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Abstract

Let G be a group and L®(G) be the C*-algebra of bounded complex-
valued functions on G. G is called inner amenable if there exists a posi-
tive norm 1 functional m on L®(G) such that m(p(y)f) = m(f) for each
y € G, f € L®(G) (where p(y)f(x) = f(yxy!)); the functional m is called
an inner invariant mean.

In this paper, among the other things, we prove a variety of characteri-
zations of inner amenable groups. We also give sufficient conditions on an
inner invariant mean to be a topologically inner invariant mean.

1 Introduction

There are a lot of results in abstract harmonic analysis on amenability of a lo-
cally compact group. A good deal of attention was paid to the study of inner
amenable groups. The study of inner invariant means was initiated by Effros
[5] and pursued by Akemann [1], Yuan [25] for discrete groups, Lau and Pa-
terson [13] and Yuan [26] for locally compact groups, and Ling [15] and Mo-
hammadzadeh and Nasr-Isfahani [18] for semigroups. Amenable locally com-
pact groups and [IN]-groups are inner amenable. Furthermore when G is con-
nected, then G is amenable if and only if G is inner amenable [16]. Amenabil-
ity and inner amenability of Lau algebras is studied in [12] and [19]. For ter-
minologies regarding invariant means on locally compact groups, the reader is
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referred to [20]. Let 7t be the isometric representation of G on L*°(G) given by
Too(x)f(t) = f(x~'tx). It is shown that L*(G) has an inner invariant mean if
and only if the commutant 77 (G)’ of 7T (G) contains a nonzero compact oper-
ator [14]. The literature on inner amenability has grown substantially in recent
years, see [9], [11] and [17].

In this paper, we investigate inner invariant means on L*(G) and its closed
subalgebra U*(G) of all f € L*(G) for which the mapping vy — p(y)f is con-
tinuous [7]. We also study topologically inner invariant means on certain closed
subspaces X of U®(G) and their relation with inner invariant means on X. We
show that every topologically inner invariant mean on L*(G) is also inner in-
variant. The converse remains open. Sufficient conditions on an inner invariant
mean to be a topologically inner invariant mean are given. We characterize inner
amenable groups by introducing the so-called conjugate convolution operators
which develop the techniques of the usual convolution operators. We give suffi-
cient conditions and some necessary conditions for G to have an inner invariant
mean.

2 Preliminaries and notations

Throughout this paper G will denote a locally compact group with left Haar mea-
sure dx, modular function A, and identity e. For 1 < p < oo, LP(G) is the space
of complex-valued measurable functions ¢ on G such that [ |¢(x)[Pdx < co. Let
L*(G) be the algebra of essentially bounded measurable complex-valued func-
tions on G. For y € G and f a function on G we use the notation

of () = fly~'x), p(y)f(x) = flyxy™") (x € G).

Ifp € L1(G), ¥ € LP(G) (1 < p < o0) and f € L*(G), then ¢ ® P as member of
LP(G) is given

p®P(x /fp Py xy)A (y)%dy (x € G)

while ¢ ® f as member of L*(G) is given by

O f(x /fp flyxy™"dy  (x € G).

We have |9 ® ¢, < [l¢ll1][¢ll, and [l9 © f]| < [[¢[|1]|f]|. More information on
this product can be found in [23] and [24]. More generally, for 1 < p < oo, let 7
be the isometric representation of G on L”(G) given by

<=

() e(x) = p(y 'xy)A(y)?  (x,y €G, ¢ € LP(G)).

Thus for ally € G, we have ||¢||, = ||7,(v)¢||,. We denote by PP(G) the convex
set of all nonnegative functions ¢ in L (G) such that ||¢||, = 1. If A is measurable
subset of G, then |A| is the measure of A. For any subset A of G, 14 denotes the
characteristic function of A. If 0 < |A| < oo, we also consider the mapping

Calx) = (|) defined on G.
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Duality between Banach spaces is denoted by ( ); thus for f € L*(G) and
¢ € LY(G), we have (f, ¢) = [ f(x)¢(x)dx. As far as possible, we follow [7] in
our notation and refer to [22] for basic functional analysis and to [10] for basic
harmonic analysis.

