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Abstract

We prove a necessary and sufficient conditions for discreteness of the set
of all eigenvalues (with the usual Sturm–Liouville properties) of half–linear
eigenvalue problem with locally integrable weights. Our conditions appear
to be equivalent to the compact embedding of certain weighted Sobolev and
Lebesgue spaces. Every eigenvalue allows the variational characterization of
Ljusternik–Schnirelmann type.

1 Introduction

We study the Sturm–Liouville problem for half–linear equations (equations of
the p−Laplacian type) with weights subject to the Neumann–Dirichlet boundary
conditions

{
(

ρ(t)|u′(t)|p−2u′(t)
)′
+ λσ(t)|u(t)|p−2u(t) = 0, t ∈ (a, b),

lim
t→a+

ρ(t)|u′(t)|p−2u′(t) = lim
t→b−

u(t) = 0. (1.1)

Here, p > 1 is a real number, −∞ ≤ a < b ≤ ∞, ρ = ρ(t), σ = σ(t) are continuous
positive functions in (a, b). As for ρ and σ we assume that for any x ∈ (a, b) we

have σ ∈ L1(a, x) and ρ1−p′ ∈ L1(x, b), where 1
p + 1

p′ = 1. We emphasize that

we do not assume σ, ρ1−p′ ∈ L1(a, b) in general! We will use later the convention

u(b)
de f
= lim

t→b−
u(t).

Received by the editors May 2011.
Communicated by J. Mawhin.
2000 Mathematics Subject Classification : Primary: 34L30, 34B24 Secondary: 34B40, 35J92.
Key words and phrases : Hardy inequality, weighted spaces, Sturm–Liouville prob-

lem,variational eigenvalues, oscillatory theory.

Bull. Belg. Math. Soc. Simon Stevin 19 (2012), 107–119
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In particular, the radial eigenvalue problem for the p−Laplacian
{

−∆pu = λη(|x|)|u|p−2u in R
N,

lim
|x|→+∞

u(x) = 0

with suitable radial weight function η = η(|x|) reduces to (1.1) as we shall see
later on.

For the sake of brevity we introduce a function ϕ : R → R defined by

ϕ(s)
de f
= |s|p−2s for s 6= 0 and ϕ(0)

de f
= 0.

By a solution of (1.1) we understand a function u ∈ C1(a, b) such that ρϕ(u′) ∈
C1(a, b), the equation in (1.1) holds at every point, the boundary conditions are

satisfied and the Dirichlet integral
∫ b

a ρ(t)|u′(t)|p dt is finite.

The parameter λ is called an eigenvalue of (1.1) if this problem has a nontriv-
ial (i.e. nonzero) solution. This solution is then called an eigenfunction of (1.1)
associated with λ.

We say that the (S.L.) Property for (1.1) is satisfied if ”the set of all eigenvalues
of (1.1) forms an increasing sequence {λn}∞

n=1 such that λ1 > 0 and lim
n→+∞

λn =

+∞; every eigenvalue λn, n = 1, 2, ..., is simple in the sense that all eigenfunctions
associated with λn are mutually proportional; the eigenfunction uλn

associated
with λn has precisely n − 1 zeros in (a, b); for n ≥ 3 zero points of uλn−1

separate
zero points of uλn

.”

Theorem 1.1. The (S.L.) Property for (1.1) is satisfied if and only if the following two
conditions hold:

lim
t→a+

(

∫ t

a
σ(τ)dτ

)(

∫ b

t
ρ1−p′(τ)dτ

)p−1

= 0, (1.2)

lim
t→b−

(

∫ t

a
σ(τ)dτ

)(

∫ b

t
ρ1−p′(τ)dτ

)p−1

= 0. (1.3)

Remark 1.2. Conditions (1.2) and (1.3) are equivalent with the compact embedding

W
1,p
b (ρ) →֒→֒ Lp(σ), (1.4)

where Lp(σ) is the weighted Lebesgue space of all functions u = u(t) defined on
(a, b), for which

‖u‖p;σ
de f
=

(

∫ b

a
σ(t)|u(t)|p dt

)

1
p

< ∞;

W
1,p
b (ρ) is the weighted Sobolev space of all functions u which are absolutely

continuous on every compact subinterval of (a, b), such that u(b) = 0, and

‖u‖1,p;ρ
de f
=

(

∫ b

a
ρ(t)|u′(t)|p dt

)

1
p

< ∞.

