x^*\nu_I|(A) = |x^*\nu|(A)$ and so it is routine to check that (4) holds for $f \in S(\mathcal{R}^{loc})$. For a general f the result follows by applying the monotone convergence theorem. Then, for every $f \in L^1_w(\nu)$ we have that $f\chi_{\Omega_I} \in L^1_w(\nu)$ and so $f^I \in L^1_w(\nu_I)$ with $||f^I||_{\nu_I} = ||f\chi_{\Omega_I}||_{\nu}$. Note that if Z is a ν -null set then $Z \cap \Omega_I$ is ν_I -null.

Let $(f_{\tau})_{\tau} \subset L^{1}_{w}(\nu)$ be an upwards directed system $0 \leq f_{\tau} \uparrow \nu$ -a.e. such that $\sup_{\tau} \|f_{\tau}\|_{\nu} < \infty$. Then, $(f_{\tau}^{I})_{\tau} \subset L^{1}_{w}(\nu_{I})$ is an upwards directed system $0 \leq f_{\tau}^{I} \uparrow$ ν_{I} -a.e. and $\sup_{\tau} \|f_{\tau}^{I}\|_{\nu_{I}} = \sup_{\tau} \|f_{\tau}\chi_{\Omega_{I}}\|_{\nu} \leq \sup_{\tau} \|f_{\tau}\|_{\nu} < \infty$. Since $L^{1}_{w}(\nu_{I})$ has the Fatou property, there exists $f^{I} = \sup_{\tau} f_{\tau}^{I}$ in $L^{1}_{w}(\nu_{I})$ and $\|f^{I}\|_{\nu_{I}} = \sup_{\tau} \|f_{\tau}^{I}\|_{\nu_{I}}$.

Now, from each $I = \{\alpha\}$ with $\alpha \in \Delta$, we construct the function $f: \Omega \to \mathbb{R}$ given by $f(\alpha, \omega) = f^{\{\alpha\}}(\alpha, \omega)$ for all $(\alpha, \omega) \in \Omega$. Since $f^{-1}(B) = \bigcup_{\alpha \in \Delta} (f^{\{\alpha\}})^{-1}(B)$ for all Borel set *B* on \mathbb{R} , we have that $f \in \mathcal{M}(\mathcal{R}^{loc})$. Noting that $\bigcup_{\alpha \in \Delta} \{\alpha\} \times Z_{\alpha}$ is ν -null whenever $\{\alpha\} \times Z_{\alpha}$ is $\nu_{\{\alpha\}}$ -null for all $\alpha \in \Delta$, we have that $f = \sup_{\tau} f_{\tau}$. Let us see that $f \in L^1_w(\nu)$ by using the characterization of Proposition 7. For every $\alpha \in \Delta$ and $y^* \in E^*_{\alpha}$, taking $\tilde{y}^* \in E^*$ defined as $\tilde{y}^*(e) = y^*(e_{\alpha})$ for $e = \sum_{\alpha \in \Delta} e_{\alpha}$, by (1) and (4), we have that

$$\int |f_{\alpha}| \, d|y^* \nu_{\alpha}| = \int |f| \chi_{\Omega_{\{\alpha\}}} \, d|\tilde{y}^* \nu| = \int |f^{\{\alpha\}}| \, d|\tilde{y}^* \nu_{\{\alpha\}}| < \infty.$$

So, $f_{\alpha} \in L^1_w(\nu_{\alpha})$. Moreover, given $x^* \in E^*$, for every $I \subset \Delta$ finite,

$$egin{array}{ll} \displaystyle\sum_{lpha\in I}\int |f_lpha|\,d|x^*
u_lpha|&=&\displaystyle\sum_{lpha\in I}\int |f|\chi_{\Omega_{\{lpha\}}}\,d|x^*
u|&=&\int |f^I|\,d|x^*
u_I|\leq \|f^I\|_{
u_I}\leq \sup_{ au}\|f_ au\|_{
u}<\infty. \end{array}$$

Then $\sum_{\alpha \in I} \int |f_{\alpha}| d |x^* \nu_{\alpha}|$ converges and so $f \in L^1_w(\nu)$. Moreover,

$$\int |f| \, d|x^* \nu| = \sum_{\alpha \in \Delta} \int |f_\alpha| \, d|x^* \nu_\alpha| \leq \sup_{\tau} \|f_\tau\|_{\nu}.$$

Hence, $||f||_{\nu} \leq \sup_{\tau} ||f_{\tau}||_{\nu}$. The equality follows, as $||f_{\tau}|| \leq ||f||_{\nu}$ for all τ .

