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Abstract

By using minimax methods in critical point theory, some new existence
theorems of infinitely many periodic solutions are obtained for a second-
order ordinary p-Laplacian system. The results obtained generalize many
known works in the literature.

1. Introduction

Consider the periodic solutions of the following ordinary p-Laplacian system

d

dt
(|u̇(t)|p−2u̇(t))− L(t)|u(t)|p−2u(t) +∇F(t, u(t)) = 0, a.e. t ∈ R, (1.1)

where p > 1, T > 0, F : R×R
n → R is T-periodic in t for all u ∈ R

n, ∇F(t, u)

is the gradient of F(t, u) with respect to u. L ∈ C(R, R
n2
) is a positive definite

symmetric matrix.

Throughout this paper, we always assume the following condition holds.
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(A) F(t, x) is measurable in t for all x ∈ R
n and continuously differentiable in x

for a.e. t ∈ [0, T], and there exist a ∈ C(R+, R
+), b ∈ L1(0, T; R

+) such that

|F(t, x)| ≤ a(|x|)b(t), |∇F(t, x)| ≤ a(|x|)b(t)

for all x ∈ R
n and a.e. t ∈ [0, T].

When p = 2, problem (1.1) becomes the following second-order Hamiltonian
system

ü(t)− L(t)u(t) +∇F(t, u(t)) = 0, a.e. t ∈ R. (1.2)

When L(t) = 0, problem (1.2) reduces to the following Hamiltonian system

ü(t) +∇F(t, u(t)) = 0, a.e. t ∈ R. (1.3)

Taking L(t) = 0 in problem (1.1), then we have

d

dt
(|u̇(t)|p−2u̇(t)) +∇F(t, u(t)) = 0, a.e. t ∈ R. (1.4)

Recently there are many papers concerning the existence of periodic solutions
or homoclinic solutions for problems (1.2) and (1.3) via critical point theory. Here
for identifying a few, we only mention [1,3,10,14-16,19,20,22]. However, there
are not so many results about p-Laplacian systems. In [17], by using the dual
least action principle in variational method, Tian and Ge obtained an existence
result, which generalized Theorem 3.5 in [8]; in [4], Jebelean and Morosanu ob-
tained two existence results by the least action principle and the Mountain Pass
Lemma under nonlinear boundary conditions; Mawhin [6] got some existence re-
sults using the Schauder’s fixed point theorem; the authors in [2,11] generalized
problem (1.3) to differential inclusion systems, and got some existence results
by the nonsmooth critical point theory; Paşca and Tang [12] obtained a result
on the existence of infinite subharmonic solutions for sublinear differential in-
clusions systems with p-Laplacian by minimax methods in critical point theory;
in [7], Manásevich and Mawhin discussed a general vector valued operator, and
got some existence results by the topological methods; a multiplicity result was
obtained in [5], where the nonlinearity ∇F(t, x) was assumed to be bounded; by
using the Saddle Point Theorem in critical point theory, Xu and Tang [21] gener-
alized the results of problem (1.3) of [19] and obtained some new results; Tang
and Xiao [18] investigated homoclinic solutions of a more general ordinary p-
Laplacian system and obtained a new result.

In [9], Ma and Zhang generalized the main result of [1] to p-Laplacian system
(1.4) and established the existence of infinitely many periodic solutions for (1.4)
by minimax methods in critical point theory. More precisely, they obtained the
following main theorem.

Theorem A. (See [9].) Suppose that F satisfies assumption (A) and the following con-
ditions:

(H1) F(t, x) ≥ 0 for all (t, x) ∈ R×R
n;

(H2) lim|x|→0
F(t,x)
|x|p

= 0 uniformly for a.e. t ∈ [0, T];
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(H3) lim inf|x|→∞

F(t,x)
|x|p

> 0 uniformly for a.e. t ∈ [0, T];

(H4) There exists a positive constant M such that lim sup|x|→∞

F(t,x)
|x|r
≤ M uniformly

for a.e. t ∈ [0, T];

(H5) There exists M1 > 0 such that lim inf|x|→∞

(∇F(t,x),x)−pF(t,x)
|x|µ

≥ M1 uniformly

for a.e. t ∈ [0, T];

where r > p and µ > r − p. Then problem (1.4) has a sequence of distinct periodic
solutions with period kjT satisfying kj ∈ N and kj → ∞ as j→ ∞.

Motivated by the above papers, we consider the existence of periodic solu-
tions for problem (1.1) and obtain the following theorem.