Note that Lp(σ) and W
1,p
b (ρ) equipped with the norms ‖ · ‖p;σ and ‖ · ‖1,p;ρ, re-

spectively, are uniformly convex Banach spaces.
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The proof that (1.2) and (1.3) are equivalent with (1.4) can be found e.g. in Opic
and Kufner [1, Theorem 7.4]. Together with Theorem 1.1 we have the following
”round about theorem”:

Theorem 1.3. The following statements are equivalent

(i) The (S.L.) Property for (1.1) is satisfied.

(ii) Compact embedding (1.4) holds.

(iii) Conditions (1.2) and (1.3) hold.

Let us mention the pioneering work in this direction by Nečas [2], where the
discreteness of the spectrum of half–linear Sturm–Liouville problem is consid-
ered for the first time. We also quote the work of Elbert [3] which has not been
recognized even several years after its publication.
Note that the special case of problem (1.1) is studied in Drábek and Kufner [4],
[5], where a = 0, b = ∞ and ρ, σ are continuous and positive functions in [0, ∞).
In this special case (1.2) and (1.3) reduce just to one condition

lim
t→+∞

(

∫ t

0
σ(τ)dτ

)(

∫ +∞

t
ρ1−p′(τ)dτ

)p−1

= 0.

Similar problem to (1.1) is studied in Binding and Drábek [6], where a = 0 and

b > 0 is a finite number and the weight functions are supposed to satisfy ρ1−p′ ∈
L1(0, b) and σ ∈ L1(0, b).

The results of this paper generalize those mentioned above and fit with the
linear theory obtained by Lewis [7] for p = 2 as well.

This paper is organized as follows. In Section 2 we define the weak solution,
discuss its regularity and give an illustrative application of our results to the ra-
dial problem. Section 3 is devoted to the construction of variational eigenvalues
of our problem. We prove some oscillatory and nonoscillatory results for our
problem in Section 4. This topic is well elaborated in the literature but we prefer
to give our straightforward proof based on the Hardy inequality. In fact, nonoscil-
latory result from Proposition 4.3 is not needed in the proof of our main result. It
is a by–product of our paper of its own and independent interest. Section 5 is the
proof of Theorem 1.1.

We point out that as another by–product of our result we obtain that every
eigenvalue of (1.1) allows variational characterization of Ljusternik–Schnirelmann
type.

2 Weak solution

A function u ∈ W
1,p
b (ρ) is called a weak solution of (1.1) if the integral identity

∫ b

a
ρ(t)ϕ(u′(t))v′(t)dt = λ

∫ b

a
σ(t)ϕ(u(t))v(t)dt (2.1)

holds for all v ∈ W
1,p
b (ρ) (with both integrals being finite).
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It is clear that every solution of (1.1) is also its weak solution. Converse is
true as well. Indeed, take arbitrary v ∈ C∞

0 (a, b) (smooth functions with compact
support in (a, b)) as a test function in (2.1) and integrate by parts. We get that
there is a constant c ∈ R such that

ρ(t)ϕ(u′(t)) +
∫ t

a
λσ(τ)ϕ(u(τ)) dτ = c (2.2)

for a.e. t ∈ (a, b). Hence, continuity of τ 7−→ σ(τ)ϕ(u(τ)) in (a, b) implies
that ρϕ(u′) ∈ C1(a, b) and (2.2) (and thus also the equation (1.1)) holds at every

point t ∈ (a, b). Now, testing (2.1) with v ∈ W
1,p
b (ρ), v(a) 6= 0, v ≡ 0 in the left

neighborhood of b, and integrating by parts we arrive at lim
t→a+

ρ(t)ϕ(u′(t)) = 0.

