ε-simultaneous approximation and invariant points

Sumit Chandok^{*} T.D. Narang

Abstract

In this paper we generalize and extend Brosowski-Meinardus type results on invariant points from the set of best approximation to the set of ε -simultaneous approximation. As a consequence some results on ε -approximation and best approximation are also deduced. The results proved extend and generalize some of the results of R.N. Mukherjee and V. Verma [Bull. Cal. Math. Soc. 81(1989) 191-196; Publ. de l'Inst. Math. 49(1991) 111-116], T.D. Narang and S. Chandok [Mat. Vesnik 61(2009) 165-171; Selçuk J. Appl. Math. 10(2009) 75-80; Indian J. Math. 51(2009) 293-303], G.S. Rao and S.A. Mariadoss [Serdica-Bulgaricae Math. Publ. 9(1983) 244-248] and of few others.

1 Introduction and Preliminaries

The idea of applying fixed point theorems to approximation theory was initiated by G. Meinardus [9]. Meinardus introduced the notion of invariant approximation in normed linear spaces. Generalizing the result of Meinardus, Brosowski [2] proved the following theorem on invariant approximation using fixed point theory:

Theorem 1.1. Let T be a linear and nonexpansive operator on a normed linear space E. Let C be a T-invariant subset of E and x a T-invariant point. If the set $P_C(x)$ of best

Bull. Belg. Math. Soc. Simon Stevin 18 (2011), 821–834

^{*}Corresponding author

Received by the editors August 2008.

Communicated by E. Colebunders.

²⁰⁰⁰ Mathematics Subject Classification : 41A28, 41A50, 47H10, 54H25.

Key words and phrases : ε -simultaneous approximatively compact set, starshaped set, best approximation, best simultaneous approximation, ε -simultaneous approximation, jointly continuous contractive family, nonexpansive and quasi-nonexpansive mappings.

C-approximants to *x* is non-empty, compact and convex, then it contains a *T*-invariant point.

Subsequently, various generalizations of Brosowski's results appeared in the literature. Singh [18] observed that the linearity of the operator *T* and convexity of the set $P_C(x)$ in Theorem 1.1 can be relaxed and proved the following:

Theorem 1.2. Let $T : E \to E$ be a nonexpansive self mapping on a normed linear space *E*. Let *C* be a *T*-invariant subset of *E* and *x* a *T*-invariant point. If the set $P_C(x)$ is non-empty, compact and starshaped, then it contains a *T*-invariant point.

Singh [19] further showed that Theorem 1.2 remains valid if *T* is assumed to be nonexpansive only on $P_C(x) \cup \{x\}$. Since then, many results have been obtained in this direction (see Mukherjee and Som [10], Mukherjee and Verma [12], Narang and Chandok ([13] [14] [15]), Rao and Mariadoss [16] and references cited therein).

In this paper we prove some similar types of results on *T*-invariant points for the set of ε -simultaneous approximation to a pair of points x_1, x_2 in a metric space (X, d) from a set *C*, which is not necessarily starshaped but has a jointly continuous contractive family. Some results on *T*-invariant points for the set of ε -approximation and best approximation are also deduced. The results proved in the paper generalize and extend some of the results of [11], [12], [13], [14], [15], [16] and of few others.

Let *G* be a non-empty subset of a metric space $(X, d), x_1, x_2 \in X$ and $\varepsilon > 0$. An element $g_0 \in G$ is said to be ε -simultaneous approximation(respectively, ε -simultaneous coapproximation) if $d(x_1, g_0) + d(x_2, g_0) \leq r + \varepsilon$, where $r = \inf\{d(x_1, g) + d(x_2, g) : g \in G\}$ (respectively, $d(g_0, g) + \varepsilon \leq \max\{d(x_1, g) + d(x_2, g) : g \in G\}$ for all $g \in G$). We shall denote by $P_G(x_1, x_2, \varepsilon)$ (respectively, $R_G(x_1, x_2, \varepsilon)$) the set of all ε -simultaneous approximation (respectively, ε -simultaneous coapproximation) to x_1, x_2 .