3 Main results
We start by recalling the following definition.

Definition 3.1. Let X be a subspace of L®(G) with 15 € X that is closed under
complex conjugation:

(i) We say that X is invariant (topologically invariant), if p(y)f € X (¢ © f € X)
whenevery € G, f € X and ¢ € P}(G);

(ii) A mean on X is a norm one nonnegative functional m on X such that m(1g) =
L

(iii) Let X be an invariant subspace of L*(G). A mean m on X is called inner
invariant mean if (m,p(y)f) = (m, f) forall f € Xandy € G;

(iv) Let X be a topologically invariant subspace of L*(G). A mean m on X is
called topologically inner invariant mean if

(m, ¢ © f) = (m, f)
forall ¢ € P(G) and f € X;

(v) A locally compact group G is called inner amenable group if it admits an
inner invariant mean on L*(G).

We denote by U®(G) the Banach space consisting of the complex-valued func-
tions f in L*(G) that are uniformly continuous, that is, the mapping y — p(y)f
from G into L*(G) is continuous [7]. The present author has proved that U*(G)
is a Banach algebra and ¢ ® f € U®(G) for every ¢ € L'(G) and f € L®(G) (see
Lemma 2.3 in [7]). Clearly U®(G) is an invariant subspace of L®(G).

Lemma 3.2. Let G be a locally compact group. Then the following statements
hold:

(i) Let X be a closed subspace of U*°(G). Then X is invariant if and only if it is
topologically invariant;

(ii) Let X be a closed subspace of U®(G) with 15 € X that is closed under
complex conjugation and topologically invariant. A mean m on X is inner
invariant if and only if it is topologically inner invariant.

Proof. (i): By the same argument as used at the proof of Lemma 2.5 in [7], we see
that X is invariant if and only if it is topologically invariant.
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(ii): Let m be an inner invariant mean on X, and let f € X and ¢ € P!(G).
Since the measures in P'(G) with compact supports are norm dense in P!(G),
without loss of generality we may assume that ¢ has a compact support. By
Theorem 3.27 in [22],

(m,9© ) = [ (mp) o)y = [(m, Fow)dy = (m, f).

This shows that m is topologically inner invariant mean.
To prove the converse, let m be a topologically inner invariant mean on X and
fix p € P1(G). For f € Xandy € G,

(m,p(y)f) = (m, @ ©p(y)f) = (m,y@ O f) = (m,f).

Thus, m is an inner invariant mean on X. [ |

Let G be a locally compact group. For ¢, € LY(G), f € L*(G) and
m,n € L®(G)*, the elements f.¢ and n.f of L*(G) and m.n € L*(G)* are de-
fined by

(fo.p)={fo®y), (nf,e) =nfe), (mnf)=(mn.f),

respectively. Clearly ||f.g|| < [|flllglls, lln.fl| < ][] and [lm.n] < [m]]|n].
Elementary calculations shows that ¢ © f = f.¢ for every f € L®(G) and
¢ € LY(G).

For each ¢ € L!(G), define a seminorm p, on the linear space L*(G) by
0o(f) = |If-@ll, f € L®(G). Note that P = {py; ¢ € L(G)} separates the
points of L*(G). The locally convex topology on L*(G) determined by these
seminorms is denoted by 7.. We first remark that the 7.-topology may be charac-
terized in another manner. Indeed, it is a standard device to embed L*(G) into
B(L'(G), L®(G)) by an operator T so that T(f)(¢) = f.¢, f € L(G), ¢ € L}(G).
Then T is one-to-one and linear. On the other hand, B(L!(G), L*(G)) naturally
carries the strong operator topology. So T allows us to consider the induced topol-
ogy on L*(G) which is the same as the 7.-topology. In [8] the author studied the
T.-topology on the dual M, (S)* of the semigroup algebra M,(S) of a locally com-
pact foundation semigroup S. From these observations we immediately deduce
the following Lemma.