Since we have u(b) = 0 by u ∈ W
1,p
b (ρ), a weak solution u is a solution in the

sense of our definition from Section 1 at the same time.

Remark 2.1. Since lim
t→a+

∫ t
a σ(τ)dτ = 0 by our assumptions, for a weak solution

u ∈ W
1,p
b (ρ) of (1.1), we get

∣

∣

∣

∣

∫ t

a
λσ(τ)ϕ(u(τ)) dτ

∣

∣

∣

∣

≤ |λ|

(

∫ t

a
σ(τ)|u(τ)|p dτ

)
1
p′
(

∫ t

a
σ(τ)dτ

)
1
p

→ 0

as t → a+. This fact together with lim
t→a+

ρ(t)ϕ(u′(t)) = 0 yields c = 0 in (2.2).

Assume, moreover, that

lim
t→a+

1

ρ(t)

(

∫ t

a
σ(τ)dτ

)
1
p

< +∞. (2.3)

Let a ∈ R. Then (2.2) (with c = 0) implies u′(a) = 0. Hence, under condition (2.3)
we obtain a classical Neumann boundary condition at the point a. This is the case
when, e.g., ρ and σ are continuous and positive in [a, b). (cf. [4]).

Let us consider the radial eigenvalue problem for the p−Laplacian on the entire
R

N :






−∆pu = λ
1+|x|γ

|u|p−2u in R
N,

lim
|x|→+∞

u(x) = 0. (2.4)

This problem reduces to the one–dimensional equation

−(rN−1ϕ(u′(r)))′ = λ
rN−1

1 + rγ
ϕ(u(r)), r ∈ (0, +∞), (2.5)

where r = |x|. For 1 < p < N and γ > p the weights ρ(r) = rN−1 and σ(r) = rN−1

1+rγ

satisfy (1.2) and (1.3). Hence the solution of (2.5) is also forced to satisfy the
Neumann–Dirichlet homogenous boundary conditions

lim
r→0+

rN−1ϕ(u′(r)) = u(+∞) = 0. (2.6)

It follows from Theorem 1.1 that (S.L.) Property for (2.5), (2.6) is satisfied. In
particular, we have the following assertion:



Half–linear Sturm–Liouville problem with weights 111

Theorem 2.2. Let 1 < p < N and γ > p. Then the eigenvalues of the radial eigenvalue
problem (2.4) exhaust the sequence {λn}∞

n=1, 0 < λ1 < λ2 < ... → +∞ with all λn

being simple. A normalized eigenfunction uλn
associated with λn, n ≥ 1, has precisely

n nodal domains (maximal connected sets on which uλn
is of definite sign) in R

N. The
nodal lines of uλn

are spheres in R
N centered at the origin. The nodal lines of uλn−1

separate those of uλn .

Of course, more general radial eigenvalue problems for the p−Laplacian with
weights can be considered and reduced to problem (1.1).

3 Variational eigenvalues

In this section we assume that (1.2) and (1.3) hold. The following assertion is a
standard consequence of the Lagrange multiplier method and compactness of the
embedding (1.4).

Lemma 3.1. Let us assume (1.2) and (1.3). Then (1.1) has the least (principal) eigenvalue
λ1 > 0 characterized by

λ1 = min

∫ b
a ρ(t)|u′(t)|p dt
∫ b

a σ(t)|u(t)|p dt
, (3.1)

where the minimum is taken over all u ∈ W
1,p
b (ρ), u 6= 0.