It can be easily seen that for $\varepsilon = 0$, the set $P_G(x_1, x_2, \varepsilon)$ (respectively, $R_G(x_1, x_2, \varepsilon)$) is the set of best simultaneous approximations (respectively, best simultaneous coapproximations) of x_1, x_2 in *G* and further if $x_1 = x_2 = x$, then it reduces to the set of best approximations (respectively, best coapproximations) of x in *G*.

It can be easily seen that for $\epsilon > 0$, the set $P_G(x_1, x_2, \epsilon)$ is always a non-empty bounded set and is closed if *G* is closed.

A sequence $\langle y_n \rangle$ in *G* is called a ε -minimizing sequence for x_1, x_2 if $\lim_{n\to\infty} [d(x_1, y_n) + d(x_2, y_n)] \leq \inf\{d(x_1, y) + d(x_2, y) : y \in G\} + \varepsilon$. The set *G* is said to be ε -simultaneous approximatively compact if for every pair $x_1, x_2 \in X$, each ε -minimizing sequence $\langle y_n \rangle$ in *G* has a subsequence $\langle y_{n_i} \rangle$ converging to an element of *G*.

Let (X, d) be a metric space. A continuous mapping $W : X \times X \times [0, 1] \rightarrow X$ is said to be a **convex structure** on X if for all $x, y \in X$ and $\lambda \in [0, 1]$,

$$d(u, W(x, y, \lambda)) \le \lambda d(u, x) + (1 - \lambda)d(u, y)$$

holds for all $u \in X$. The metric space (X, d) together with a convex structure is called a **convex metric space** [22].

A convex metric space (X, d) is said to satisfy **Property (I)** [5] if for all $x, y, p \in X$ and $\lambda \in [0, 1]$,

$$d(W(x, p, \lambda), W(y, p, \lambda)) \leq \lambda d(x, y).$$

A normed linear space and each of its convex subset are simple examples of convex metric spaces. There are many convex metric spaces which are not normed linear spaces (see [22]). Property (I) is always satisfied in a normed linear space.

A subset *K* of a convex metric space (X, d) is said to be

- *i*) a convex set [22] if $W(x, y, \lambda) \in K$ for all $x, y \in K$ and $\lambda \in [0, 1]$;
- *ii*) *p*-starshaped [7] where $p \in K$, provided $W(x, p, \lambda) \in K$ for all $x \in K$ and $\lambda \in [0, 1]$;
- *iii*) **starshaped** if it is *p*-starshaped for some $p \in K$.

Clearly, each convex set is starshaped but not conversely. A self map *T* on a metric space (X, d) is said to be

- *i*) contraction if $d(Tx, Ty) \le kd(x, y)$ for all $x, y \in X$ and $0 \le k < 1$;
- *ii*) **nonexpansive** if $d(Tx, Ty) \le d(x, y)$ for all $x, y \in X$;
- *iii*) **quasi-nonexpansive** if the set F(T) of fixed points of T is non-empty and $d(Tx, p) \le d(x, p)$ for all $x \in X$ and $p \in F(T)$.

A nonexpansive mapping *T* on *X* with $F(T) \neq \emptyset$ is quasi-nonexpansive, but not conversely (see [20], p.27).

Let *C* be a subset of a metric space (X, d) and $\mathfrak{F} = \{f_{\alpha} : \alpha \in C\}$ a family of functions from [0, 1] into *C*, having the property $f_{\alpha}(1) = \alpha$, for each $\alpha \in C$. Such a family \mathfrak{F} is said to be **contractive** if there exists a function $\phi : (0, 1) \rightarrow (0, 1)$ such that for all $\alpha, \beta \in C$ and for all $t \in (0, 1)$, we have

$$d(f_{\alpha}(t), f_{\beta}(t)) \leq \phi(t)d(\alpha, \beta).$$

Such a family \mathfrak{F} is said to be **jointly continuous** if $t \to t_{\circ}$ in [0, 1] and $\alpha \to \alpha_{\circ}$ in *C* imply $f_{\alpha}(t) \to f_{\alpha_{\circ}}(t_{\circ})$ in *C*.

In normed linear spaces these notions were discussed by Dotson [4]. It was observed in [4] that if *C* is a starshaped subset (of a normed linear space) with star-center *p* then the family $\mathfrak{F} = \{f_{\alpha} : \alpha \in C\}$ defined by $f_{\alpha}(t) = (1 - t)p + t\alpha$ is contractive if we take $\phi(t) = t$ for 0 < t < 1, and is jointly continuous. The same is true for starshaped subsets of convex metric spaces with Property (I), by taking $f_{\alpha}(t) = W(\alpha, p, t)$ and so the class of subsets of starshaped sets which in turn contains the class of convex sets.

