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Abstract

We introduce the notions of approximate Connes-amenability and ap-
proximate strong Connes-amenability for dual Banach algebras. Then we
characterize these two types of algebras in terms of approximate normal
virtual diagonals and approximate σWC−virtual diagonals. We investigate
these properties for von Neumann algebras, measure algebra and the alge-
bra of p-pseudomeasures on locally compact groups. In particular we show
that a von Neumann algebra is approximately Connes-amenable if and only
if it has an approximate normal virtual diagonal. This is the “approximate”
analog of the main result of Effros in [10].

We show that in general the concepts of approximate Connes-amenability
and Connes-amenability are distinct, but for measure algebras these two con-
cepts coincide. Moreover cases where approximate Connes-amenability of
A∗∗ implies approximate Connes-amenability or approximate amenability
of A are also discussed.

1 introduction

The concept of amenability for Banach algebras was introduced and studied for
the first time by B. E. Johnson in [21]. Since then several variants of this con-
cept have appeared in the literature each, as a kind of cohomological triviality.
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In [23], Johnson, Kadison, and Ringrose introduced a notion of amenability for
von Neumann algebras which modified Johnson’s original definition for Banach
algebras in the sense that it takes the dual space structure of a von Neumann alge-
bra into account. This notion of amenability was later called Connes-amenability
by A. Ya. Helemskii [19], due to the seminal work of A. Connes [1,2]. See also
[17,33]. Johnson in [22] showed that a Banach algebra A is amenable if and only
if it has a virtual diagonal. A von Neumann algebraic analogue of this result
was discovered by Haagerup [17]; See also [10], where the author introduces the
notion of normal virtual diagonal and presents another proof of Haagerup’s re-
sult. Runde extended the notion of Connes-amenability to the larger class of dual
Banach algebras [26] and studied certain concrete Banach algebras in the subse-
quent papers [28, 29, 30]. In particular he showed that existence of normal virtual
diagonals implies Connes-amenability but the converse is no longer valid for ar-
bitrary dual Banach algebras.

In all of the above mentioned concepts, all bounded derivations from a given
Banach algebra A into certain Banach A-bimodules are required to be exactly in-
ner. Gourdeau provided the following characterization of amenability; A Banach
algebra A is amenable if and only if any bounded derivation from A into any Ba-
nach A-bimodule is approximately inner, or equivalently weakly approximately
inner [15, Proposition 2.1]. Motivated by Gourdeau’s result, Ghahramani and
Loy [13] introduced several approximate notions of amenability by requiring that
all bounded derivations from a given Banach algebra A into certain Banach A-
bimodules to be approximately inner. However in contrast to Gourdeau’s result,
they removed the boundedness assumption on the net of implementing elements.
In the same paper and the subsequent one [14], the authors showed the distinc-
tion between each of these concepts and the corresponding classical notions and
investigated properties of algebras in each of these new classes. At the beginning,
Ghahramani and Loy asked which of the standard results on amenability work
for the approximate concepts [See 13, page 233]; A question which identified the
main direction of [11, 13, 14] and the present paper.

Motivated by the above question and [10], we introduce and study approximate
Connes-amenability and approximate strong Connes-amenability. In Section 2
we present the definition and some basic properties of approximate Connes-
amenability. An example presented at the beginning of section 2, shows the dis-
tinction of Connes-amenability and approximate Connes-amenability. In Section
3 we introduce approximate strong Connes-amenability, approximate normal vir-
tual diagonals and approximate σWC−virtual diagonals. Then we show that a
dual Banach algebra is approximately Connes-amenable [respectively, approxi-
mately strongly Connes-amenable] if and only if it has an approximate σWC−vir-
tual diagonal [respectively, approximately normal virtual diagonal]. In Section 4
which is the main part of this paper, we prove that a von Neumann algebra is
approximately Connes-amenable if and only if it has an approximate normal
virtual diagonal. This is the “approximate” analog of the main result of Effros
[10]. In Section 5 we show that for a locally compact group G, the measure alge-
bra M(G) of G is Connes-amenable if and only if it is approximately Connes-
amenable if and only if it has an approximate normal virtual diagonal. This
strengthens the main result of [29]. Section 6 is devoted to investigating approx-
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imate Connes-amenability of PMp(G) and VN(G) for arbitrary locally compact
groups. In the last section we show that under certain conditions approximate
Connes-amenability of A∗∗ implies approximate Connes-amenability or approx-
imate amenability of A.
We also should mention that some of our arguments were inspired by their classic
analogs mostly from [10, 21, 26, 27, 30].
Before proceeding further we recall some terminology.
Throughout A is a Banach algebra and X is a Banach A-bimodule. Also the iden-
tity element of A, whenever it exists, is denoted with e. We denote the commutant
of S ⊆ A by S′. The dual space X ∗ of X , is an A-module, with module actions

〈φ.a , x〉 = 〈φ , a.x〉 , 〈a.φ , x〉 = 〈φ , x.a〉 , φ ∈ X ∗, x ∈ X , a ∈ A.

Using the natural A-module structure of A∗ the first and second Arens multipli-
cations on A∗∗ that we denote by “.” and “�” respectively, are defined as follows.
For every a ∈ A, f ∈ A∗, m, n ∈ A∗∗,

〈n. f , a〉 = 〈n , f .a〉 , 〈 f�m , a〉 = 〈m , a. f 〉

〈m.n , f 〉 = 〈m , n. f 〉 , 〈m�n , f 〉 = 〈n , f�m〉.

The second dual of a Banach algebra, equipped with the first [respectively sec-
ond] Arens product is a Banach algebra. A Banach algebra A is called Arens
regular whenever these two products coincide on A∗∗. We always consider the
second dual of a Banach algebra with the first Arens product.
Throughout “derivation” means “bounded derivation” and the set of all bounded
derivations D : A −→ X is denoted by Z1(A,X ). For x ∈ X the map adx(a) =
a.x − x.a (a ∈ A) is called the inner derivation induced by x. A derivation
D : A −→ X is approximately inner if there exists a net (xα) ⊆ X such that
for every a ∈ A, D(a) = limα(a.xα − xα.a), the limit being taken in norm. We
say that A is approximately amenable if for any A-bimodule X , every derivation
D : A −→ X ∗ is approximately inner.
A is called a dual Banach algebra if there is a closed submodule A∗ of A∗ such
that A = (A∗)∗. In general the predual module is not necessarily unique. We will
therefore assume that A always comes with a fixed predual A∗. Measure algebras
of locally compact groups and second duals of Arens regular Banach algebras are
examples of dual Banach algebras.
Let A be a dual Banach algebra and X be a Banach A-bimodule. We call an
element φ ∈ X ∗ a normal element if the maps