For a < c ≤ b we define auxiliary Sobolev function space W
1,p
c (ρ) and for

a ≤ c < d ≤ b the space W
1,p
c,d (ρ) as follows:

W
1,p
c (ρ) is defined as W

1,p
b (ρ) with b replaced by c;

W
1,p
c,d (ρ)

de f
=
{

u = u(t) is absolutely continuous in every compact

subinterval of (c, d), u(c) = u(d) = 0, ‖|u‖| < ∞

}

, where

‖|u‖|
de f
=

(

∫ d

c
ρ(t)|u′(t)|p dt

)

1
p

.

The space L
p
c,d(σ) is defined as Lp(σ) with a and b replaced by c and d, respec-

tively, where a ≤ c < d ≤ b. It follows from (1.2), (1.3), continuity and positivity
of ρ and σ in (a, b) that

(i) W
1,p
c (ρ) →֒→֒ L

p
a,c(σ) if a < c.

(ii) W
1,p
c,d (ρ) →֒→֒ L

p
c,d(σ).

(iii) For a < c < d < b we have L
p
c,d(σ) = Lp(c, d), where Lp(c, d) is the usual

Lebesgue space on (c, d).
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(iv) For a < c < d < b we have W
1,p
c,d (ρ) = W

1,p
0 (c, d), where W

1,p
0 (c, d) is the

usual Sobolev space of functions vanishing at c and d.

In particular, it follows from (iii) and (iv) that also

(v) W
1,p
c,d (ρ) →֒→֒ L

p
c,d(σ) if a < c < d < b.

Now, using (i), (ii) and (v), we can define the principal eigenvalue λ1(c, d) as in
(3.1):

λ1(c, d) = min

∫ d
c ρ(t)|u′(t)|p dt
∫ d

c σ(t)|u(t)|p dt
. (3.2)

We then have

(α) if a = c, d ≤ b then λ(c, d) is a principal eigenvalue of

(

ρ(t)ϕ(u′(t))
)′
+ λσ(t)ϕ(u(t)) = 0, t ∈ (c, d), (3.3)

with boundary conditions

lim
t→a+

ρ(t)ϕ(u′(t)) = u(d) = 0; (3.4)

(β) if a < c, d ≤ b then λ1(c, d) is a principal eigenvalue of (3.3) with boundary
conditions

u(c) = u(d) = 0. (3.5)

Following literally the proof of Theorem 1.3 from Lindqvist [8], we find that
λ1 (and λ1(c, d)) is a simple eigenvalue, i.e., the functions in which the minimum
in (3.1) (and (3.2)) is achieved are merely constant multiple of each other and they
are either strictly positive or strictly negative in (c, d).

In order to get the higher eigenvalues of (1.1) we employ the variational argu-
ment. Let

S
de f
=
{

u ∈ W
1,p
b (ρ) : ‖u‖p;σ = 1

}

and let S k−1 be the unit sphere in R
k, k ∈ N. We consider the family of sets

Fk
de f
=
{

A ⊂ S : A is the image of a continuous odd function h : S k−1 → S
}

.

Define

λk
de f
= inf

A∈Fk

sup
u∈A

‖u‖
p
1,p;ρ. (3.6)

Following literally the proofs from Drábek and Robinson [9, Section 3], one can
show (due to the compactness of the embedding (1.4)) that λk is an eigenvalue of
(1.1) and, moreover,

lim
k→+∞

λk = +∞.

Note that every A ∈ F1 is formed by two antipodal points from S and so, for
k = 1, (3.6) coincides with (3.1). It is not clear at this moment whether {λk}

∞

k=1
defined by (3.6) exhausts the set of all eigenvalues of (1.1).
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Following literally the proof of Proposition A.2 from Drábek and Kufner [4]
one can prove that uλ = uλ(t) has at least one zero in (a, b) whenever uλ is an
eigenfunction associated with an eigenvalue λ of (1.1) with λ > λ1.