2 Main Results

To start with, we prove the following proposition on ε -simultaneous approximation which will be used in the sequel.

Proposition 2.1. *If C a non-empty* ε *-simultaneous approximatively compact subset of a metric space* (*X*, *d*), $x_1, x_2 \in X$, then the set $P_C(x_1, x_2, \varepsilon)$ is a non-empty compact subset of *C*.

Proof. Since $\varepsilon > 0$, $P_C(x_1, x_2, \varepsilon)$ is non-empty.

We now show that $P_C(x_1, x_2, \varepsilon)$ is compact. Let $\langle y_n \rangle$ be a sequence in $P_C(x_1, x_2, \varepsilon)$. Then $\lim[d(x_1, y_n) + d(x_2, y_n)] \leq \inf\{d(x_1, y) + d(x_2, y) : y \in C\} + \varepsilon$, i.e. $\langle y_n \rangle$ is an ε -minimizing sequence for the pair x_1, x_2 in *C*. Since *C* is ε -simultaneous approximatively compact, there is a subsequence $\langle y_{n_i} \rangle$ such that $\langle y_{n_i} \rangle \rightarrow y \in C$. Consider

$$d(x_1, y) + d(x_2, y) = d(x_1, \lim y_{n_i}) + d(x_2, \lim y_{n_i})$$

= $\lim \{ d(x_1, y_{n_i}) + d(x_2, y_{n_i}) \}$
 $\leq \inf \{ d(x_1, y) + d(x_2, y) : y \in C \} + \varepsilon.$

This implies that $y \in P_C(x_1, x_2, \varepsilon)$. Thus we get a subsequence $\langle y_{n_i} \rangle$ of $\langle y_n \rangle$ converging to an element $y \in P_C(x_1, x_2, \varepsilon)$. Hence $P_C(x_1, x_2, \varepsilon)$ is compact.

If $x_1 = x_2 = x$, we have the following result on ε -approximation.

Corollary 2.2. (see [13]) If C is an ε -approximatively compact set in a metric space (X, d) then $P_C(x, \varepsilon)$ is a non-empty compact set.

Further, if $\varepsilon = 0$, we have the following result.

Corollary 2.3. (see, [14]) Let C be an approximatively compact subset of a metric space $(X, d), x \in X$ and $P_C(x) = \{y \in C : d(x, y) = d(x, C)\}$ is the set of best approximant to x in C then $P_C(x)$ is a non-empty compact subset of C.

We shall be using the following result of Hardy and Rogers [6] in proving our first theorem.

Lemma 2.4. Let *F* be a mapping from a complete metric space (*X*, *d*) into itself satisfying

$$d(Fx, Fy) \le a[d(x, Fx) + d(y, Fy)] + b[d(y, Fx) + d(x, Fy)] + cd(x, y),$$
(2.1)

for any $x, y \in X$ where a, b and c are non-negative numbers such that $2a + 2b + c \leq 1$. Then F has a unique fixed point u in X. In fact for any $x \in X$, the sequence $\{F^nx\}$ converges to u.

Theorem 2.5. Let T be a continuous self map on a complete metric space (X, d) satisfying (2.1), C a T-invariant subset of X. Let $Tx_i = x_i$ (i = 1, 2) for some x_1, x_2 not in cl(C). If $P_C(x_1, x_2, \varepsilon)$ is compact and has a contractive jointly continuous family \mathfrak{F} , then it contains a T-invariant point.