Note that for the proof of Proposition 8 the fact that Ω is an uncountable disjoint union of sets in \mathcal{R} and also the way as the δ -ring \mathcal{R} is defined are crucial. So, $L^1_w(\nu)$ has the Fatou property for the particular vector measure ν constructed in Section 3. But, has $L^1_w(\nu)$ the Fatou property for every vector measure ν defined on a δ -ring? In the case when ν is σ -finite, the answer is yes (Proposition 1), however for the general case this is an open question.

6 Description of a Banach lattice as an $L^1_w(\nu)$

Let *E* be now a general Banach lattice. We always can consider the order continuous part E_{an} of *E*. Then, we can take the vector measure ν associated to E_{an} as in Section 3, and so, by Theorem 5, $I_{\nu}: L^{1}(\nu) \rightarrow E_{an}$ is an order isometry. The question is if it is possible to extend I_{ν} to the space $L^{1}_{w}(\nu)$ in a way that the extension is an order isometry between $L^{1}_{w}(\nu)$ and *E*. Note that if this extension is possible, by Proposition 8, *E* must have the Fatou property. So, we will require *E* to have this property. In this case, *E* has the σ -Fatou property and then $E_{an} = E_{a}$, as we said at the beginning of Section 5.

In order to prove the desired result, we will need the next Lemma. Recall that the order continuous part E_a of E can be decomposed into an unconditionally direct sum of a family of mutually disjoints ideals $\{E_a^{\alpha}\}_{\alpha \in \Delta}$, each E_a^{α} having a weak unit u_{α} (see Section 3).

Lemma 9. Suppose that E_a is order dense in E. Then, for every $0 \le e \in E$ it follows

$$e_{(n,I)} = \sum_{\alpha \in I} e \wedge (nu_{\alpha}) \uparrow e \tag{5}$$

where the indices (n, I) are such that $n \in \mathbb{N}$ and $I \subset \Delta$ is finite. Moreover, in the case when $0 \le e \in E_a$, there exists a countable set $\{\alpha_j\} \subset \Delta$ such that $e \land (nu_{\alpha}) = 0$ for all n and $\alpha \in \Delta \setminus \{\alpha_j\}$, and

$$e = \lim_{n,m} \sum_{j=1}^{m} e \wedge (nu_{\alpha_j}) \text{ in norm.}$$
(6)

Proof. Let $0 \le e \in E$ and $e_{(n,I)}$ as in (5). Then $0 \le e_{(n,I)} \uparrow$ and $e_{(n,I)} \le e$ for all (n, I). Note that $\{nu_{\alpha} : \alpha \in \Delta\}$ is a set of pairwise disjoint elements, so

$$e_{(n,I)} = \sum_{\alpha \in I} e \wedge (nu_{\alpha}) = e \wedge \left(\sum_{\alpha \in I} nu_{\alpha}\right)$$
(7)

(see [7, Theorem 12.5]). Let $z \in E$ be such that $e_{(n,I)} \leq z$ for all (n, I). Let us see that $e \leq z$. Suppose first that $e \in E_a$ and write $e = \sum_{j\geq 1} e_{\alpha_j}$ where $e_{\alpha_j} \in E_a^{\alpha_j}$ and the series converges unconditionally. Note that, since $e \geq 0$ and $\{e_{\alpha_j}\}$ is a set of pairwise disjoint elements, $e_{\alpha_j} \geq 0$ for every *j*. Then $\sum_{j=1}^m e_{\alpha_j} \uparrow e$ in the lattice order (see [10, Theorem 100.4.(i)]). For a fix *j* we have that $e_{\alpha_j} \land (nu_{\alpha_j}) \uparrow e_{\alpha_j}$ (see [6, pp. 7-8]). Then, for each *m* it follows that $\sum_{j=1}^m e_{\alpha_j} \land (nu_{\alpha_j}) \uparrow \sum_{j=1}^m e_{\alpha_j}$ (see [7, Theorem 15.2]). Since $e_{\alpha_j} \leq e$ for all *j*, taking $I_m = \{\alpha_1, ..., \alpha_m\}$ we have that $\sum_{j=1}^m e_{\alpha_j} \land (nu_{\alpha_j}) \leq e_{(n,I_m)} \leq z$ for all *n* and so $\sum_{j=1}^m e_{\alpha_j} \leq z$. Hence $e \leq z$. Note that actually we have proved that $\sum_{j=1}^m e \land (nu_{\alpha_j}) \uparrow e$ where the indices are (n, m). Then, by the order continuity of E_{an} , it follows that $e = \lim_{n,m} \sum_{j=1}^m e \land (nu_{\alpha_j})$ in norm. Hence, (5) and (6) hold if $e \in E_a$.