A −→ X ∗, a 7−→

{
a.φ
φ.a

are ω∗ − ω∗ continuous. If every element of X ∗ is normal, then we say that X ∗ is
normal. An element x ∈ X is called ω∗-weak continuous if the module maps

A −→ X , a 7−→

{
a.x
x.a

are ω∗-weak continuous. The set of all ω∗-weak continuous elements of X is
denoted by σWC(X ). A dual Banach algebra A is Connes-amenable if for every
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normal dual Banach A-module X , every ω∗ − ω∗ continuous derivation D ∈
Z1(A,X ) is inner.
A left A-submodule X of A∗ is called left introverted if for every φ ∈ E and m ∈
E∗ the functional m.φ ∈ A∗, which is defined by 〈m.φ, a〉 = 〈m, φ.a〉 (a ∈ A),
lies again in E. This turns E∗ into a dual Banach algebra by letting 〈nm, φ〉 =
〈n, m.φ〉 (n, m ∈ E∗, φ ∈ E). It is known that WAP(A∗) = {φ ∈ A∗ : a 7−→
a.φ is weakly compact, a ∈ A} is a left introverted subspace of A∗ and hence
WAP(A∗)∗ with the above product is a dual Banach algebra.

2 Definition and basic properties

Definition. A dual Banach algebra A is approximately Connes-amenable if for
every normal, dual Banach A-bimodule X , every ω∗ − ω∗ continuous derivation
D ∈ Z1(A,X ) is approximately inner.
The following examples show the distinction between Connes-amenability and
approximate Connes-amenability.

Examples 2.1. (i) In this part we present an example of a dual Banach algebra
which is approximately Connes-amenable but is not Connes-amenable. Let N∨

be the set of natural numbers with the binary operation (m, n) 7→ max{m, n}.
Then N∨ is a unital, commutative, weakly cancellative semigroup, that is, for ev-
ery s, t ∈ N∨ the set {x ∈ N∨ : sx = t} is finite. Let A = ℓ1(N∨). Since N∨ is
weakly cancellative, then by [7, Theorem 4.6] A is a dual Banach algebra with re-
spect to the predual c0(N∨). If A is Connes-amenable, then by [7, Theorem 5.13]
N∨ should be a group which is not the case. Thus A is not Connes-amenable.
However as it was shown in [8, Example 10.10], A is approximately amenable
and hence is approximately Connes-amenable.
(ii) In this part we present an example of a dual Banach algebra which is approx-
imately Connes-amenable but is neither Connes-amenable nor approximately
amenable. Note that the algebra of the preceding example was approximately
amenable. Let G be an amenable, non-discrete, locally compact group and let
A := ℓ1(N∨)⊕1 M(G). If A is Connes-amenable, then so would be its image un-
der the w∗-continuous natural epimorphism A −→ ℓ1(N∨) which is a contradic-
tion, since by the preceding example ℓ1(N∨) is not Connes-amenable. Therefore
A is not Connes-amenable. Similarly if A is approximately amenable, then so
is its homomorphic image M(G) under the natural epimorphism A −→ M(G)
which is not the case by [13, Theorem 3.1]; Therefore A is not approximately
amenable. However, by Proposition 2.3 and Theorem 5.2 below, A is approxi-
mately Connes-amenable.

Proposition 2.2. Suppose that A is approximately Connes-amenable. Then A has
left and right approximate identities. In particular A2 is dense in A.
Proof. Let X be the Banach A-bimodule whose underlying linear space is A
equipped with the module operations a.x = ax and x.a = 0, (a ∈ A, x ∈ X ).
Obviously X is a normal dual Banach A-bimodule and the identity map on A
is a ω∗ − ω∗ continuous derivation. Since A is approximately Connes-amenable,
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then there exists a net (aα) ⊆ X such that a = limα aaα (a ∈ A).
This means that A has a right approximate identity. Similarly, one see that A has
a left approximate identity.

Let (A,A∗) be a dual Banach algebra. Then its unitization, A# = A ⊕1 C is a
dual Banach algebra with predual A∗ ⊕∞ C, where ⊕1 and ⊕∞ denote the ℓ1 and
ℓ∞-direct sums respectively. More generally if A and B are dual Banach algebras,
then A⊕1 B is a dual Banach algebra with predual A∗ ⊕∞ B∗.

Proposition 2.3. Let A and B be dual Banach algebras.
(i) A is approximately Connes-amenable if and only if A# is approximately Con-
nes-amenable.
(ii) Suppose A and B are unital. Then A⊕1 B is approximately Connes-amenable
if and only if A and B are approximately Connes-amenable.
Proof. (i) Suppose A is approximately Connes-amenable and D : A# −→ X is a
ω∗ − ω∗ continuous derivation where X is a normal dual Banach A#-bimodule.
By [13, Lemma 2.3], D = D1 + adη where D1 : A# −→ e.X .e is a ω∗ − ω∗ continu-
ous derivation and η ∈ X . Since e.X .e is a normal dual Banach A-bimodule, then
D1(e) = 0 and D1|A is approximately inner; whence D is approximately inner.
Thus A# is approximately Connes-amenable.
Now suppose A# is approximately Connes-amenable and D : A −→ X is a
ω∗ − ω∗ continuous derivation where X is a normal dual Banach A-bimodule.
Set

D̃ : A# −→ X , D̃(a + λe) = Da (a ∈ A, λ ∈ C).

If we define e.x = x.e = x (e ∈ A#, x ∈ X ), then X turns into a normal dual
Banach A#-bimodule and D̃ is a ω∗ − ω∗ continuous derivation. So D̃ is approx-
imately inner, and hence so is D.
(ii) If A⊕1 B is approximately Connes-amenable, then so are A and B, since the
natural projections on A and B are ω∗ − ω∗ continuous. Conversely suppose
A and B are approximately Connes-amenable and X is a normal dual Banach
A⊕1 B-bimodule. Then in the following decomposition

X = eA . X . eA + eB . X . eB + eA . X . eB + eB . X . eA

+ (1 − eA)(1 − eB) . X . eA + (1 − eA)(1 − eB) . X . eB

+ eA . X . (1 − eA)(1 − eB) + eB . X . (1 − eA)(1 − eB)

+ (1 − eA)(1 − eB) . X . (1 − eA)(1 − eB).

each summand is a normal dual Banach A ⊕1 B bimodule. With an argument
similar to the proof of Proposition 2.7 in [13] one can show that A⊕1 B is approx-
imately Connes-amenable.