Theorem 1.1. Suppose that F satisfies (A), (H1), (H2), (H4), (H5). Moreover, assume
that the following conditions hold:

(L) L ∈ C(R, R
n2
) is positive definite symmetric T-periodic matrix for all t ∈ R and

there exist constants c2 ≥ c1 > 0 such that

c1|x|
p ≤ (L(t)|x|p−2x, x) ≤ c2|x|

p for all t ∈ R and x ∈ R
n;

(H3)’ lim inf|x|→∞

F(t,x)
|x|p

>
c2
p uniformly for a.e. t ∈ [0, T].

Then problem (1.1) has a sequence of distinct nonconstant periodic solutions with period
kjT satisfying kj ∈ N and kj → ∞ as j→ ∞.

Remark 1.1. The existence results of problem (1.3) have been generalized to p-
Laplacian system (1.4) or differential inclusion system. However, similar gener-
alization of problem (1.2) cannot be found in the literature due to the difficulty
made by the matrix L(t). In order to overcome this difficulty, we need other con-
dition such as (L).

Remark 1.2. We point out that Theorem 1.1 generalizes Theorem A. From (H3),

we know that lim inf|x|→∞

F(t,x)
|x|p

is bounded from below uniformly for a.e. [0, T],

without loss of generality, we can choose a positive constant such as c2
p such that

lim inf|x|→∞

F(t,x)
|x|p

>
c2
p uniformly for a.e. t ∈ [0, T], that is our condition (H3)’.

If we use other conditions to replace (H4) and (H5) in Theorem 1.1, then we
obtain the following theorem.

Theorem 1.2. Suppose that L satisfies (L) and F satisfies (A), (H1), (H2), (H3)’ and
the following conditions:

(H4)’ There exists a positive constant M2 such that lim sup|x|→∞

F(t,x)
|x|p

≤ M2 uni-

formly for a.e. t ∈ [0, T];

(H6) There exists f ∈ L1(0, T; R
+) such that (∇F(t, x), x) − pF(t, x) ≥ f (t) for all

x ∈ R
n and a.e. t ∈ [0, T];

(H7) lim|x|→∞[(∇F(t, x), x) − pF(t, x)] = +∞ for a.e. t ∈ [0, T].
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Then problem (1.1) has a sequence of distinct nonconstant periodic solutions with period
kjT satisfying kj ∈ N and kj → ∞ as j→ ∞.

Theorem 1.3. The conclusion in Theorem 1.2 is the same if conditions (H6) and (H7)
are replaced by the following conditions, respectively:

(H6)’ There exists g ∈ L1(0, T; R
+) such that (∇F(t, x), x) − pF(t, x) ≤ g(t) for all

x ∈ R
n and a.e. t ∈ [0, T];

(H7)’ lim|x|→∞[(∇F(t, x), x) − pF(t, x)] = −∞ for a.e. t ∈ [0, T].

Remark 1.3. Our results also hold true even if L(t) = 0 or p = 2, from this point,
our results generalize many results in the literature. As far as we know, existence
results of periodic solutions for problem (1.1) cannot be found in the literature.
Besides, under the conditions of our theorems, all the periodic solutions we ob-
tain in this paper are nonconstant.

2. Preliminaries

Let k be a positive integer and W
1,p
kT be the Sobolev space defined by

W
1,p
kT = {u : R→ R

n| u is absolutely continuous, u(t + kT) = u(t) and

u̇ ∈ Lp(0, kT; R
n)}

with the norm

‖u‖ =

(

∫ kT

0
|u(t)|pdt +

∫ kT

0
|u̇(t)|pdt

)1/p

.

Define the functional ϕk on W
1,p
kT by

ϕk(u) =
1

p

∫ kT

0
[|u̇(t)|p +(L(t)|u(t)|p−2u(t), u(t))]dt−

∫ kT

0
F(t, u(t))dt, u ∈W

1,p
kT .

It follows from [8] and assumption (A) that the functional ϕk is continuously

differentiable on W
1,p
kT and

< ϕ′k(u), v >=
∫ kT

0
[(|u̇(t)|p−2u̇(t), v̇(t)) + (L(t)|u(t)|p−2u(t), v(t))−

(∇F(t, u(t)), v(t))]dt (2.1)

for u, v ∈W
1,p
kT . It is well known that the solutions of problem (1.1) correspond to

the critical points of the functional ϕk.