It also follows from Drábek and Robinson [10, Theorem 3.2] that an eigen-
function uλ associated with an eigenvalue (not necessarily characterized by (3.6))
λ < λk has at most k − 2 zeros in (a, b), k = 2, 3, ..., and from [10, Theorem 3.1]
that an eigenfunction uλk

associated with λk, k = 2, 3, ..., has at most k− 1 zeros in
(a, b). We note here that the unique continuation property is an essential assump-
tion of [10, Theorem 3.1]. It is satisfied due to the strict positivity of weights in
(a, b) and the uniqueness result for the initial value problem associated with the
equation in (1.1) (cf. Došlý [11, Theorem 1.1]).

In particular, it follows from above

Lemma 3.2. If λ is an eigenvalue of (1.1) and λ < λ2, then λ = λ1. An eigenfunction
associated with λ1 has no zero point in (a, b) and an eigenfunction associated with λ2

has exactly one zero point in (a, b).

4 Oscillatory and nonoscillatory results

A solution u = u(t) of the equation in (1.1) is called nonoscillatory solution, if there
exist ā, b̄ ∈ (a, b) such that u(t) 6= 0 for all t ∈ (a, ā)∪ (b̄, b). Otherwise, a solution
is called oscillatory solution. The equation in (1.1) is called nonoscillatory, if every
its solution is nonoscillatory. We note here that a nonzero and nonoscillatory
solution u has only a finite number of zero points in (a, b). Indeed, if there were
infinitely many zeros of u in (a, b), there should be a t0 ∈ (a, b) such that u(t0) =
u′(t0) = 0. The uniqueness result for the initial value problem, see [11, Theorem
1.1] then forces u ≡ 0 in (a, b), a contradiction. On the other hand, a nonzero
and oscillatory solution has infinitely many zeros in (a, b) with a and/or b as the
only possible limit point(s). If a (or b) is the limit point of zeros of an oscillatory
solution u, then we say that u is oscillatory in the right neighborhood of a (or the left
neighborhood of b, respectively).

Let a ≤ c < d ≤ b and let us introduce the following functional

F (v; c, d) :=

d
∫

c

(

ρ(t)|v′(t)|p − λσ(t)|v(t)|p
)

dt. (4.1)

Proposition 4.1. (cf. Došlý [11, Theorem 2.2]) The equation in (1.1) is nonoscillatory
if there exist ā, b̄ ∈ (a, b) (ā < b̄) such that

F (v; a, ā) > 0 and F (v; b̄, b) > 0 (4.2)

for all v 6= 0, v ∈ W
1,p
ā (ρ) and v ∈ W

1,p

b̄,b
(ρ), respectively.

Proof. We argue by contradiction. Let u be an oscillatory solution of the equation
in (1.1). Then it is oscillatory either in the right neighborhood of a or in the left
neighborhood of b. Without loss of generality we assume that for arbitrary ā ∈
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(a, b) there exist t1, t2 ∈ (a, ā) such that t1 < t2 and u(t1) = u(t2) = 0. The other
case is treated analogously. Let us construct the function v as follows

v(t) =

{

u(t) t ∈ (t1, t2),

0 t /∈ (t1, t2).

Then v ∈ W
1,p
ā (ρ), and

F (v; a, ā) =

ā
∫

a

(

ρ(t)|v′(t)|p − λσ(t)|v(t)|p
)

dt

=

t2
∫

t1

(

(ρ(t)ϕ(u′(t)))′ − λσ(t)ϕ(u(t))
)

u(t)dt = 0,

a contradiction with (4.2).

The following result is a special case of [1, Theorem 6.2].