Proposition 2.4. Suppose that A is a dual Banach algebra with identity. Then
A is approximately Connes-amenable if and only if every ω∗ − ω∗ continuous
derivation into every unital normal dual Banach A-bimodule X is approximately
inner.
Proof. Suppose D ∈ Z1(A,X ) is a ω∗ − ω∗ continuous derivation into the nor-
mal dual Banach bimodule X . By [8, Lemma 2.3], we have D = D1 + adη where
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D1 : A −→ e.X .e is a derivation and η ∈ X . Since D is a ω∗ − ω∗−continuous
derivation and X is a normal dual Banach bimodule then D1 is ω∗−ω∗−continu-
ous and e.X .e is normal. So by assumption D1 is approximately inner, and there-
fore A is approximately Connes-amenable. The converse holds obviously.

3 approximate normal virtual diagonals

Throughout this section we assume that A is a dual Banach algebra with identity.
See Remark 3.4 at the end of this section regarding the non-unital case.
Let L2(A, C) be the space of all bounded bilinear functionals on A and L2

ω∗(A, C)
be the space of separately ω∗ continuous elements of L2(A, C). Following the
terminology of [10, 23], we turn L2(A, C) into a Banach A-bimodule through the
identification L2(A, C) ≃ (A⊗̂A)∗. Then the module actions of A on L2(A, C)
are as follow.

(a.F)(b, c) = F(b, ca), (F.a)(b, c) = F(ab, c), a, b, c ∈ A, F ∈ L2(A, C).

Clearly, L2
ω∗(A, C) is a Banach A-submodule of L2(A, C). Moreover we have a

natural A-bimodule map

θ : A⊗A −→ L2
ω∗(A, C)∗, θ(a ⊗ b)(F) = F(a, b).

Since A∗ ⊗A∗ ⊆ L2
ω∗(A, C) and A∗ ⊗A∗ separates points of A ⊗A, then θ is

one-to-one. We will identify A⊗A with its image, writing

A⊗A ⊆ L2
ω∗(A, C)∗.

The map ∆A is defined as follows.

∆A : A⊗̂A −→ A, a ⊗ b 7−→ ab (a, b ∈ A).

Since multiplication in a dual Banach algebra is separately ω∗ − ω∗-continuous,
we have

∆∗
A(A∗) ⊂ L2

ω∗(A, C).

So the restriction of ∆∗∗
A to L2

ω∗(A, C)∗ turns into a Banach A-bimodule homo-
morphism

∆ω∗ : L2
ω∗(A, C)∗ −→ A.

Suppose F ∈ L2
ω∗(A, C) and M ∈ L2

ω∗(A, C)∗. We use the notation,

∫
F(a, b)dM(a, b) =

∫
FdM := 〈M, F〉.

More generally given a dual Banach space X ∗ and a bounded bilinear function
F : A × A −→ X ∗ such that a −→ F(a, b) and b −→ F(a, b) are ω∗ − ω∗-
continuous,

∫
FdM ∈ X ∗ is defined by

〈
∫

FdM, x〉 =
∫
〈F(a, b), x〉dM(a, b) (x ∈ X ).
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Sometimes we also use the term
∫

F(a, b)dM(a, b) for
∫

FdM.

Definition. A net (Mα) in L2
ω∗(A, C)∗ is called an approximate normal, virtual

diagonal for A if for every a ∈ A

a.Mα − Mα.a −→ 0 and ∆ω∗(Mα) −→ e,

the limits being taken in norm.
It is well known that every dual Banach algebra with a normal virtual diagonal is
Connes-amenable [26]. In the following theorem we extend this result to approx-
imate Connes-amenability.
Theorem 3.1. If A has an approximate normal, virtual diagonal {Mα}, then A is
approximately Connes-amenable.
Proof. Suppose X is a normal dual Banach A-bimodule with predual X∗ and
D ∈ Z1(A,X ) is ω∗ − ω∗-continuous. Since A has an identity, by Proposition 2.4
we can assume that X is unital. Since the bilinear map

F : A×A −→ X , F(a, b) = Da.b

is separately ω∗ − ω∗ continuous, then by the preceding remark we may define

φα =
∫

F(a, b)dMα(a, b) =
∫

Da.b dMα ∈ X .

For c ∈ A, x ∈ X∗ we have

〈c.φα, x〉 = 〈φα, x.c〉 =
∫
〈c.Da.b, x〉dMα(a, b) = 〈

∫
c.Da.b dMα(a, b), x〉.

Therefore

c.φα =
∫

c.Da.b dMα(a, b) (1)

and similarly

φα.c =
∫

Da.bc dMα(a, b). (2)

So if we define Fx ∈ L2
ω∗(A, C) by Fx(a, b) = 〈Da.b, x〉, then the following rela-

tions hold.

∫
〈D(ca).b, x〉dMα(a, b) =

∫
Fx .c(a, b)dMα(a, b) = 〈c.Mα, Fx〉 (3)

∫
〈Da.bc, x〉dMα(a, b) =

∫
c.Fx(a, b)dMα(a, b) = 〈Mα.c, Fx〉 (4)

By (3) and (4) we have

|〈
∫

D(ca).b dMα(a, b)−
∫

Da.bc dMα(a, b), x〉| ≤ ‖c.Mα − Mα.c‖‖Fx‖.
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So

‖
∫

Dca.b dMα(a, b)−
∫

Da.bc dMα(a, b)‖ ≤ ‖c.Mα − Mα.c‖‖D‖‖a‖‖b‖. (5)

If we define G : A ×A −→ L2
ω∗(A, C)∗ by G(a, b) = a ⊗ b, then for every F in

L2
ω∗(A, C) we have

〈
∫

GdMα, F〉 =
∫
〈G(a, b), F〉dMα (a, b) =

∫
F(a, b)dMα(a, b) = 〈Mα, F〉.

So Mα =
∫
(a ⊗ b)dMα(a, b). Now for every t ∈ A∗,

〈∆ω∗(Mα), t〉 = 〈Mα, ∆∗
A(t)〉 =

∫
〈a ⊗ b, ∆∗

A(t)〉dMα(a, b) = 〈
∫

ab dMα(a, b), t〉.

Thus

∆ω∗(Mα) =
∫

ab dMα(a, b). (6)

Moreover we have

〈Dc.
∫

ab dMα(a, b), x〉 =
∫
〈ab, x.Dc〉dMα(a, b)

=
∫
〈Dc.ab, x〉dMα(a, b) = 〈

∫
Dc.ab dMα(a, b), x〉.