For u ∈ W
1,p
kT , let ū = 1

kT

∫ kT
0 u(t)dt and ũ(t) = u(t) − ū, then it follows from

the Proposition 1.1 in [8] that

‖u‖∞ := max
t∈[0,kT]

|u(t)| ≤ ((kT)−1/p + (kT)1/q)‖u‖ = dk‖u‖, (2.2)
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where dk = (kT)−1/p + (kT)1/q and if 1
kT

∫ kT
0 u(t)dt = 0, then

‖ũ‖∞ := max
t∈[0,kT]

|ũ(t)| ≤ (kT)1/q‖u̇‖Lp , (2.3)

and

‖ũ‖
p
Lp ≤ (kT)p‖u̇‖

p
Lp , (2.4)

where 1
p + 1

q = 1. Let W̃
1,p
kT = {u ∈ W

1,p
kT | ū = 0}, then W

1,p
kT = W̃

1,p
kT

⊕

R
n. We

will use the following lemma to prove our main results.

Lemma 2.1. (See [13].) Let E be a real Banach space with E = X1
⊕

X2, where X1 is
finite dimensional. Suppose that ϕ ∈ C1(E, R) satisfies the (PS) condition, and

(a) There exist constants ρ, α > 0 such that ϕ|∂Bρ
⋂

X2
≥ α, where Bρ := {u ∈ E| ‖u‖ ≤

ρ}, ∂Bρ denotes the boundary of Bρ;

(b) There exists an e ∈ ∂B1
⋂

X2 and L > ρ such that if Q ≡ (B̄L
⋂

X1)
⊕

{re| 0 ≤
r ≤ L}, then ϕ|∂Q ≤ 0.

Then ϕ possesses a critical value c ≥ α which can be characterized as

c = inf
h∈Γ

max
u∈Q

ϕ(h(u)),

where Γ = {h ∈ C(Q̄, E)| h = id on ∂Q}.

It is well known that a deformation lemma can be proved with the weaker
condition (C) replacing the usual (PS) condition. So Lemma 2.1 holds true under
condition (C).

3. Proofs of theorems

Proof of Theorem 1.1. The proof is divided into three steps. In the following, Ci

(i = 1, · · · ) denote different positive constants.

Step 1. The functional ϕk satisfies condition (C). Let {un} ⊂ W
1,p
kT satisfying

(1 + ‖un‖)‖ϕ′k(un)‖ → 0 as n → ∞ and ϕk(un) is bounded, then, there exists a
constant C1 such that

|ϕk(un)| ≤ C1, (1 + ‖un‖)‖ϕ′k(un)‖ ≤ C1. (3.1)

From (H4), there exists M3 > 0 such that

F(t, x) ≤ M|x|r for all |x| ≥ M3 and a.e. t ∈ [0, T]. (3.2)

By assumption (A), for |x| ≤ M3, there exists C2 = max|x|≤M3
a(|x|) > 0 such that

|F(t, x)| ≤ C2b(t),

which together with (3.2) implies that

F(t, x) ≤ M|x|r + C2b(t) for all x ∈ R
n and a.e. t ∈ [0, T]. (3.3)
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By (3.1) and (3.3), we have

ϕk(un) +
∫ kT

0
F(t, un)dt ≤ C1 +

∫ kT

0
(M|un(t)|

r + C2b(t))dt

= C1 + C2k‖b‖L1 + M
∫ kT

0
|un(t)|

rdt

= C3 + M
∫ kT

0
|un(t)|

rdt. (3.4)

On the other hand, from (L), we have

ϕk(un) +
∫ kT

0
F(t, un)dt =

1

p

∫ kT

0
[|u̇n(t)|

p + (L(t)|un(t)|
p−2un(t), un(t))]dt

≥
1

p

∫ kT

0
[|u̇n(t)|

p + c1|un(t)|
p ]dt

≥ min

{

1

p
,

c1

p

}

‖un‖
p

= C4‖un‖
p. (3.5)

By (3.4) and (3.5), we get

C4‖un‖
p ≤ C3 + M

∫ kT

0
|un(t)|

rdt. (3.6)

From (H5), there exists M4 > 0 such that

(∇F(t, x), x) − pF(t, x) ≥ M1|x|
µ for |x| ≥ M4 and a.e. t ∈ [0, T]. (3.7)

By assumption (A), for |x| ≤ M4, there exists C5 = max|x|≤M4
a(|x|) > 0 such that

|(∇F(t, x), x) − pF(t, x)| ≤ C5(p + M4)b(t). (3.8)

Thus, from (3.7) and (3.8), we have

(∇F(t, x), x) − pF(t, x) ≥ M1|x|
µ −M1M

µ
4 − C5(p + M4)b(t) for x ∈ R

n

and a.e. t ∈ [0, T],

which together with (3.1) implies that

(p + 1)C1 ≥ pϕk(un)− < ϕ′k(un), un >

=
∫ kT

0
[(∇F(t, un), un)− pF(t, un)]dt

≥ M1

∫ kT

0
|un(t)|

µdt− C5(p + M4)
∫ kT

0
b(t)dt −M1M

µ
4 kT

= M1

∫ kT

0
|un(t)|

µdt− C6.