Lemma 3.3. Let G be a locally compact group. For each ¢ € L!(G), the mapping
f = @O ffrom (L*(G), 1) into (L*(G), ||.||) is continuous.

We are now in a position to establish one of the main results of this section.

Theorem 3.4. Let G be a locally compact group, X a subspace of L*(G) with
1c € X that is closed under complex conjugation, invariant and topologically
invariant. Then the following properties hold:

(i) Every topologically inner invariant mean m on X is T.-continuous;

(ii) An inner invariant mean on X is topologically inner invariant mean if and
only if it is T.-continuous;
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(iii) Let m be an inner invariant mean on X. Suppose there is some ¢y € P'(G)
such that (m, o © f) = (m, f) for all f € X. Then m is topologically inner
invariant mean.

Note that an analogue of statement (ii) for topological left invariant means has
proved by Crombez, see Lemma 2.1 in [3]. Also, there is an argument similar to
statement (iii) for topological left invariant means, see Proposition 22.2 in [21].

Proof. (i): Let m be a topologically inner invariant mean on X, and let f, — f
in the 7.-topology of X. By Lemma 3.3, for ¢ € P!(G), fo.¢ — f.¢ in the norm
topology. We conclude that

Lim(m, fo) = lim(m, ¢ © fa) =lim{m, fo.9) = (m, f.¢)
= (m o0 f)=(mf).

This shows that m is T.-continuous.

(ii): Let m be an inner invariant mean on X. If m is topologically inner invari-
ant, then m is T.-continuous; see ().

To prove the converse, let m be an inner invariant mean on X. Let f € X,
@ € P1(G) and € > 0 be given. We further assume that ¢ has a compact support,
say K. If || f|| = 0, we have trivially (m, ¢ ® f) = (m, f). We now consider the
case ||f|| > 0. The sets

V(p® f, 01, o, 0) ={h € X; ||hpi — (9O f).pi|| <6, i=1,..,n}

where § > 0 and {¢y, ..., ¢, } is a finite subset of L'(G), form a basis of open
neighborhoods of ¢ ® f in the 7.-topology of X. Now, we choose a neighborhood
V(p® f,¢1,.... pn,0) of ¢ © f in X such that [(m, h) — (m, ¢ ® f)| < € whenever
h € V(p©® f,@1,...,¢n,6). Since the mapping y +— ,¢. is continuous [6], for
every y € K, there exists a relatively compact neighbourhood U, of y in G such
that [[yp, — x@;ll1 < ﬁ whenever x € Uy and i € {1,..,n}. Now cover K by
{Uy; y € K}. By compactness we may extract a finite subcover Uy,, ..., Uy, of K.
We can find [ Borel subsets A1, ..., A; of K such that

l

. )
K = UA], A]ﬂAr:®(]7ér), Hygoi—yj§0i||1<||f—||
j=1

whenevery € Ajandi € {1,..,n}. If j € {1,..., I}, we also put a; = fA]- ¢(y)dy.
Then Z;‘:l aj = 1. Foreveryi € {1,..,n},

l l
‘ Z%“jp(yj)f-fl)i — (O f)ei| = ‘ Z:oc]-yj(pi@f— Pi © ((p@f)‘
= ~
< / 2y 9, © f = 29,0 fldz

= / 2y @, — z@illa I flldz < &.



34 A. Ghaffari
This shows that Z§:1 aip(y;)f € V(e © f, ¢1,..., ou,0), and so

1
() =m0 © )] = |{m L aip(yf) = m @0 )] <e.
=

As € > 0 may be chosen arbitrarily, we have (m, f) = (m, ¢ © f). Finally, if ¢ is
any element in P}(G), let {¢,} C P}(G) be a sequence of elements with compact
support such that ¢, — ¢. Then from the above special case, we conclude that
(m, ¢ © f) = (m, f).