Therefore

Dc.
∫

ab dMα(a, b) =
∫

Dc.ab dMα(a, b). (7)

Now by (1), (2) and (7),

c.φα − φα.c =
∫

D(ca).b dMα(a, b)−
∫

Dc.ab dMα(a, b)−
∫

Da.bc dMα(a, b)

=
∫

D(ca).b dMα(a, b)−
∫

Da.bc dMα(a, b)− Dc.
∫

ab dMα(a, b).

Applying our assumption and (5) to the above identity shows that

limα(φα.c − c.φα) = Dc (c ∈ A).

Therefore A is approximately Connes-amenable.

We do not know whether the converse of Theorem 3.1 is true in general. How-
ever we show in Sections 4 and 5 that the converse is true for von Neumann
algebras and measure algebras. For approximate strong Connes-amenability, the
corresponding question is answered in the next theorem which is the approxi-
mate version of [26, Theorem 4.7]. First we need to give a precise definition of
this new concept.
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Definition. A is called approximately strongly Connes-amenable if for each uni-
tal Banach A-bimodule X , every ω∗ − ω∗ continuous derivation D ∈ Z1(A,X ∗)
whose range consists of normal elements is approximately inner.

Theorem 3.2. The following conditions are equivalent.
(i) A has an approximate normal, virtual diagonal.
(ii) A is approximately strongly Connes-amenable.
Proof. (i) =⇒ (ii). This is similar to Theorem 3.1.
(ii) =⇒ (i) Since ∆ω∗ is ω∗ − ω∗ continuous then ker∆ω∗ is ω∗−closed and

(L2
ω∗(A, C)/⊥ker∆ω∗)∗ = ker∆ω∗ .

So ker∆ω∗ is a normal dual A-module and ade⊗e attains its values in the normal
elements of ker∆ω∗ . By assumption there exists a net (Nα) ⊂ ker∆ω∗ such that

ade⊗e(a) = lim
α

a.Nα − Nα.a (a ∈ A).

Let Mα = e ⊗ e − Nα. It follows that

a.Mα − Mα.a −→ 0 and ∆ω∗(Mα) −→ e (a ∈ A).

Therefore (Mα) is an approximate normal virtual diagonal for A.

We saw that dual Banach algebras with an approximate normal, virtual diagonal
are approximately Connes-amenable, but we conjecture that as its classical case
[see 31], the converse is likely to be false in general. We now modify the definition
of approximate normal, virtual diagonal and obtain the desired characterization
of approximate Connes-amenability. Let A be a dual Banach algebra with predual
A∗ and let ∆ : A⊗̂A −→ A be the multiplication map. From [30, Corollary 4.6],
we conclude that ∆∗ maps A∗ into σWC((A⊗̂A)∗). Consequently, ∆∗∗ induces
the homomorphism

∆σWC : σWC((A⊗̂A)∗)∗ −→ A.

With these preparations made, we can now characterize approximately Connes-
amenable, dual Banach algebras through the existence of certain approximate
normal, virtual diagonals. This is indeed an approximate version of [30, Theorem
4.8].

Definition. An approximate σWC−virtual diagonal for A is a net (Mα) in
σWC((A⊗̂A)∗)∗ such that

a.Mα − Mα.a −→ 0 and ∆σWC(Mα) −→ e (a ∈ A),

the limits being taken in norm.

Theorem 3.3. The following conditions are equivalent.
(i) A is approximately Connes-amenable.
(ii) There is an approximate σWC−virtual diagonal for A.
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Proof. (i) =⇒ (ii) The map

D : A −→ σWC((A⊗̂A)∗)∗, a 7−→ a ⊗ e − e ⊗ a

is a well defined bounded derivation, since A⊗̂A can be embedded canonically
into σWC((A⊗̂A)∗)∗. Since the dual module σWC((A⊗̂A)∗)∗ is normal, then it
follows that D is ω∗ − ω∗-continuous. Clearly D attains its values in the ω∗−clo-
sed submodule ker∆σWC which is a normal dual Banach A-module. So there is a
net (Nα) ⊂ ker∆σWC such that

Da = lim
α
(a.Nα − Nα.a) (a ∈ A).

Letting Mα = e ⊗ e − Nα, we see that it is an approximate σWC−virtual diagonal
for A.
(ii) =⇒ (i) Let X be a normal dual Banach A-bimodule. By Proposition 2.4
we may assume that X is unital. Let D ∈ Z1(A,X ) be a ω∗ − ω∗-continuous
derivation. Define

θD : A⊗̂A −→ X , a ⊗ b 7−→ a.Db.

By [28, Lemma 4.9], θ∗D maps the predual X∗ into σWC((A⊗̂A)∗). Therefore
(θ∗|X∗)

∗ maps σWC((A⊗̂A)∗)∗ into X . Let (Mα) ⊂ σWC((A⊗̂A)∗)∗ be an ap-
proximate σWC−virtual diagonal for A and let xα = (θ∗|X∗)

∗(Mα). Observe that
A⊗̂A is ω∗-dense in σWC((A⊗̂A)∗)∗. So for every α there is a net (uα

β) in A⊗̂A

such that Mα = ω∗ − limβ u
β
α . Suppose c ∈ A and t ∈ X∗ are arbitrary. One can

easily check that

xα.c = σ(X ,X∗)− lim
β

θD(u
β
α).c, and

c.xα = σ(X ,X∗)− lim
β

c.θD(u
β
α) = (θ∗|X∗)

∗(c.Mα).
(8)

On the other hand by [30, Lemma 4.6], ∆∗(A∗) ⊆ σWC((A⊗̂A)∗) and hence

∆σWC(Mα) = σ(A,A∗)− limβ∆(u
β
α). (9)

Suppose u
β
α = Σka

αβ
k ⊗ b

αβ
k . Using identities (8) and (9), we obtain

c.xα − xα.c = (θ∗|X∗)
∗(c.Mα)− ω∗ − lim

β
Σka

αβ
k .Db

αβ
k .c

= (θ∗|X∗)
∗(c.Mα)− lim

β
Σka

αβ
k .D(b

αβ
k c) + lim

β
Σka

αβ
k b

αβ
k .Dc

= (θ∗|X∗)
∗(c.Mα − Mα.c) + ∆σWC(Mα).Dc.

(10)

By our assumption and (10), we have

Dc = lim
α
(c.xα − xα.c) (c ∈ A).