Hence,
∫ kT

0 |un(t)|µdt is bounded. If µ > r, we have

∫ kT

0
|un(t)|

rdt ≤ (kT)(µ−r)/µ

(

∫ kT

0
|un(t)|

µdt

)r/µ

,
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which together with (3.6) implies that ‖un‖ is bounded. If µ ≤ r, then from (2.2),
we get

∫ kT

0
|un(t)|

rdt ≤ ‖un‖
r−µ
∞

(

∫ kT

0
|un(t)|

µdt

)r/µ

≤ d
r−µ
k ‖un‖

r−µ

(

∫ kT

0
|un(t)|

µdt

)r/µ

.

Since µ > r− p, it follows from (3.6) that ‖un‖ is bounded too. Therefore ‖un‖ is

bounded in W
1,p
kT . Hence, there exists a subsequence, still denoted by {un}, such

that
un ⇀ u0 weakly in W

1,p
kT , (3.9)

un → u0 strongly in C(0, kT; R
n). (3.10)

un → u0 strongly in Lp(0, kT; R
n). (3.11)

From (2.1), we have

< ϕ′k(un), un − u0 >

=
∫ kT

0
[(|u̇n(t)|

p−2u̇n(t), u̇n(t)− u̇0(t)) + (L(t)|un(t)|
p−2un(t), un(t)− u0(t))]dt

−
∫ kT

0
(∇F(t, un(t)), un(t)− u0(t))dt. (3.12)

From (3.1) and (3.10), we have

| < ϕ′k(un), un − u0 > | ≤ ‖ϕ′k(un)‖‖un − u0‖ → 0 as n→ ∞. (3.13)

By (L), we know that c1 ≤ ‖L‖ ≤ c2, which together with the boundedness of
{un} and (3.11) implies that

∫ kT

0
(L(t)|un(t)|

p−2un(t), un(t)−u0(t))dt ≤ ‖L‖‖un‖
p−1
Lp ‖un−u0‖Lp → 0 as n→ ∞.

(3.14)
It follows from (A), (3.10) and the boundedness of {un} that

∫ kT

0
(∇F(t, un(t)), un(t)− u0(t))dt → 0 as n→ ∞,

which together with (3.12), (3.13) and (3.14) implies that

∫ kT

0
(|u̇n(t)|

p−2u̇n(t), u̇n(t)− u̇0(t))dt → 0 as n→ ∞. (3.15)

It is easy to see from the boundedness of {un} and (3.10) that

∫ kT

0
(|un(t)|

p−2un(t), un(t)− u0(t))dt → 0 as n→ ∞. (3.16)

Let φ(u) = 1
p(
∫ kT

0 |u(t)|
pdt +

∫ kT
0 |u̇(t)|

pdt). Then, we have

< φ′(un), un − u0 > =
∫ kT

0
(|u̇n(t)|

p−2u̇n(t), u̇n(t)− u̇0(t))dt

+
∫ kT

0
(|un(t)|

p−2un(t), un(t)− u0(t))dt (3.17)
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and

< φ′(u0), un − u0 > =
∫ kT

0
(|u̇0(t)|

p−2u̇0(t), u̇n(t)− u̇0(t))dt

+
∫ kT

0
(|u0(t)|

p−2u0(t), un(t)− u0(t))dt. (3.18)

It follows from (3.15) and (3.16) that

< φ′(un), un − u0 >→ 0 as n→ ∞. (3.19)

From (3.9), we get

< φ′(u0), un − u0 >→ 0 as n→ ∞. (3.20)