In the general case, since E_a is order dense in E, there exists $(e_{\tau}) \subset E_a$ such that $0 \leq e_{\tau} \uparrow e$. We now know that $\sum_{\alpha \in I} e_{\tau} \land (nu_{\alpha}) \uparrow e_{\tau}$ for every τ . Then, since $\sum_{\alpha \in I} e_{\tau} \land (nu_{\alpha}) \leq e_{(n,I)} \leq z$, we have that $e_{\tau} \leq z$ for every τ , and so $e \leq z$.

Now we can prove our main result by using Lemma 9.

Theorem 10. If *E* has the Fatou property and E_a is order dense in *E*, then *E* is order isometric to $L^1_w(v)$.

Proof. Let us extend I_{ν} to $L^{1}_{w}(\nu)$. First, consider $0 \leq f \in L^{1}_{w}(\nu)$ and choose $(\varphi_{n})_{n\geq 1} \subset S(\mathcal{R}^{loc})$ such that $0 \leq \varphi_{n} \uparrow f$. For each $n \geq 1$ and $I \subset \Delta$ finite, we define $\xi_{(n,I)} = \varphi_{n}\chi_{\bigcup_{\alpha\in I}\{\alpha\}\times\Omega_{\alpha}} \in S(\mathcal{R})$. Then, $(\xi_{(n,I)})_{(n,I)} \subset L^{1}(\nu)$ is an upwards directed system $0 \leq \xi_{(n,I)} \uparrow f$ in $L^{1}_{w}(\nu)$ and so, since I_{ν} is positive, $(I_{\nu}(\xi_{(n,I)}))_{(n,I)} \subset E_{a} \subset E$ is an upwards directed system $0 \leq I_{\nu}(\xi_{(n,I)}) \uparrow$ and $\sup_{(n,I)} ||I_{\nu}(\xi_{(n,I)})||_{E} = \sup_{(n,I)} ||\xi_{(n,I)}||_{\nu} \leq ||f||_{\nu} < \infty$. Then, by the Fatou property of E, there exists $e = \sup_{(n,I)} I_{\nu}(\xi_{(n,I)})$ in E and $||e||_{E} = \sup_{(n,I)} ||I_{\nu}(\xi_{(n,I)})||_{E}$.