This implies that A is approximately Connes-amenable.
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Remark 3.4. In the light of proposition 2.3 if we modify the definition of approx-
imate normal virtual diagonal to the following one, then Theorem 3.1 holds also
in the case that A does not have an identity.
“Let A be a dual Banach algebra (not necessarily unital). A net (Mα) in L2

ω∗(A#, C)∗

is called an approximate normal, virtual diagonal for A if for every a ∈ A#

a.Mα − Mα.a −→ 0 and ∆ω∗(Mα) −→ e.

4 Approximate Connes-amenability of von Neumann algebras

In this section we prove the “approximate” analog of the main result of Effros in
[10]. First recall some notations from [10]. Let A be a von Neumann algebra. We
call a map F ∈ L2(A, C) reduced if there exist states p, q ∈ A∗ and a constant K
such that for every a, b ∈ A,

|F(a, b)| ≤ Kp(aa∗)1/2q(b∗b)1/2.

The set L2
ω∗,0(A, C) of all such bilinear functionals is an A- submodule of L2(A, C)

and L2
ω∗,0(A, C)∗ is a normal dual Banach A−bimodule [10, Lammas 2.1 and 2.2].

Also A∗ ⊗A∗ ⊆ L2
ω∗,0(A, C) and A⊗A is identified with an A−submodule of

L2
ω∗,0(A, C)∗. If ∆ : A ⊗A −→ A is the multiplication map, then ∆∗ maps A∗

into L2
ω∗,0(A, C) and consequently ∆∗∗ drops to an A-bimodule homomorphism

∆ω∗,0 : L2
ω∗,0(A, C)∗ −→ A.

We need the following Lemma in the proof of the next Theorem.

Lemma 4.1. [10, Lemma 2.3] Suppose A is a finite or properly infinite von Neu-
mann algebra. Then there is a ω∗ − ω∗ continuous linear A−bimodule map

Φ : L2
ω∗,0(A, C)∗ −→ L2

ω∗(A, C)∗

such that ∆ω∗ ◦ Φ = ∆ω∗,0.

Theorem 4.2. A von Neumann algebra A is approximately Connes-amenable if
and only if it has an approximate normal virtual diagonal.
Proof. If A has an approximate normal virtual diagonal then by Theorem 3.1, A
is approximately Connes-amenable.
Conversely, suppose A is approximately Connes-amenable. The dual Banach
A−bimodule
L2

ω∗,0(A, C)∗ is normal and hence the bounded derivation D defined by

D : A −→ L2
ω∗,0(A, C)∗ , a 7−→ a ⊗ eA − eA ⊗ a

is ω∗ − ω∗ continuous. Since ∆ω∗,0 is ω∗ − ω∗ continuous, then ker∆ω∗ ,0 is a
ω∗−closed submodule of L2

ω∗,0(A, C)∗ and we have a Banach A−bimodule iso-
morphism

(L2
ω∗,0(A, C)/⊥ker∆ω∗ ,0)

∗ ∼= ker∆ω∗ ,0,
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As a result ker∆ω∗ ,0 is a normal dual Banach A−bimodule and D(A) ⊆ ker ∆ω∗,0.
Since A is approximately Connes-amenable, then there exists a net (Nα) ⊆ ker
∆ω∗,0 such that

Da = lim
α
(a.Nα − Nα.a) (a ∈ A).

If we set Mα = eA ⊗ eA − Nα, then

lim
α
(a.Mα − Mα.a) = 0 (a ∈ A), and

lim
α

∆ω∗,0(Mα) = ∆ω∗,0(eA ⊗ eA) = eA.

If A is finite or properly infinite then by Lemma 4.1, M̃α = Φ(Mα) ∈ L2
ω∗(A, C)∗

is an approximate normal virtual diagonal because of the following identities

lim
α
(a.M̃α − M̃α.a) = lim

α
Φ(a.Mα − Mα.a) = 0 (a ∈ A),

lim
α

∆ω∗(M̃α) = lim
α

∆ω∗ ◦ Φ(Mα) = lim
α

∆ω∗,0(Mα) = eA.

In the general case, there are central projections p1, p2 ∈ A, such that eA = p1 +
p2, p1A is a finite von Neumann algebra and p2A is a properly infinite von Neu-
mann algebra. Since A is approximately Connes-amenable and A = p1A⊕ p2A,
then it is easy to see that the von Neumann algebras p1A and p2A are approxi-
mately Connes-amenable. Therefore there exist nets (Mα) ⊆ L2

ω∗(p1A, C)∗ and
(Mβ) ⊆ L2

ω∗(p2A, C)∗ such that,

lim
α
(a.Mα − Mαa) = 0 (a ∈ p1A) and ∆ω∗(Mα) −→ p1, (1)

lim
β
(a.Mβ − Mβa) = 0 (a ∈ p2A) and ∆ω∗(Mβ) −→ p2. (2)

For each F ∈ L2
ω∗(A, C) define

Fi(a, b) = F(a, b) and a, b ∈ piA. (i = 1, 2)

Clearly Fi ∈ L2
ω∗(piA, C). Now define the net (M(α,β)) ⊆ L2

ω∗(A, C)∗ by M(α,β) =
Mα ⊕ Mβ. Then

〈M(α,β), F〉 = 〈Mα ⊕ Mβ, F〉 = 〈Mα, F1〉+ 〈Mβ, F2〉.

For each c ∈ A and a, b ∈ piA,

(Fc)i(a, b) = (Fc)(a, b) = F(cia, b) = Fici(a, b),

(cF)i(a, b) = (cF)(a, b) = F(a, bci) = ciFi(a, b).

where c = c1 + c2, ci ∈ piA, i = 1, 2. Hence

〈c.M(α,β), F〉 = 〈Mα ⊕ Mβ, Fc〉

= 〈Mα, (Fc)1〉+ 〈Mβ, (Fc)2〉

= 〈Mα, F1c1〉+ 〈Mβ, F2c2〉

= 〈c1.Mα, F1〉+ 〈c2.Mβ, F2〉

= 〈c1.Mα ⊕ c2.Mβ, F〉.
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Therefore c.M(α,β) = c1.Mα ⊕ c2.Mβ. Similarly M(α,β).c = Mα.c1 ⊕ Mβ.c2. By (1)
and (2) we have,

lim
(α,β)

(c.M(α,β) − M(α,β).c) = lim
(α,β)

(c1.Mα ⊕ c2.Mβ − Mα.c1 ⊕ Mβ.c2)

= lim
(α,β)

((c1.Mα − Mα.c1)⊕ (c2.Mβ − Mβ.c2)) = 0.