(iii): Let m be an inner invariant mean and (m, g © f) = (m, f) for all f € X.
To show that m is topologically inner invariant mean, it is sufficient to prove that
m is T.-continuous. But suppose f, — f in the 7.-topology. Since ¢y © fy =
fa-90 = f.@o = @o © f in the norm topology, we see that

im(m, fo) = lim(m, ¢o © fu) = (m, 9o © f) = (m, f).

Hence m is topologically inner invariant mean. ]

Let G be a compact nondiscrete abelian group. By Proposition 22.3 in [21],
there exists a left invariant mean m on L*(G) such that (m, ¢ * f) # (m, f) for
some f € L*(G) and ¢ € P!(G). This shows that m can not be a topologically
left invariant mean. It is easy to see that every topologically inner invariant mean
on L*(G) is inner invariant mean on L*(G). We do not know whether or not the
converse holds. The next theorem of this section exhibits a number of assertions
which are equivalent to inner amenability of a locally compact group G.

Theorem 3.5. A locally compact group G is inner amenable if and only if there
exists a net { @, } in P'(G) satisfying any one of the following conditions:

(i) Forevery ¢, 9 € PY(G), limy [¢ ® (¢ ® ¢a) — 9 ® gal1 = 0;
(ii) For every ¢ € P}(G) and f € U®(G), limy(f, ¢ ® @y — @a) = 0;
(iii) For every compact subset K of G and every f € U®(G),

lim sup{|(f, m1(y) pa — ¢a)]; v € K} = 0.

Proof. Let G be inner amenable. By Theorem 2 in [24], there exists a net { ¢}
in P1(G) such that lim, ||¢ ® ¢, — @4|l1 = O for every ¢ € P!(G). For every

¢, ¢ € P1(G),

im [ ® (¢ ® ¢a) =9 ® gaf1 < lim [l ® pa — @all1 = 0.
(i) implies (ii): Let f € U®(G) and ¢ € P'(G). By Cohen’s factorization theorem,
U*(G) = L'(G) ® L®(G) [23]. Therefore f is of the form f = 1y ® fy for some

o € L'(G) and fy € L®(G). By considering Jordan decomposition, it is clear
that statement (i) holds for any ¢ € L'(G). Hence

Em(f, ¢ ® ga — ¢a) = lim{fo, Y0 ® (¢ ® ¢a) — Y0 ® ¢a) = 0.



Conjugate convolution operators and inner amenability 35

(ii) implies G is inner amenable: It suffices to show that U*°(G) has a topolog-
ically inner invariant mean. By Proposition 3.3 in [21], the net {¢,} admits a
subnet {¢p} converging to a mean m in the weak* topology of L*(G). For all

f e U>(G) and ¢ € P1(G),

(m, 9O f—f) =lig1<f,sv®q0ﬁ—qo/s> =0.

(iii) implies G is inner amenable: This is similar to the last implication. Let
{@«} be as in statement (iii) and define m as above. Then for f € U%(G) and
x € G,

(m,o(x)f — f) = lign<f, 1 (x)pp — ¢p) = 0.

Inner amenable implies (iii): This is an immediate consequence of Theorem 1 of
[24]. [ ]

Theorem 3.6. Let1 < p,q < oo and % + % = 1. A locally compact group G is
inner amenable if and only if

inf{sup{inf{ (7, (y)p + ¢, ¥);y € K}; ¢ € PP(G), ¢ € P1(G)};K € K} =2,

where K is the family of compact subsets of G.