By (3.17), (3.18) and Hölder’s inequality, we have

< φ′(un)− φ′(u0), un − u0 >

=
∫ kT

0
(|u̇n(t)|

p−2u̇n(t), u̇n(t)− u̇0(t))dt +
∫ kT

0
(|un(t)|

p−2un(t), un(t)− u0(t))dt

−
∫ kT

0
(|u̇0(t)|

p−2u̇0(t), u̇n(t)− u̇0(t))dt −
∫ kT

0
(|u0(t)|

p−2u0(t), un(t)− u0(t))dt

= ‖un‖
p + ‖u0‖

p −
∫ kT

0
(|u̇n(t)|

p−2u̇n(t), u̇0(t))dt −
∫ kT

0
(|un(t)|

p−2un(t), u0(t))dt

−
∫ kT

0
(|u̇0(t)|

p−2u̇0(t), u̇n(t))dt −
∫ kT

0
(|u0(t)|

p−2u0(t), un(t))dt

≥ ‖un‖
p + ‖u0‖

p − (‖un‖
p−1
Lp ‖u0‖Lp + ‖u̇n‖

p−1
Lp ‖u̇0‖Lp)

−(‖u0‖
p−1
Lp ‖un‖Lp + ‖u̇0‖

p−1
Lp ‖u̇n‖Lp)

≥ ‖un‖
p + ‖u0‖

p − (‖un‖
p
Lp + ‖u̇n‖

p
Lp)(p−1)/p(‖u0‖

p
Lp + ‖u̇0‖

p
Lp)1/p

−(‖u0‖
p
Lp + ‖u̇0‖

p
Lp)(p−1)/p(‖un‖

p
Lp + ‖u̇n‖

p
Lp)1/p

= ‖un‖
p + ‖u0‖

p − (‖un‖
p−1‖u0‖+ ‖u0‖

p−1‖un‖)

= (‖un‖
p−1 − ‖u0‖

p−1)(‖un‖ − ‖u0‖).

Hence, from (3.19) and (3.20), we obtain

0 ≤ (‖un‖
p−1 − ‖u0‖

p−1)(‖un‖ − ‖u0‖) ≤< φ′(un)− φ′(u0), un − u0 >→ 0

as n→ ∞.

That is ‖un‖ → ‖u0‖ as n→ ∞. Since W
1,p
kT has the Kadec-Klee property, we have

un → u0 in W
1,p
kT . Therefore, the functional ϕk satisfies condition (C).

Step 2. From (H2), for any ε = ε(k) > 0, there exists δ > 0 such that

F(t, u) ≤ ε|u|p for |u| ≤ δ and a.e. t ∈ [0, kT]. (3.21)

For u ∈ W̃
1,p
kT and ‖u‖p = ρ

p
k = δp

(kT)
p
q

, then it follows from (2.3) that

‖u‖
p
∞ ≤ (kT)

p
q ‖u̇‖

p
Lp ≤ (kT)

p
q ‖u‖p = δp,
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which implies that |u(t)| ≤ δ. Then from (L) and (3.21), we have

ϕk(u) =
1

p

∫ kT

0
|u̇(t)|pdt +

1

p

∫ kT

0
(L(t)|u(t)|p−2u(t), u(t))dt −

∫ kT

0
F(t, u)dt

≥
1

p

∫ kT

0
|u̇(t)|pdt +

1

p

∫ kT

0
c1|u(t)|

pdt−
∫ kT

0
ε|u(t)|pdt

≥ min

{

1

p
,

c1

p

}

‖u‖p − kTεδp

= C4‖u‖
p − kTεδp . (3.22)

Let ε = ε(k) ∈ (0, C4
2(kT)p ), then from (3.22), we have

ϕk(u) ≥ C4ρ
p
k − kTεδp ≥

C4

2
ρ

p
k ≡ α > 0

for all u ∈ W̃
1,p
T and ‖u‖ = ρk. This implies that condition (a) of Lemma 2.1 holds.

Step 3. From (H1) and (H3)’, there exists C7 >
c2
p such that

F(t, u) ≥ C7|u|
p for all u ∈ R

n and a.e. t ∈ [0, T], (3.23)

Thus, from (L) and (3.23), we have

ϕk(u) =
1

p

∫ kT

0
(L(t)|u|p−2u, u)dt−

∫ kT

0
F(t, u)dt

=
k

p

∫ T

0
(L(t)|u|p−2u, u)dt − k

∫ T

0
F(t, u)dt

≤
c2k

p

∫ T

0
|u|pdt− k

∫ T

0
C7|u|

pdt

for all u ∈ R
n. Since C7 >

c2
p , we obtain

ϕk(u) ≤ 0 for all u ∈ R
n. (3.24)