Proposition 4.2. If 1 < p < ∞, then inequality

∫ d

c

(

∫ d

x
w(t)dt

)p

σ(x)dx ≤ C
∫ d

c
wp(x)ρ(x)dx (4.3)

holds for all measurable w(x) ≥ 0 on (c, d) if and only if

B(c, d)
de f
= sup

t∈(c, d)

(

∫ t

c
σ(τ)dτ

)(

∫ d

t
ρ1−p′(τ)dτ

)p−1

< ∞. (4.4)

Moreover, the best constant C = C(c, d) in (4.3) satisfies

B(c, d) ≤ C(c, d) ≤
pp

(p − 1)p−1
B(c, d). (4.5)

Proposition 4.3. (cf. Došlý [12, Theorems 6 and 4]) Let

lim sup
t→ a+

(

∫ t

a
σ(τ)dτ

)(

∫ b

t
ρ1−p′(τ)dτ

)p−1

<
(p − 1)p−1

λpp (4.6)

and

lim sup
t→ b−

(

∫ t

a
σ(τ)dτ

)(

∫ b

t
ρ1−p′(τ)dτ

)p−1

<
(p − 1)p−1

λpp . (4.7)

Then the equation in (1.1) is nonoscillatory.

Let

lim sup
t→ a+

(

∫ t

a
σ(τ)dτ

)(

∫ b

t
ρ1−p′(τ)dτ

)p−1

>
1

λ
(4.8)

or

lim sup
t→ b−

(

∫ t

a
σ(τ)dτ

)(

∫ b

t
ρ1−p′(τ)dτ

)p−1

>
1

λ
. (4.9)

Then every solution of problem (1.1) is oscillatory.
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Proof. First we show that (4.6) implies the existence of ā ∈ (a, b) such that any
solution u = u(t) of the equation in (1.1) satisfies u(t) 6= 0 for all t ∈ (a, ā).
For this purpose we use Proposition 4.1, i.e., we show that F (v; a, ā) > 0 for all

v ∈ W
1,p
ā (ρ).

Indeed, from (4.6) we obtain that there exists ā ∈ (a, b) such that

B(a, ā) = sup
t∈(a, ā)

(

∫ t

a
σ(τ)dτ

)(

∫ ā

t
ρ1−p′(τ)dτ

)p−1

<
(p − 1)p−1

λpp . (4.10)

Let v ∈ W
1,p
ā (ρ) be arbitrary but fixed. Then using inequality (4.3) with w = |v′|,

c = a, d = ā we estimate the following integral

∫ ā

a
σ(t)|v(t)|p dt =

∫ ā

a
σ(t)

∣

∣

∣

∣

∫ ā

t
v′(s)ds

∣

∣

∣

∣

p

dt

≤
∫ ā

a
σ(t)

(

∫ ā

t

∣

∣v′(s)
∣

∣ ds

)p

dt

≤ C(a, ā)
∫ ā

a
ρ(t)|v′(t)|p dt

<
1

λ

∫ ā

a
ρ(t)|v′(t)|p dt, (4.11)

i.e.

F (v; a, ā) = λ

[

1

λ

∫ ā

a
ρ(t)|v′(t)|p dt −

∫ ā

a
σ(t)|v(t)|p dt

]

> 0.

To get (4.11) from (4.10) we used (4.5) for the constant C(a, ā) :

C(a, ā) ≤ p(p′)p−1B(a, ā)

< p(p′)p−1 (p − 1)p−1

λpp =
1

λ
.

The fact that (4.7) implies the existence of b̄ ∈ (a, b) such that any solution u =
u(t) of the equation in (1.1) satisfies u(t) 6= 0 for t ∈ (b̄, b) is proved analogously.