Using an argument similar to the one in [3, Theorem 2.5], we will see that *T* is well defined. Take another sequence $(\psi_n)_{n\geq 1} \subset S(\mathcal{R}^{loc})$ such that $0 \leq \psi_n \uparrow f$. Denote $\eta_{(n,I)} = \psi_n \chi_{\bigcup_{\alpha \in I} \{\alpha\} \times \Omega_\alpha}$ and $z = \sup_{(n,I)} I_\nu(\eta_{(n,I)})$. Let $0 \leq x^* \in E^*$ be fixed. Then, $x^*(e) \geq x^*(I_\nu(\xi_{(n,I)})) = \int \xi_{(n,I)} dx^*\nu$ for all $n \geq 1$ and $I \subset \Delta$ finite. It can be proved that also $0 \leq \xi_{(n,I)} \uparrow f$ in $L^1(x^*\nu)$, since $L^1(x^*\nu)$ has the Fatou property, we have that $\sup_{(n,I)} \int \xi_{(n,I)} dx^*\nu = \int f dx^*\nu$. Consequently, $x^*(e) \geq \int f dx^*\nu \geq x^*(I_\nu(\xi_{(n,I)}))$ for all $n \geq 1$ and $I \subset \Delta$ finite. In a similar way, $x^*(z) \geq \int f dx^*\nu \geq x^*(I_\nu(\eta_{(n,I)}))$ for all $n \geq 1$ and $I \subset \Delta$ finite. Then, it follows that $x^*(e) \geq x^*(I_\nu(\eta_{(n,I)}))$ and $x^*(z) \geq x^*(I_\nu(\xi_{(n,I)}))$ for all $n \geq 1$ and $z \geq I_\nu(\eta_{(n,I)})$ for all $n \geq 1$ and $I \subset \Delta$ finite. Since this holds for all $0 \leq x^* \in E^*$, we have that $e \geq I_\nu(\eta_{(n,I)})$ and $z \geq I_\nu(\xi_{(n,I)})$ for all $n \geq 1$ and $I \subset \Delta$ finite. Then, $z \geq I_\nu(\xi_{(n,I)})$ for all $n \geq 1$ and $I \subset \Delta$ finite. Then, $z \geq I_\nu(\xi_{(n,I)})$ for all $n \geq 1$ and $I \subset \Delta$ finite. Since this holds for all $0 \leq x^* \in E^*$, we have that $e \geq I_\nu(\eta_{(n,I)})$ and $z \geq I_\nu(\xi_{(n,I)})$ for all $n \geq 1$ and $I \subset \Delta$ finite. Then, $z \geq I_\nu(\xi_{(n,I)})$ for all $n \geq 1$ and $z \geq I_\nu(\xi_{(n,I)})$ for all $n \geq 1$ and $I \subset \Delta$ finite. Then, $z \geq I_\nu(\xi_{(n,I)})$ for all $n \geq 1$ and $I \subset \Delta$ finite. Then, $z \geq I_\nu(\xi_{(n,I)})$ for all $n \geq 1$ and $I \subset \Delta$ finite. Then, $z \geq I_\nu(\xi_{(n,I)})$ for all $n \geq 1$ and $I \subset \Delta$ finite. Then, $z \geq I_\nu(\xi_{(n,I)})$ for all $n \geq 1$ and $I \subset \Delta$ finite. Then, $z \geq I_\nu(\xi_{(n,I)})$ for all $n \geq 1$ and $I \subset \Delta$ finite. Then, $z \geq I_\nu(\xi_{(n,I)})$ for all $n \geq 1$ and $I \subset \Delta$ finite. Then, $z \geq I_\nu(\xi_{(n,I)})$ for all $z \geq I_\nu(\xi_{(n,I)})$ for al

$$||T(f)||_{E} = ||e||_{E} = \sup_{(n,I)} ||I_{\nu}(\xi_{(n,I)})||_{E} = \sup_{(n,I)} ||\xi_{(n,I)}||_{\nu} = ||f||_{\nu},$$

where in the last equality we have used that $L^1_w(\nu)$ has the Fatou property (see Proposition 8). Let us see now that $T(f \wedge g) = Tf \wedge Tg$ for every $0 \leq f, g \in L^1_w(\nu)$. Consider sequences $(\varphi_n)_{n\geq 1}, (\psi_n)_{n\geq 1} \subset S(\mathcal{R}^{loc})$ satisfying that $0 \leq \varphi_n \uparrow f$ and $0 \leq \psi_n \uparrow g$, and denote $\xi_{(n,I)} = \varphi_n \chi_{\bigcup_{\alpha \in I} \{\alpha\} \times \Omega_\alpha}$ and $\eta_{(n,I)} = \psi_n \chi_{\bigcup_{\alpha \in I} \{\alpha\} \times \Omega_\alpha}$. Then, $Tf = \sup_{(n,I)} I_\nu(\xi_{(n,I)})$ and $Tg = \sup_{(n,I)} I_\nu(\eta_{(n,I)})$. Note that $(\varphi_n \wedge \psi_n)_{n\geq 1}$ which is contained in $S(\mathcal{R}^{loc})$, satisfies that $0 \leq \varphi_n \wedge \psi_n \uparrow f \wedge g$ (see [7, Theorem 15.3]) and also $(\varphi_n \wedge \psi_n)\chi_{\{\alpha\} \times \Omega_\alpha} = (\xi_{(n,I)} \wedge \eta_{(n,I)})_{(n,I)}$. Then, since I_ν is an order isometry, we have that

$$T(f \wedge g) = \sup_{(n,I)} I_{\nu}(\xi_{(n,I)} \wedge \eta_{(n,I)}) = \sup_{(n,I)} I_{\nu}(\xi_{(n,I)}) \wedge I_{\nu}(\eta_{(n,I)}) = Tf \wedge Tg.$$