Proof. Suppose that G is inner amenable. Let K be a compact subset of G and
€ > 0. By Theorem 1 in [26], there exists ¢ € P'(G) such that, for every y € K,
|71(y)¢ — ¢|l1 < €P. For a > 0, the map x +— xP —aP — (x — a)” is increasing

from R* into R. So that (b —a)? < bP —aP forallb > a. Let ¢ = cp%. For every
y € K, we obtain

I =9l = [ |67 m)am)7 - 97 (x)

< [ 1 x)AW) - () lax
< Im@)o— ¢l <

‘pdx

Now let i = gos. For every y € K,

(T (W)e+o.9) = (mpy)e — ¢ 9) +2{¢, ) >2—€.
As e > 0and K € K are arbitrary, we have
inf{sup{inf{(7,(y)¢ + @, ¢);y € K}; ¢ € PP(G),p € P1(G)};K € K} = 2.

Conversely if the condition holds, let K be a compact subset of G and € > 0.
Then there exist ¢ € PP(G) and ¢ € P7(G) such that (7, (y)¢ + ¢,1) > 2 — € for
every y € K. It follows that ||71,(y)¢ + ¢||, > 2 — € for every y € K. For every
y € K, by the Clarkson’s inequalities, we obtain

e ()e + @l + Imp)e — ellp < 27 (I (W)elly + lollp) =27
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in case p > 2, and so ||, (y) ¢ — qo||§ < 2P — (2 —€)P. We have

I @)+ @l} + W) — ollp <27 (I ()glly + lolp)" " =27

in case 1 < p < 2, and so |7, (y)¢ — @[5 < 29 — (2 — €)1. Since this holds for all
y € K, we conclude that G is inner amenable [24]. [ |

Corollary 3.7. Let1 < p,q < oo and % + % = 1. The following conditions are
equivalent:

(i) G isinner amenable;

(i) inf{sup{(p ® ¢+ ¢, 9); ¢ € PP(G), p € PI(G)}, ¢ € P(G)} =2.

Proof. (i) implies (ii): Let ¢ € P(G) and € € (0,1). Choose ¢; € C.(G)* with
compact support K such that ||¢ — ¢1]|1 < €, hence ||¢1]1 > 1 — € [10]. By Theo-
rem 3.6, we may determine ¢ € PF(G) and ¢ € P9(G) such that
(tp(y)9 + @, ) > 2 —eforally € K. By integration, we obtain (¢ ® ¢ + ¢, 1) >
(2—¢)|l¢p1][1 > (2—¢€)(1 —€). We have

@9+, ¢)+e>(P1®p+o¢) > (2—€)(l—e).
This shows that

inf{sup{(p ® ¢+ 9,); ¢ € PP(G), p € P1(G)}, ¢ € P'(C)} =2

(ii) implies (i): Let ¢ € P}(G). By assumption, given € € (0,1), there exist
¢ € PP(G) and ¢ € P(G) such that (¢ ® ¢ + ¢, ) > 2 —e. It follows that
(p® @, 9) > 1—e. We consider Ly : LP(G) — LP(G) by Ly(¢) = ¢ ® ¢. Clearly
ILyp|| > 1—¢, and so ||[Ly|| = 1. Since this holds for all ¢ € P}(G), by a form
of the Riesz-Thorin Convexity Theorem ([4], V1.10.11), Ly : L*(G) — L?(G) has
norm 1. Define wy : {Ly; ¢ € L'(G)} — Cby w;(Ly) = [ ¢(x)dx. By the Hahn
Banach theorem for states (see Proposition 2.3.24 in [2]), we can extend w; to a
state w on the algebra B(L?(G)) of bounded operators on L?(G). Therefore G is
inner amenable by Theorem 2 in [26]. [ ]

Lau and Paterson [13] gave a necessary condition on a locally compact group
G to have an inner invariant mean m such that (m,1y) = 0 for some compact
neighborhood V of G invariant under the inner automorphisms. Let A be a Borel
subset of G. In the following theorem, we provide a necessary and sufficient
condition for G to have an inner invariant mean m with (m,14) = 1.