We prove the second part of the theorem by contradiction, i.e., we suppose
that condition (4.8) holds, but there exists a nonoscillatory solution of (1.1). Then
there exists an interval (a, b̄) ⊂ (a, b), such that the function u(t) does not change
the sign in (a, b̄) and u(b̄) = 0. Indeed, either u is of definite sign in the entire
(a, b) and then we choose b̄ = b or else b̄ is the first zero of u in (a, b). We
suppose that the solution u is positive in (a, b̄). The other case is treated similarly.
In Section 2 we derived formula

ρ(t)ϕ(u′(t)) = −
∫ t

a
λσ(τ)ϕ(u(τ)) dτ. (4.12)

From this we find

u′(t) = −λp′−1ρ(t)1−p′ ϕ−1

(

∫ t

a
σ(τ)ϕ(u(τ))dτ

)

, t ∈ (a, b̄),
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where ϕ−1 denotes the inverse function of ϕ. Now, for a < x < t < b̄, integrating
over the interval (x, b̄) with respect to t, we get

u(x) = −
∫ b̄

x
u′(t)dt = λp′−1

∫ b̄

x
ρ(t)1−p′

(

∫ t

a
σ(τ) (u(τ))p−1 dτ

)
1

p−1

dt.

Using the positivity of the solution and monotonicity of the inner integral, we
obtain

u(x) ≥ λp′−1

(

∫ b̄

x
ρ(t)1−p′ dt

)

(

∫ x

a
σ(τ) (u(τ))p−1 dτ

)
1

p−1

.

From the positivity of the solution in the interval (a, b̄) and (4.12) we obtain that
the function u is strictly decreasing in (a, b̄), which yields

u(x) ≥ λp′−1

(

∫ b̄

x
ρ(t)1−p′ dt

)

(

∫ x

a
σ(τ)dτ

)
1

p−1

u(x),

i.e.

lim sup
x→a+

(

∫ b̄

x
ρ(t)1−p′ dt

)

(

∫ x

a
σ(τ)dτ

)
1

p−1

≤ λ1−p′ .

Consequently, due to the assumptions on the weights, we obtain

lim sup
x→a+

(

∫ x

a
σ(τ)dτ

)(

∫ b

x
ρ(t)1−p′ dt

)p−1

= lim sup
x→a+

(

∫ x

a
σ(τ)dτ

)

(

∫ b̄

x
ρ(t)1−p′ dt +

∫ b

b̄
ρ(t)1−p′ dt

)p−1

= lim sup
x→a+

(

(

∫ x

a
σ(τ)dτ

)
1

p−1
∫ b̄

x
ρ(t)1−p′ dt

+

(

∫ x

a
σ(τ)dτ

)
1

p−1
∫ b

b̄
ρ(t)1−p′ dt

)p−1

= lim sup
x→a+

(

∫ x

a
σ(τ)dτ

)

(

∫ b̄

x
ρ(t)1−p′ dt

)p−1

≤
1

λ

a contradiction with (4.8).

Let us suppose that condition (4.9) holds but there exists a nonoscillatory so-
lution u = u(t) of (1.1). Then either u does not change the sign in (a, b) or else
u has a zero point in (a, b). Then there exists an interval (ā, b) ⊂ (a, b), where
the function u does not change the sign and u′(ā) = 0. Indeed, u has the largest
zero ã ∈ (a, b) and it follows from the Lagrange intermediate value theorem that
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there is ā ∈ (ã, b) such that u′(ā) = 0. We can write (4.12) in the form:

ρ(t)ϕ(u′(t)) = −
∫ t

a
λσ(τ)ϕ(u(τ)) dτ

= −
∫ ā

a
λσ(τ)ϕ(u(τ)) dτ −

∫ t

ā
λσ(τ)ϕ(u(τ)) dτ

= ρ(ā)ϕ(u′(ā))−
∫ t

ā
λσ(τ)ϕ(u(τ))dτ

= −
∫ t

ā
λσ(τ)ϕ(u(τ)) dτ.

If u does not change the sign in (a, b), we just set ā = a. Repeating similar calcu-
lations as above, we obtain

lim sup
x→b−

(

∫ x

ā
σ(τ)dτ

)(

∫ b

x
ρ(t)1−p′ dt

)p−1

≤
1

λ
,

a contradiction with (4.9). The proof is complete.