For a general $f \in L^1_w(\nu)$, we define $Tf = Tf^+ - Tf^-$ where f^+ and f^- are the positive and negative parts of f respectively. So, $T: L^1_w(\nu) \to E$ is a positive linear operator extending I_{ν} . For the linearity, see for instance [7, Theorem 15.8]. Moreover T is an isometry. Indeed, for $f \in L^1_w(\nu)$, since $f^+ \wedge f^- = 0$, we have that $Tf^+ \wedge Tf^- = T(f^+ \wedge f^-) = 0$. Then, it follows that $|Tf| = |Tf^+ - Tf^-| =$ $Tf^+ + Tf^- = T|f|$, and so, $||T(f)||_E = ||T(|f|)||_E = ||f||_{\nu}$. Let us prove that *T* is onto. Let $0 \leq e \in E$. Since E_a is order dense in *E*, from Lemma 9 we have that $e_{(n,I)} = \sum_{\alpha \in I} e \wedge (nu_{\alpha}) \uparrow e$. Fix *n* and $\beta \in \Delta$. Since $e \wedge (nu_{\beta}) \in E_a^{\beta}$ as $0 \leq e \wedge (nu_{\beta}) \leq nu_{\beta}$, there exists $0 \leq g_{n,\beta} \in L^1(v_{\beta})$ such that $e \wedge (nu_{\beta}) = I_{v_{\beta}}(g_{n,\beta})$. Define $f_{n,\beta} \colon \Omega \to \mathbb{R}$ by $f_{n,\beta}(\alpha, \omega) = g_{n,\beta}(\omega)$ if $\alpha = \beta$ and $f_{n,\beta}(\alpha, \omega) = 0$ in other case. Then, from Proposition 4, we have that $f_{n,\beta} \in L^1(v)$ and $I_v(f_{n,\beta}) = I_{v_{\beta}}(g_{n,\beta}) = e \wedge (nu_{\beta})$. Taking $\xi_{(n,I)} = \sum_{\alpha \in I} f_{n,\alpha} \in L^1(v)$, we have that $0 \leq \xi_{(n,I)} \uparrow$ as $\xi_{(n,I)} = I_v^{-1}(e_{(n,I)})$ and $\sup_{(n,I)} ||\xi_{(n,I)}||_v = \sup_{(n,I)} ||e_{(n,I)}||_E \leq$ $||e||_E$. By the Fatou property of $L_w^1(v)$, there exists $f = \sup_{(n,I)} \xi_{(n,I)}$ in $L_w^1(v)$.

If we prove that $x^*(e) \ge \int f dx^* \nu$ for all $0 \le x^* \in X^*$, by the same argument used to see that *T* is well defined, we will have that Tf = e. Fix $\alpha \in \Delta$, since $0 \le \xi_{(n,I)} \uparrow f$ in $L^1_w(\nu)$, it follows that $0 \le \xi_{(n,I)}\chi_{\{\alpha\}\times\Omega_{\alpha}} \uparrow f\chi_{\{\alpha\}\times\Omega_{\alpha}}$ in $L^1_w(\nu)$. Since $\xi_{(n,I)}\chi_{\{\alpha\}\times\Omega_{\alpha}} = \sum_{\beta\in I} f_{n,\beta}\chi_{\{\alpha\}\times\Omega_{\alpha}} = f_{n,\alpha}\chi_{\{\alpha\}\times\Omega_{\alpha}}$, actually we deal with a sequence. Writing $h^{\alpha}_n = f_{n,\alpha}\chi_{\{\alpha\}\times\Omega_{\alpha}}$, we have that $0 \le h^{\alpha}_n \uparrow f\chi_{\{\alpha\}\times\Omega_{\alpha}}$ in $L^1_w(\nu)$ and so ν -a.e. Fix now $0 \le x^* \in X^*$. Since $h^{\alpha}_n \uparrow f\chi_{\{\alpha\}\times\Omega_{\alpha}} x^*\nu$ -a.e., applying the dominated convergence theorem (see [8, Theorem 2.22]), we have that $\int f\chi_{\{\alpha\}\times\Omega_{\alpha}} dx^*\nu = \lim \int h^{\alpha}_n dx^*\nu$. Noting that $\int h^{\alpha}_n dx^*\nu = x^*I_\nu(f_{n,\alpha}\chi_{\{\alpha\}\times\Omega_{\alpha}}) \le x^*I_\nu(f_{n,\alpha}) = x^*(e \land (nu_{\alpha}))$, we obtain that