For a∗ ∈ A∗ define a∗,i ∈ (piA)∗ by a∗,i(b) = a∗(b) (b ∈ piA). So for each
a, b ∈ pi A,

∆∗(a∗,i)(a, b) = a∗,i(ab) = a∗(ab) = ∆∗(a∗)(a, b) = (∆∗(a∗))i(a, b).

Thus,
〈∆ω∗(M(α,β)), a∗〉 = 〈Mα ⊕ Mβ, ∆∗(a∗)〉

= 〈Mα, ∆∗(a∗)1〉+ 〈Mβ, ∆∗(a∗)2〉

= 〈Mα, ∆∗(a∗,1)〉+ 〈Mβ, ∆∗(a∗,2)〉

= 〈∆ω∗(Mα), a∗,1〉+ 〈∆ω∗(Mβ), a∗,2〉

= 〈∆ω∗(Mα)⊕ ∆ω∗(Mβ), a∗,1 ⊕ a∗,2〉.

As a result ∆ω∗(M(α,β)) = ∆ω∗(Mα)⊕ ∆ω∗(Mβ). Also

∆ω∗(M(α,β))− eA = (∆ω∗(Mα)− p1)⊕ (∆ω∗(Mβ)− p2). (3)

Finally based on (1),(2) and (3) we have

lim
(α,β)

∆ω∗(M(α,β)) −→ eA.

It follows that net (M(α,β)) is an approximate normal virtual diagonal for A.

5 Approximate Connes-amenability of M(G)

In this section we characterize approximate Connes-amenable measure algebras
on locally compact groups. Throughout this section G is a locally compact
group, Gop denotes the same group, with reversed multiplication and
∆ : M(G)⊗̂M(G) −→ M(G) is the multiplication map. We recall some termi-
nology from [28]. A bounded function f : G × Gop −→ C is called separately C0

if for each x ∈ G, the function Gop −→ C, y 7→ f (x, y), belongs to C0(G
op), and

for each y ∈ Gop, the function G −→ C, x 7→ f (x, y) belongs to C0(G). The col-
lection of all separately C0−functions is denoted by SC0(G × Gop). Let LUC(G)
be the commutative C∗-algebra of left uniformly continuous functions on G and
GLUC be its character space. The set

{ f ∈ LUC(G × Gop) : φ. f ∈ SC0(G × Gop) for all φ ∈ (G × Gop)LUC}

which is denoted by LUCSC0(G × Gop) is a closed M(G)-submodule of
SC0(G × Gop) whose dual is a normal dual Banach M(G)-bimodule. Moreover
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∆∗ = ∆∗|C0(G) maps C0(G) into LUCSC0(G × Gop) [28, Theorem 4.4]. Therefore

∆∗∗ turns into an M(G)-bimodule homomorphism ∆̃ : LUCSC0(G × Gop)∗ −→
M(G).

Proposition 5.1. If M(G) is approximately Connes-amenable, then G is amenable.
Proof. First we show that here is a net (Mα) ⊆ LUCSC0(G × Gop)∗ such that

µ.Mα − Mα.µ −→ 0 (µ ∈ M(G)) and ∆̃(Mα) −→ δe.

It is easy to see that the map

D : M(G) −→ LUCSC0(G × Gop)∗, µ 7−→ µ ⊗ δe − δe ⊗ µ

is a bounded derivation. By [28, Proposition 3.2] the maps µ 7−→ µ ⊗ δe and
µ 7−→ δe ⊗ µ form M(G) into M(G × Gop) are ω∗ − ω∗continuous and hence so

is D. Moreover D(M(G)) ⊆ ker∆̃. Since ∆̃ is a ω∗ − ω∗ continuous bimodule

homomorphism, then ker∆̃ is a ω∗− closed submodule and

(LUCSC0(G × Gop)/⊥ker∆̃)∗ ∼= ker∆̃

as Banach M(G)-bimodules. By [28, Theorem 4.4(ii)], LUCSC0(G×Gop)∗ is a nor-

mal dual Banach M(G)-bimodule, and so is ker∆̃. Since M(G) is approximately

Connes-amenable, then there is a net (Nα) ⊆ ker∆̃ such that Dµ = limα µ.Nα −
Nα.µ (µ ∈ M(G)). The identities µ.Nα = (µ ⊗ δe) ∗ Nα and Nα.µ = Nα ∗ (δe ⊗ µ)
imply that if we set Mα = δe ⊗ δe − Nα, then the net (Mα) has the required prop-
erties.
Since ∆̃(Mα) −→ δe, then we can suppose that Mα 6= 0 for every α and if we con-
sider Mα as a measure on the character space of the commutative
C∗-algebra LUCSC0(G × Gop), then the total variation |Mα| is a non-zero element
of LUCSC0(G × Gop)∗. Observe that

|δg.Mα| = |(δg ⊗ δe) ∗ Mα| = (δg ⊗ δe) ∗ |Mα| = δg.|Mα|,

and similarly |Mα.δg| = |Mα|.δg. Thus

‖δg.|Mα| − |Mα|.δg‖ = ‖|δg.Mα| − |Mα.δg|‖ ≤ ‖Mα.δg − δg.Mα‖ −→ 0.

On the other hand the convergence ∆̃(Mα) −→ δe implies that the net (1/‖Mα‖)
is bounded and so if we set Nα = |Mα|/‖Mα‖, then δg.Nα − Nα.δg −→ 0. Let N be
a ω∗− cluster point of (Nα). Then δg.N = N.δg for every g ∈ G. As in the proof
of [28, Theorem 5.3], LUC(G × Gop) can be considered as a C∗−subalgebra of
LUCSC0(G×Gop)∗∗; So in particular 〈 f , N〉 is well defined for each f ∈ LUC(G ×
Gop). Note that the embedding of LUC(G × Gop) into LUCSC0(G × Gop)∗∗ is an
M(G)−bimodule homomorphism. Define

m : LUC(G) −→ C , f 7−→ 〈N, f ⊗ 1〉.

Since f ⊗ 1 ∈ LUC(G × Gop), then m is a well-defined, positive, linear functional
whose normalization is a left invariant mean on LUC(G) as in the proof of [28,
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Theorem 5.3]. Therefore G is amenable.

Combination of the preceding proposition, Theorem 3.1 and the main result of
[29] leads to the following result.

Theorem 5.2. The following conditions are equivalent.
(i) G is amenable.

(i) M(G) is approximately Connes-amenable.
(iii) M(G) is Connes-amenable.

(iv) M(G) has an approximate normal, virtual diagonal.
The algebra WAP(G) of weakly almost periodic functions on G is a commutative
C∗−algebra which is a left introverted subspace of L∞(G) [34, Lemma 6.3]. Thus
WAP(G)∗ is a dual Banach algebra which is identified with WAP(L∞(G))∗. In the
next proposition we identify the relationship between approximate amenability
of A and approximate Connes-amenability of WAP(A∗)∗ in the special case of
group algebras.