Let W
1,p
kT = span{ek}+ R

n, where ek = (k−1 sin(k−1ωt)), ω = 2π/T. Since W
1,p
T

is finite dimensional, there exists a constant d > 0 such that

(

∫ T

0
|x|pdt

)1/p

≥ d

(

∫ T

0
|x|2dt

)1/2

, ∀ x ∈ W
1,p
T . (3.25)

From (3.23) and (3.25), we have
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ϕk(u + rek)

=
1

p

∫ kT

0
|rėk(t)|

pdt−
∫ kT

0
F(t, u + rek(t))dt

+
1

p

∫ kT

0
(L(t)|u + rek(t)|

p−2(u + rek(t)), u + rek(t))dt

≤
1

p
k−2prpωp

∫ kT

0
| cos(k−1ωt)|pdt +

c2

p

∫ kT

0
|u + rek(t)|

pdt

−
∫ kT

0
C7|u + rek(t)|

pdt

≤
1

p
k−2p+1rpωp

∫ T

0
| cos(ωt)|pdt− k

∫ T

0

(

C7 −
c2

p

)

|u + re1(t)|
pdt

≤
T

p
k−2p+1rpωp − kdp

(

C7 −
c2

p

)(

∫ T

0
|u + re1(t)|

2dt

)p/2

≤
T

p
k−2p+1rpωp − kdp

(

C7 −
c2

p

)(

∫ T

0
(|u|2 + r2|e1(t)|

2dt

)p/2

≤
T

p
k−2p+1rpωp − kdp

(

C7 −
c2

p

)(

T|u|2 +
Tr2

2

)p/2

, ∀ r ≥ 0, u ∈ R
n.

If k ≥ 25/4T(2−p)/(4p)ω1/2

(C7−
c2
p )1/(2p)d1/2

, then we have

ϕk(u + rek) ≤ 0, for all r ≥ 0 and u ∈ R
n. (3.26)

From (3.26), we can choose two positive constants r1 > ρk and r2 > ρk such that

ϕk(u + rek) ≤ 0, for all r ≥ r1 and ‖u‖ ≥ r2. (3.27)

Set

Qk = {rek| 0 ≤ r ≤ r1, ek ∈ W̃
1,p
kT }

⊕

{u ∈ R
n| ‖u‖ ≤ r2},

then we have ∂Qk = Q1k
⋃

Q2k
⋃

Q3k, where

Q1k = {u ∈ R
n| ‖u‖ ≤ r2},

Q2k = {u + rek| ‖u‖ = r2, r ∈ [0, r1], ek ∈ W̃
1,p
kT },

Q3k = {u + rek| ‖u‖ ≤ r2, r = r1, ek ∈ W̃
1,p
kT }.

By (3.24) and (3.26), we get

ϕ(u) ≤ 0, u ∈ ∂Qk = Q1k

⋃

Q2k

⋃

Q3k. (3.28)
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Furthermore, for all u + rek ∈ Qk, from (H1) and (L), we have

ϕk(u + rek)

=
1

p

∫ kT

0
|rėk(t)|

pdt−
∫ kT

0
F(t, u + rek(t))dt

+
1

p

∫ kT

0
(L(t)|u + rek(t)|

p−2(u + rek(t)), u + rek(t))dt

≤
1

p
rp

∫ kT

0
|ėk(t)|

pdt +
c2

p

∫ kT

0
|u + rek(t)|

pdt

≤
1

p
k−2prpωp

∫ kT

0
| cos(k−1ωt)|pdt +

2p−1c2

p

∫ kT

0
(|u|p + rpk−p| sin(k−1ωt)|p)dt

≤
1

p
k−2p+1rpωp

∫ T

0
| cos(ωt)|pdt +

2p−1c2

p

(

‖u‖p + rpk−p+1
∫ T

0
| sin(ωt)|pdt

)

≤
T

p
k−2p+1rpωp +

2p−1c2

p
(‖u‖p + rpk−p+1T)

≤
T

p
r

p
1 ωp +

2p−1c2

p
(r

p
2 + r

p
1 T).

Then by Lemma 2.1, for any positive integer k ≥ 25/4T(2−p)/(4p)ω1/2

(C7−
c2
p )1/(2p)d1/2

, ϕk has at least

one critical point uk in W
1,p
kT , and the corresponding critical value ck satisfies

0 < α ≤ ck = ϕk(uk) ≤
1

p
r

p
1 +

2p−1c2

p
(r

p
2 + r

p
1 ). (3.29)

Similar to the proof of [9], let uk1
be a k1T-periodic solution, we can prove that

there exists a positive integer k2 > k1 such that ukk1
6= uk1

for all kk1 ≥ k2.
Otherwise, ϕk(ukk1

) = kϕk(uk1
) → ∞ as k → ∞, which contradicts to (3.29).