$$\sum_{\alpha \in I} \int f \chi_{\{\alpha\} \times \Omega_{\alpha}} dx^* \nu = \lim_{\alpha \in I} \sum_{\alpha \in I} \int h_n^{\alpha} dx^* \nu \le \lim_{\alpha \in I} \sum_{\alpha \in I} x^* (e \land (nu_{\alpha}))$$
$$= \lim_{\alpha \in I} x^* (e_{(n,I)}) \le x^* (e)$$

for all finite $I \subset \Delta$. Therefore, by the description of $L^1_w(\nu)$ given in Proposition 7 and (2),

$$\int f \, dx^* \nu = \sum_{\alpha \in \Delta} \int f \chi_{\{\alpha\} \times \Omega_{\alpha}} \, dx^* \nu \leq x^*(e).$$

For a general $e \in E$, consider e^+ and e^- the positive and negative parts of e. Let $g, h \in L^1_w(v)$ be such that $Tg = e^+$ and $Th = e^-$. Then, taking $f = g - h \in L^1_w(v)$ we have that Tf = e. Note that T^{-1} is positive. So, T is positive, linear, one to one and onto with inverse being positive, then T is an order isomorphism (see [6, p. 2]).

Note that in the first lines of the proof of Theorem 10, we have seen that $L^1(\nu)$ is order dense in $L^1_w(\nu)$. So, the conditions required in this theorem are necessary and sufficient for the extension of $I_{\nu}: L^1(\nu) \to E_a$ to $L^1_w(\nu)$ to be possible in the desired way.

Finally, note that Theorem 10 generalizes [3, Theorem 2.5] where every Banach lattice *E* with the σ -Fatou property having a weak unit belonging to E_a is represented by means of spaces L_w^1 for a vector measure defined on a σ -algebra. Indeed, in this case, *E* has actually the Fatou property and E_a is order dense in *E*.

We end by showing two examples of the representation of Banach lattices as $L^1_w(\nu)$ spaces.

Example 11. Consider an uncountable set Γ and the δ -ring $\mathcal{R} = \{A \subset \Gamma : A \text{ is finite}\}$. The space $\ell^{\infty}(\Gamma)$ has the Fatou property and its σ -order continuous part $c_0(\Gamma)$ is order dense. Then, from Theorem 10, $\ell^{\infty}(\Gamma)$ is

order isometric to $L^1_w(\nu)$ for some vector measure ν defined on a δ -ring. The vector measure $\nu : \mathcal{R} \to c_0(\Gamma)$ can be defined as in Example 6 and in this case, the order isometry is the identity map, see [4, Example 2.2]. Note that $\ell^{\infty}(\Gamma)$ cannot be represented as $L^1_w(\nu)$ with ν defined on a σ -algebra, as its σ -order continuous part has no weak unit.