Proposition 5.3. G is amenable if and only if WAP(L∞(G))∗ is approximately
Connes-amenable.

Proof. Suppose G is amenable. By [21, Theorem 2.5] and [13, Theorem 3.2], G
is amenable if and only if L1(G) is approximately amenable. Since the image of
L1(G) is ω∗−dense in WAP(L∞(G))∗, then WAP(L1(G)∗)∗ is Connes-amenable
[26, Proposition 4.2(i)].
Conversely suppose WAP(L∞(G))∗ is approximately Connes-amenable. Since
C0(G) ⊆ WAP(G), the restriction map from WAP(G)∗ onto M(G) is a
ω∗ − ω∗ continuous algebra homomorphism. Consequently M(G) is approxi-
mately Connes-amenable and by Theorem 5.2, G is amenable.

6 Approximate Connes-amenability of PMp(G)

In this section we study approximate Connes-amenability of the algebra of p-
pseudomeasures. First we need a more general result in the abstract setting. Let
A be a Banach algebra, B be a dual Banach algebra and Θ : A −→ B be a ho-
momorphism. We can consider B as a Banach A-bimodule in a natural way and
then we can equip X := B⊗̂B∗ with the A-bimodule operation

a . (b⊗φ) := b⊗Θ(a) . φ and (b⊗φ) . a := b⊗φ . Θ(a) (a ∈ A, φ ∈ B∗, b ∈ B).

Identifying X ∗ with L(B) via the identity

〈b ⊗ φ, T〉 = 〈Tb, φ〉 (b ∈ B, φ ∈ B∗, T ∈ L(B)),

we obtain the corresponding dual A-bimodule operation on L(B),

(a . T)(b) = Θ(a) (Tb) (T . a)(b) = (Tb) Θ(a) (a ∈ A, b ∈ B, T ∈ L(B)).
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Note that the left action of A on L(B) coincides with the natural one, but the right
action is different.

Proposition 6.1. Let A be a Banach algebra, B be a dual Banach algebra and let
Θ : A −→ B be a homomorphism. Suppose that one of the following holds.
(i) A is approximately amenable.
(ii) A is an approximately Connes-amenable dual Banach algebra, and Θ is
ω∗ − ω∗-continuous.
Then there is a net {Qi} in L(B) such that each Qi is the identity map on Θ(A)′ ,

a . Qi − Qi . a −→ 0 (a ∈ A), and

Qi(z1bz2) = z1Qi(b)z2 (z1, z2 ∈ Θ(A)′ , b ∈ B).

Proof. Suppose X := B⊗̂B∗ and X ∗ equipped with the above mentioned A-
module operation. Let F be the subspace of X ∗ consisting of those T ∈ X ∗ such
that

〈zb ⊗ φ − b ⊗ φ . z, T〉 = 0,

〈bz ⊗ φ − b ⊗ z . φ, T〉 = 0,

〈z ⊗ φ, T〉 = 0, (b ∈ B, φ ∈ B∗, z ∈ Θ(A)′).

Then F is a ω∗-closed A-bimodule of X ∗ and thus a dual Banach A-bimodule.
Consider the derivation D = adidB from A into L(B). As it was shown in the
proof [27, Theorem 4.4.11], D(A) ⊆ F. Thus if (i) holds, D is approximately inner.
If (ii) holds, then X ∗ is a normal dual Banach A-bimodule and D is ω∗ − ω∗-
continuous. Thus again D is approximately inner.
Therefore in any case there is a net (Ti) ⊆ F such that D = limi adTi

. Setting Qi :=
idB − Ti, for each i, it is immediate that a . Qi − Qi . a −→ 0. Since 〈z ⊗ φ, Ti〉 = 0,
for z ∈ Θ(A)′ and φ ∈ B∗, each Qi is the identity map on Θ(A)′ .
For b ∈ B, z ∈ Θ(A)′ , and φ ∈ B∗, we have Ti(zb) = zTi(b), and Ti(bz) =
Ti(b)(z). Therefore Qi(z1bz2) = z1Qi(b)z2, for z1, z2 ∈ Θ(A)′ , and b ∈ B.

Let G be a locally compact group, p ≥ 1 and λp and ρp be the left and right regular
representations of G on Lp(G) respectively. We can extend λp to the measure alge-

bra M(G) and thus on L1(G). The Banach algebra PMp(G) of p-pseudomeasures

on G is the closure of λp(L1(G)) in L(Lp(G)), with respect to the weak operator
topology.
Recall that G is called inner amenable if there is a mean m on L∞(G) such that

〈δg ⋆ φ ⋆ δg−1, m〉 = 〈φ, m〉 (g ∈ G, φ ∈ L∞(G)) .

For a function f on a locally compact group G, define f̆ by f̆ (g) = f (g−1).
Let p, q ∈ (1, ∞) such that 1/p + 1/q = 1. The space Ap(G) consists of those
f ∈ C0(G) such that there are sequences (ξn) ⊆ Lp(G) and (ηn) ⊆ Lq(G) with

f =
∞

∑
n=1

ξn ⋆ η̌n ,
∞

∑
n=1

||ξn||p ||ηn||q < ∞ .
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Ap(G), which is called a Figa-Talamanca-Herz algebra, is a Banach algebra with
respect to pointwise operations [20], and the dual space Ap(G)∗ can be identified
with the algebra PMq(G) [25], where the duality is given by

〈ξ ⋆ η̆, T〉 := 〈Tη, ξ〉 (T ∈ PMq(G), ξ ∈ Lp(G), η ∈ Lq(G)) .

Theorem 6.2. Let G be an inner amenable locally compact group, p ∈ (1, ∞), and
let PMp(G) be approximately Connes-amenable. Then G is amenable.
Proof. Since G is inner amenable, then there is a net ( fi)i ⊆ P(G) such that

|| λ1(g
−1) fi − ρ1(g) fi || −→ 0 (g ∈ G) .

Let q ∈ (1, ∞) be such that
1

p
+

1

q
= 1. Let ξi := f

1/p
i and ηi := f

1/q
i , so that

ξi ∈ Lp(G) and ηi ∈ Lq(G). It follows that

|| λp(g
−1)ξi − ρp(g)ξi ||p −→ 0 , || λq(g

−1)ηi − ρq(g)ηi ||q −→ 0 (g ∈ G) .