Repeating this process, we can obtain a sequence {ukj
} of distinct periodic solu-

tions of problem (1.1). From (3.24), we know that ukj
is nonconstant. The proof

is complete.

Proof of Theorem 1.2. The proof of Theorem 1.2 is the same as that of Theorem
1.1 except for the proof of the boundedness of {un}. So, here we only prove that

{un} is bounded in W
1,p
kT . Otherwise, going to a subsequence if necessary, we can

assume that ‖un‖ → ∞ as n → ∞. Set zn = un
‖un‖

, zn = z̃n + z̄n, then ‖zn‖ = 1 .

Hence, there exists a subsequence, still denoted by {zn}, such that

zn ⇀ z0 weakly in W
1,p
kT ,

zn → z0 strongly in C(0, kT; R
n).

Then, we have
z̄n → z̄0. (3.30)

From (3.1), we have

lim
n→∞

[(ϕ′k(un), un)− pϕk(un)] = −pC1,
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which implies that

lim
n→∞

∫ kT

0
[(∇F(t, un), un)− pF(t, un)] = pC1. (3.31)

From (H4)’, there exists M5 > 0 such that

F(t, x) ≤ M2|x|
p for all |x| ≥ M5 and a.e. t ∈ [0, T]. (3.32)

From (A), for |u| ≤ M5, there exists C8 = max|u|≤M5
a(|u|) such that

|F(t, x)| ≤ C8b(t). (3.33)

It follows from (3.32) and (3.33) that

F(t, x) ≤ M2|x|
p + C8b(t) for all x ∈ R

n and a.e. t ∈ [0, T]. (3.34)

Hence, from (L) and (3.34), we obtain

ϕk(un) =
1

p

∫ kT

0
|u̇n(t)|

pdt +
1

p

∫ kT

0
(L(t)|un(t)|

p−2un(t), un(t))dt

−
∫ kT

0
F(t, un(t))dt

≥
1

p

∫ kT

0
|u̇n(t)|

pdt +
c1

p

∫ kT

0
|un(t)|

pdt−M2

∫ kT

0
|un(t)|

pdt

−C8

∫ kT

0
b(t)dt

=
1

p

∫ kT

0
|u̇n(t)|

pdt−

(

M2 −
c1

p

)

∫ kT

0
|un(t)|

pdt− C9,

thus, for n→ ∞,

0←
ϕk(un)

‖un‖p ≥
1

p
‖żn‖

p
Lp −

(

M2 −
c1

p

)

∫ kT

0
|zn(t)|

pdt−
C9

‖un‖p .

Hence, z0 6= 0. Let Ω ⊂ [0, kT] be the set on which z0 6= 0. The measure of Ω is
positive. Moreover, |un| → ∞ as n→ ∞ for t ∈ Ω. Thus, from (H6), we have

∫ kT

0
[(∇F(t, un), un)− pF(t, un)]

=
∫

Ω

[(∇F(t, un), un)− pF(t, un)]dt +
∫

[0,kT]\Ω
[(∇F(t, un), un)− pF(t, un)]dt

≥
∫

Ω

[(∇F(t, un), un)− pF(t, un)]dt +
∫

[0,kT]\Ω
f (t)dt.

It follows from Fatou’s lemma and (H7) that

lim
n→∞

∫ kT

0
[(∇F(t, un), un)− pF(t, un)] = +∞,
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which contradicts to (3.31). If ‖ż0‖Lp = 0, hence from (2.4), z̃0 → 0 uniformly for
a.e. t ∈ [0, kT], then together with (3.30), we have z0 = z̄0 and kT|z̄0|

p = ‖z̄0‖
p →

1. Consequently, |un| → ∞ as n → ∞ uniformly for a.e. t ∈ [0, kT]. From (H1)
and (H3)’, we have

lim inf
|un|→∞

∫ kT
0 F(t, un(t))dt

‖un‖p ≥

∫ kT
0 [lim inf|un|→∞ F(t, un(t))]dt

‖un‖p

=
∫ kT

0
[lim inf
|un|→∞

F(t, un(t))

|un(t)|p
|zn(t)|

p ]dt

=
∫ kT

0
[lim inf

n→∞

F(t, un(t))

|un(t)|p
|z0|

p]dt

>
c2

p
. (3.35)

By the boundedness of ϕk(un) and (L), we have

ϕk(un)