From Proposition 4.3 we immediately get

Corollary 4.4. Let (1.2) and (1.3) hold. Then the equation in (1.1) is nonoscillatory for
an arbitrary λ ∈ R. In particular, every eigenfunction of (1.1) has a finite number of
zeros in (a, b). On the other hand, if either (1.2) or (1.3) is violated, then there exists
λ0 > 0 such that every solution of problem (1.1) is oscillatory for λ ≥ λ0 either in the
right neighborhood of a or in the left neighborhood of b, respectively.

5 Proof of Theorem 1.1

Necessity of (1.2) and (1.3). We proceed via contradiction. Assume that (1.2) is
violated. It follows from Corollary 4.4 that there exists λ0 > 0 such that for all
λ ≥ λ0 any solution of problem (1.1) is oscillatory in the right neighborhood
of a. In particular, this is true also for λ = λk with k large enough. Since an
eigenfunction associated with λk has at most k − 1 zero points (cf. Section 3), we
have a contradiction.

The case when (1.3) is violated can be handled similarly.

Sufficiency of (1.2) and (1.3). By Lemma 3.2, we have that λ1 < λ2, there is
no eigenvalue λ ∈ (−∞, λ1) ∪ (λ1 λ2), an eigenfunction uλ1

associated with λ1

has no zero in (a, b) and an eigenfunction uλ2
associated with λ2 has exactly one

zero t2
1 ∈ (a, b). Let λ > λ2 be an eigenvalue of (1.1) (not necessarily charac-

terized by (3.6)) and associated eigenfunction uλ has just one zero t̄1 ∈ (a, b).
Then λ = λ1(a, t̄1) = λ1(t̄1, b) and λ2 = λ1(a, t1) = λ1(t1, b) (the principal eigen-
function is then restriction of uλ and uλ2

to the corresponding interval, respec-
tively) the inequality λ > λ2 and the variational characterization of the principal
eigenvalue force t̄1 < t1 and t1 < t̄1 to hold simultaneously. This is a contra-
diction. Hence there exist at least two points t1, t2 ∈ (a, b), t1 < t2, such that
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uλ(t1) = uλ(t2) = 0. It follows from the discussion in Section 3 that the least
eigenvalue λ with this property is λ3 and uλ3

is thus forced to have precisely two

zeros t3
1 < t3

2, t3
1, t3

2 ∈ (a, b). Similarly as above we show that an eigenfunction
uλ associated with an eigenvalue λ > λ3 (not necessarily characterized by (3.6))
possesses at least three zeros t1 < t2 < t3 in (a, b). Moreover, the least eigenvalue
with this property is λ4 with uλ4

with precisely three zeros t4
1 < t4

2 < t4
3 in (a, b)

such that t4
1 < t3

1 < t4
2 < t3

2 < t4
3. By the induction we can proceed further to

find out that {λk}
∞

k=1 are the only eigenvalues of (1.1) and zero points of corre-
sponding eigenfunctions have the properties started in Theorem 1.1. It remains to
prove the simplicity of every λk, k = 1, 2, .... The case k = 1 is discussed already
in Section 3. Let k ≥ 2 be fixed. Denote by tk

l , l = 1, .., k − 1, the zeros of uλk
,

a < tk
1 < ... < tk

k−1 < b. Then λk = λ1(a, tk
1) = λ1(t

k
l , tk

l+1) = λ1(t
k
k−1, b),

l = 1, ..., k − 2, and the restrictions of uλk
to the corresponding intervals are

associated principal eigenfunctions. The simplicity of the principal eigenvalue
stated in Section 3 implies that these restrictions of uλk

on every nodal interval

(a, tk
1), ..., (tk

k−1, b) are merely constant multiple of each other. The regularity of

uλk
∈ C1(a, b) yields that the multiplicative constants mutually depend on each

other. It then follows that any two eigenfunctions associated with λk are propor-
tional.
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