For φ ∈ L∞(G) let Mφ ∈ L(Lp(G)) be the multiplication operator with symbole
φ.
By Proposition 6.1, with A = PMp(G), B = L(Lp(G)), and Θ as the inclusion,
there exists a net Qα : L(Lp(G)) −→ L(Lp(G)) such that each Qα is the identity

on PMp(G)
′
,

Qα(T1ST2) = T1 Qα(S) T2 (T1, T2 ∈ PMp(G)
′
, S ∈ L(Lp(G))) ,

and
T Qα(S)− Qα(S) T −→ 0 (T ∈ PMp(G), S ∈ L(Lp(G))) .

In particular

‖λp(g) Qα(S)− Qα(S) λp(g)‖ −→ 0 (g ∈ G, S ∈ L(Lp(G))).

Define mi,α ∈ L∞(G)∗ by

〈φ, mi,α〉 := 〈Qα(Mφ)ξi , ηi〉 (φ ∈ L∞(G)) .

For each α, let mα be a ω∗-cluster point of (mi,α)i. Passing to a subnet, we may
suppose that mα = ω∗ − limi mi,α, so that

〈φ, mα〉 = lim
i
〈φ, mi,α〉 (φ ∈ L∞(G)) .

An argument similar to [26, Theorem 5.3], shows that

〈φ ⋆ δg, mα〉 − 〈φ, mα〉 = lim
i
(〈λp(g) Qα(Mφ) λp(g

−1)ξi, ηi〉 − 〈Qα(Mφ)ξi , ηi〉) ,

for g ∈ G and φ ∈ L∞(G).
Thus

|〈φ ⋆ δg − φ, mα〉| ≤ lim
i

∫

G
||λp(g) Qα(Mφ) λp(g

−1)− Qα(Mφ)|| |ξi(h)| |ηi(h)| dh

= ||λp(g) Qα(Mφ) λp(g
−1)− Qα(Mφ)||.
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Therefore
lim

α
|〈φ ⋆ δg − φ, mα〉| = 0.

Normalizing n, where n is a ω∗-cluster point of (mα)α, we obtain a right invariant
mean on L∞(G), so that G is amenable.

Corollary 6.3. For a locally compact group G, consider the following.
(i) G is amenable.
(ii) PMp(G) is approximately Connes-amenable, for every p ∈ (1, ∞).
(iii) VN(G) is approximately Connes-amenable.
(iv) PMp(G) is approximately Connes-amenable, for one p ∈ (1, ∞).
Then we have (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) ,
and if G is inner amenable, (iv) =⇒ (i) holds.
Proof. (i) =⇒ (ii) If G is amenable, then for every p ∈ (1, ∞) PMp(G) is Connes-
amenable [26, Theorem 5.3] and hence is approximately Connes-amenable.
(ii) =⇒ (iii) and (iii) =⇒ (iv) are trivial, because VN(G) = PM2(G). If G is
inner amenable, then (iv) =⇒ (i) follows from Theorem 6.2.

7 Approximate Connes amenability of A∗∗

If A is a dual Banach algebra such that A∗∗ is Connes-amenable, then so is A [8].
In the following theorem we extend this result to approximate Connes-amenability.

Theorem 7.1. Let A be an Arens regular Banach algebra such that A∗∗ is approx-
imately Connes-amenable.
(i) If A is a dual Banach algebra, then A is approximately Connes-amenable.
(ii) If A is an ideal in A∗∗ and A∗∗ has an identity then A is approximately
amenable.
Proof. (i) Suppose X is a normal dual Banach A-bimodule, and π : A∗∗ −→ A
is the restriction map to A∗. Then π is a ω∗ − ω∗ continuous homomorphism.
Therefore X is a normal dual Banach A∗∗-bimodule with the following actions

a∗∗.x = π(a∗∗)x , x.a∗∗ = xπ(a∗∗) (x ∈ X , a∗∗ ∈ A∗∗).

Let D : A −→ X be a ω∗ − ω∗ continuous derivation. It is easy to see that
Doπ : A∗∗ −→ X is a ω∗−ω∗ continuous derivation. Since A∗∗ is approximately
Connes-amenable, than there exists a net (xα) ⊆ X such that

Doπ(a∗∗) = lim
α

a∗∗.xα − xα.a∗∗ (a∗∗ ∈ A∗∗).

So
D(a) = lim

α
a.xα − xα.a (a ∈ A).

(ii) By [13, Proposition 2.5] in order to show that A is approximately amenable it
is sufficient to show that every D ∈ Z1(A,X ∗) is approximately inner for each
neo-unital Banach A-module.
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Let X be a neo-unital Banach A-bimodule, and let D ∈ Z1(A,X ∗). As in the
proof of [27, Theorem 4.4.8] one can show that X ∗ is a normal dual Banach A∗∗-

bimodule and D has a unique extension D̃ ∈ Z1(A∗∗,X ∗). From the approximate

Connes-amenability of A∗∗ we conclude that D̃, and hence D is inner. It follows
that A is approximately amenable.

Theorem 7.2. Suppose A is a Banach algebra with a bounded approximate iden-
tity (eβ) and B(A,A∗) = W(A,A∗). If A∗∗ is approximately strongly Connes-
amenable, then A is approximately amenable.
Proof. Following the argument of [26, Theorem 4.8] we see that A is Arens regular
and hence A∗∗ is a dual Banach algebra. Moreover

(A⊗̂A)∗∗ ∼= L2
ω∗(A∗∗, C)∗

as Banach A-bimodules. Since A is Arens regular and has a bounded approx-
imate identity, then A∗∗ has an identity e. Thus by Theorem 3.2, A∗∗ has an

approximate normal virtual diagonal (Mα) ⊂ L2
ω∗(A∗∗, C)∗. Now set M

′′

(α,β) =

Mα + eβ ⊗ eβ and F(α,β) = G(α,β) = eβ. Then for every a ∈ A we have

aM
′′

(α,β) − M
′′

(α,β)a + F(α,β) ⊗ a − a ⊗ G(α,β)

= aMα − Mαa + aeβ ⊗ eβ − eβ ⊗ eβa + eβ ⊗ a − a ⊗ eβ

= (aMα − Mαa) + (aeβ − a)⊗ eβ + eβ ⊗ (a − eβa) −→ 0.

Moreover aF(α,β) −→ a, G(α,β)a −→ a and

∆∗∗(M
′′

(α,β))a − F(α,β)a − G(α,β)a = ∆∗∗(Mα)a + e2
βa − eβa − eβa −→ 0.

Therefore by [13, Corollary 2.2] A is approximately amenable.
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