Example 12. Also, we can find Banach lattices without weak unit satisfying the requirements of Theorem 10. Let Γ and Δ be disjoint uncountable sets and consider the Banach lattice $\ell^1(\Gamma) \times \ell^{\infty}(\Delta)$ endowed with the norm $||(x,y)|| = ||x||_{\ell^1(\Gamma)} + ||y||_{\ell^{\infty}(\Delta)}$ and the order $(x,y) \leq (\tilde{x},\tilde{y})$ if and only if $x \leq \tilde{x}$ and $y \leq \tilde{y}$ for $x, \tilde{x} \in \ell^1(\Gamma)$ and $y, \tilde{y} \in \ell^{\infty}(\Delta)$. This space has the Fatou property and its σ -order continuous part $\ell^1(\Gamma) \times c_0(\Delta)$ is order dense. In this case, taking the δ -ring $\mathcal{R} = \{A \subset \Gamma \cup \Delta : A \text{ is finite}\}$, the vector measure $v \colon \mathcal{R} \to \ell^1(\Gamma) \times c_0(\Delta)$ can be defined as $v(A) = (v_1(A \cap \Gamma), v_2(A \cap \Delta))$ for all $A \in \mathcal{R}$, where v_1 and v_2 are the vector measures defined in Example 6 and Example 11 respectively. Indeed, $(\ell^1(\Gamma) \times c_0(\Delta))^*$ is identified with $(\ell^1(\Gamma))^* \times (c_0(\Delta))^*$ in the way $x^* = (x_1^*, x_2^*)$ such that $x^*(a,b) = x_1^*(a) + x_2^*(b)$ for all $(a,b) \in \ell^1(\Gamma) \times c_0(\Delta)$ and with $||x^*|| = \max\{||x_1^*||, ||x_2^*||\}$. So, $x^*v(A) = x_1^*v_1(A \cap \Gamma) + x_2^*v_2(A \cap \Delta)$ for all $A \in \mathcal{R}$ and thus

$$|x^*\nu|(B) = |x_1^*\nu_1|(B \cap \Gamma) + |x_2^*\nu_2|(B \cap \Delta) \text{ for all } B \in \mathcal{R}^{loc}.$$

Then, for every $f \in \mathcal{M}(\mathcal{R}^{loc})$ we have that

$$\int |f| \, d|x^* \nu| = \int |f| \chi_{\Gamma} \, d|x_1^* \nu_1| + \int |f| \chi_{\Delta} \, d|x_2^* \nu_2|.$$

Noting that $L_w^1(\nu_1) \times L_w^1(\nu_2) = \ell^1(\Gamma) \times \ell^{\infty}(\Delta)$ isometrically, it follows that the operator $T: L_w^1(\nu) \to \ell^1(\Gamma) \times \ell^{\infty}(\Delta)$, defined by $Tf = (f\chi_{\Gamma}, f\chi_{\Delta})$ for all $f \in L_w^1(\nu)$, is an order isometry. Note that T restricted to $L^1(\nu)$ is the integration operator I_{ν} which is an order isometry between $L^1(\nu)$ and $\ell^1(\Gamma) \times c_0(\Delta)$.

Acknowledgment

The authors would like to thank Prof. E. A. Sánchez Pérez for useful discussions on this topic during the preparation of this paper.

References

- [1] G. P. Curbera, *El espacio de funciones integrables respecto de una medida vectorial*, Ph. D. Thesis, Univ. of Sevilla, 1992.
- [2] G. P. Curbera, Operators into L¹ of a vector measure and applications to Banach lattices, Math. Ann. 293, 317-330 (1992).
- [3] G. P. Curbera and W. J. Ricker, Banach lattices with the Fatou property and optimal domains of kernel operators, Indag. Math. (N.S.) 17, 187-204 (2006).
- [4] O. Delgado, L^1 -spaces of vector measures defined on δ -rings, Arch. Math. 84, 432-443 (2005).

- [5] D. R. Lewis, *On integrability and summability in vector spaces*, Illinois J. Math. **16**, 294-307, (1972).
- [6] J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces II*, Springer, Berlin, 1979.
- [7] W. A. J. Luxemburg and A. C. Zaanen, *Riesz Spaces I*, North-Holland, Amsterdam, 1971.
- [8] P. R. Masani and H. Niemi, *The integration theory of Banach space valued measures and the Tonelli-Fubini theorems. I. Scalar-valued measures on δ-rings*, Adv. Math. **73**, 204-241 (1989).
- [9] P. R. Masani and H. Niemi, *The integration theory of Banach space valued measures and the Tonelli-Fubini theorems. II. Pettis integration*, Adv. Math. **75**, 121-167 (1989).
- [10] A. C. Zaanen, *Riesz Spaces II*, North-Holland, Amsterdam, 1983.

Departamento de Matemática Aplicada I E. T. S. de Ingeniería de Edificación Universidad de Sevilla Avenida Reina Mercedes, 4 A 41012 Sevilla, Spain email:olvido@us.es

Instituto Universitario de Matemática Pura y Aplicada Universidad Politécnica de Valencia Camino de Vera s/n 46071 Valencia, Spain email:majuabl1@mat.upv.es