Theorem 3.8. Let G be an inner amenable group and let A be a Borel subset of G.
Then the following statements are equivalent:

(i) There is a topologically inner invariant mean on L®(G) such that (m,14) =
L

(ii) inf{sup{inf{(m1(y)p,14); y € K}; ¢ € P1(G)}; K€ K} = 1.
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Proof. (i) implies (ii): Assume that there is a topologically inner invariant mean m
on L®(G) such that (m,1,) = 1. As P}(G) is weak* dense in the convex set of all
means on L™ (G) (see Proposition 3.3 in [21]), there exists a net { ¢, } in P} (G) such
that, for every ¢ € P1(G), {9 ® ¢, — ¢4} converges to 0 in the weak topology of
LY(G). Let ¢g € P}(G) be fixed and put i, = @o ® @,. It is easy to see that {1, }
converging to ¢g.m in the weak* topology of L*(G), and also (¢@o.m,14) = 1. Let
e > 0and K C G compact be given. As ¢y € L'(G), the mapping y — ,¢p is
continuous [10], so there exists an open neighbourhood V of e in G such that, for
ally € V, [[y90 — @ol[1 < 5 [6]. We may determine a subset {y1, ...,y } in K such
that K € U, y;V and |[y90 — ;90]|1 < § whenevery € y;VNKandi € {1,...,n}.
There exists ag € I such that, for every « € [ witha = ag and every i € {1,..,n}

(1 (i) ¥a — Yu, 1a)| <

(1 (Y1) ¥ — Pus 1a) | + [(Pa — @u, 14)]
(1:00 ® Qo — @, 1) | + [{90 ® o — @, 14)]

IN

N
NI ™

—

For any y € K, there existi € {1,..,n} and v € V such that y = y;v. Then we

have

(W) de =P 1) = (M) e — w1 (yi) e + w1 (Yi) Yo — Yo, 14)]|

€
< [P0 ® @a =y 90 ® gu, 1a) + 5 <e.

for every & > ag. This shows that lim, (71 (y)Pa — Pa,14) = 0 uniformly on
compacta.

Now let K be a compact subset of G and € > 0. Then there is some «y € I such
that c

1= (Yo, La) | = [o-m, 1a) = (Yo, 1a)| < 5

and (711 (y)Pay — Pay, 1a)| < § forally € K. Clearly (71 (y)a,, 14) > 1 — € for
all y € K. We conclude that

inf{sup{inf{ (1 (y),14); y € K}; ¢ € PY(G)}; K€ K} = 1.

(ii) implies (i): We consider the directed set I = IC x (0,1) where, fora = (K, €) €
I,o/ = (K,e') € I,/ = aincase K C K" and €/ < e. By assumption, given
a = (K, €), there exist ¢, € P!(G) such that (71 (y)@s, 14) > 1 —e€forally € K.
Let ¢ € P'(G) be such that ¢ is supported on K. We have

(P ® @a,14) = /<ﬂ1(y)%I1A>¢(y)dy >1-e.

Since the measures in P!(G) with compact supports are norm dense in P!(G)
[10], it follows that lim, (¢ ® @4, 14) = 1 for all ¢ € P!(G). By Proposition 3.3
in [21], the net {@, } admits a subnet {¢3} converging to a mean # in the weak”
topology of L®(G). It follows that (n,14.¢) = 1 for all ¢ € P!(G). Since G is
inner amenable, let 1717 be a topologically inner invariant mean on L*(G). Indeed,
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if mp is an inner invariant mean on L*(G), then mo|y~(c) is an inner invariant
mean on U%(G). By Lemma 3.2, mo| ;= (G is a topologically inner invariant mean.
On the other hand, any topologically inner invariant mean on U*(G) may be
extended to a topologically inner invariant mean on L®(G). Thus we can find a
topologically inner invariant mean m; on L®(G). Clearly m = mj.n is a mean on
L*(G). Let {1} be a net in P!(G) converging to m; in the weak* topology of
L*(G). We have

[{m, 1) = [{mn, 1) = [ {1, n.14)| = o |(y, 1.14)]

= lim|(n,1a4,) =1

It is straightforward to verify that m is a topologically inner invariant mean (since
my is) on L*(G). This completes our proof. ]
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