‖un‖p =

1
p

∫ kT
0 |u̇n(t)|pdt

‖un‖p +

1
p

∫ kT
0 (L(t)|un(t)|p−2un(t), un(t))dt

‖un‖p −

∫ kT
0 F(t, un(t))dt

‖un‖p

≤
1

p
‖żn‖

p
Lp +

c2
p

∫ kT
0 |un(t)|

pdt

‖un‖p −

∫ kT
0 F(t, un(t))dt

‖un‖p

=
1

p
‖żn‖

p
Lp +

c2

p
‖zn‖

p
Lp −

∫ kT
0 F(t, un(t))dt

‖un‖p ,

which together with ‖ż0‖Lp = 0 and ‖z0‖ = 1 implies that

lim inf
n→∞

∫ kT
0 F(t, un(t))dt

‖un‖p ≤
c2

p
.

But this contradicts to (3.35). Thus, {un} is bounded in W
1,p
kT .

Proof of Theorem 1.3. The proof of Theorem 1.3 is similar to that of Theorem 1.2,
we omit the detail here.

4. Examples

In this section, we give some examples to illustrate our results.

Example 4.1. In problem (1.1), let p = 3, r = 5, µ = 4, ω = 2π
T ,

L(t) = diag (1 + exp(1− sin(k−1ωt)), · · · , 1 + exp(1− sin(k−1ωt))),

and

F(t, x) =

{

1+e
3 (2 + sin(k−1ωt))|x|5, |x| > 1,

(2 + sin(k−1ωt)) ln3(1 + |x|2), |x| ≤ 1.
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It is easy to check that L(t) satisfies (L) and F satisfies (A), (H1) and (H2). By a
direct computation, we have

lim inf
|x|→∞

F(t, x)

|x|3
>

1 + e

3
, lim sup
|x|→∞

F(t, x)

|x|5
≤ 1 + e

and

lim inf
|x|→∞

(∇F(t, x), x)) − 3F(t, x)

|x|4
≥

2(1 + e)

3
,

which show that (H3)’, (H4) and (H5) hold. Hence, from Theorem 1.1, problem
(1.1) has a sequence of distinct nonconstant periodic solutions with period kjT
satisfying kj ∈ N and kj → ∞ as j→ ∞.

Example 4.2. In problem (1.1), let p = 4 and L(t) be the same as in Example 4.1.
Let

F(t, x) =
1 + e

4π
(5 + sin(k−1ωt))[|x|4 − ln(1 + |x|4)] arctan |x|4,

It is easy to check that L(t) satisfies (L) and F satisfies (A), (H1) and (H2). By an
easy calculation, we get

lim inf
|x|→∞

F(t, x)

|x|4
>

1 + e

4
, lim sup
|x|→∞

F(t, x)

|x|4
≤

3(1 + e)

4

which imply that (H3)’ and (H4) hold. Moreover, there exists f ∈ L1(0, T; R
+)

such that

(∇F(t, x), x) − 4F(t, x)

=
1 + e

π
(5 + sin(k−1ωt))

[

ln(1 + |x|4)−
|x|4

1 + |x|4

]

arctan |x|4

+
(1 + e)|x|4

π(1 + |x|8)
(5 + sin(k−1ωt))[|x|4 − ln(1 + |x|4)]

≥ f (t),

and

lim
|x|→∞

[(∇F(t, x), x) − 4F(t, x)] = +∞.

Then, conditions (H6) and (H7) hold. Hence, it follows from Theorem 1.2 that
problem (1.1) has a sequence of distinct nonconstant periodic solutions with pe-
riod kjT satisfying kj ∈ N and kj → ∞ as j→ ∞.

If we let p = 4 and L(t) be the same as in Example 4.1. And let

F(t, x) =
1 + e

4π
(5 + sin(k−1ωt))[|x|4 + ln(1 + |x|4)] arctan |x|4.

Similarly, we can check that F(t, x) satisfies all the conditions of Theorem 1.3,
then problem (1.1) has a sequence of distinct nonconstant periodic solutions with
period kjT satisfying kj ∈ N and kj → ∞ as j→ ∞.
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[5] H.S. Lü, D. O’Regan, R.P. Agarwal, On the existence of multiple periodic
solutions for the vector p-Laplacian via critical point theory, Appl. Math. 50
(6) (2005) 555-568.

[6] J. Mawhin, Some boundary value problems for Hartman-type perturbations
of the ordinary vector p-Laplacian, Nonlinear Anal. 40 (1-8) (2000) 497-503.
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