Proof. Let $D = P_C(x_1, x_2, \varepsilon)$ i.e. $D = \{z \in C : d(x_1, z) + d(x_2, z) \le d(x_1, y) + d(x_2, y) + \varepsilon, \text{ for every } y \in C\}.$ (2.2) Let $z \in D$ be arbitrary. Then by (2.1), we have

$$\begin{split} d(x_1, Tz) + d(x_2, Tz) &= d(Tx_1, Tz) + d(Tx_2, Tz) \\ &\leq a[d(x_1, Tx_1) + d(z, Tz)] + b[d(z, Tx_1) + d(x_1, Tz)] + \\ &\quad cd(x_1, z) + a[d(x_2, Tx_2) + d(z, Tz)] + b[d(z, Tx_2) + \\ &\quad d(x_2, Tz)] + cd(x_2, z) \\ &= 2ad(z, Tz) + (b + c)[d(x_1, z) + d(x_2, z)] + b[d(x_1, Tz) + \\ &\quad d(x_2, Tz)] \\ &= a[d(z, Tz) - d(x_1, Tz)] + a[d(z, Tz) - d(x_2, Tz)] + \\ &\quad a[d(x_1, Tz) + d(x_2, Tz)] + (b + c)[d(x_1, z) + d(x_2, z)] + \\ &\quad b[d(x_1, Tz) + d(x_2, Tz)]. \end{split}$$

This gives,

$$(1-a-b)[d(x_1,Tz)+d(x_2,Tz)] \le (a+b+c)[d(x_1,z)+d(x_2,z)].$$

Hence

$$d(x_1, Tz) + d(x_2, Tz) \le d(x_1, z) + d(x_2, z)$$
(2.3)

since $2a + 2b + c \le 1$. Also, using (2.2), we get

$$d(x_1, Tz) + d(x_2, Tz) \le d(x_1, y) + d(x_2, y) + \varepsilon$$
(2.4)

for all $y \in C$. Hence $Tz \in D$. Therefore T is a self map on D. Define $T_n : D \to D$ as $T_n x = f_{Tx}(\lambda_n), x \in D$ where $\langle \lambda_n \rangle$ is a sequence in (0, 1) such that $\lambda_n \to 1$. Also

$$d(T_n x, T_n y) = d(f_{Tx}(\lambda_n), f_{Ty}(\lambda_n))$$

$$\leq \phi(\lambda_n) d(Tx, Ty)$$

$$\leq \phi(\lambda_n) [a[d(x, Tx) + d(y, Ty)] + b[d(y, Tx) + d(x, Ty)] + cd(x, y)]$$

where $\phi(\lambda_n)[2a + 2b + c] \leq 1$. Therefore by Lemma 2.4, each T_n has a unique fixed point z_n in D. Since D is compact, there is a subsequence $\langle z_{n_i} \rangle$ of $\langle z_n \rangle$ such that $z_{n_i} \rightarrow z_o \in D$. We claim that $Tz_o = z_o$. Consider $z_{n_i} = T_{n_i}z_{n_i} = f_{Tz_{n_i}}(\lambda_{n_i}) \rightarrow f_{Tz_o}(1)$ as the family \mathfrak{F} is jointly continuous and T is also continuous. Thus $z_{n_i} \rightarrow Tz_o$ and consequently, $Tz_o = z_o$ i.e. $z_o \in D$ is a T-invariant point.

Since for an ε -simultaneous approximatively compact subset *C* of a metric space (*X*, *d*) the set of ε -simultaneous *C*-approximant is nonempty and compact (Proposition 2.1), we have the following result.

Corollary 2.6. Let T be a continuous self map on a complete metric space (X,d) satisfying (2.1), C an ε -simultaneous approximatively compact and T-invariant subset of X. Let $Tx_i = x_i$ (i = 1, 2) for some x_1, x_2 not in cl(C). If the set $D = P_C(x_1, x_2, \varepsilon)$ has a contractive jointly continuous family \mathfrak{F} , then it contains a T-invariant point. **Corollary 2.7.** Let T be a continuous self map on a complete convex metric space (X, d) with Property (I) satisfying (2.1), C an ε -simultaneous approximatively compact and T-invariant subset of X. Let $Tx_i = x_i$ (i = 1, 2) for some x_1, x_2 not in cl(C). If the set $D = P_C(x_1, x_2, \varepsilon)$ is p-starshaped, then it contains a T-invariant point.

Proof. Define $f_{\alpha} : [0,1] \to D$ as $f_{\alpha}(t) = W(\alpha, p, t)$. Then

$$d(f_{\alpha}(t), f_{\beta}(t)) = d(W(\alpha, p, t), W(\beta, p, t)) \leq t d(\alpha, \beta),$$

 $\phi(t) = t$, 0 < t < 1, i.e. *D* is a contractive jointly continuous family. Taking $\lambda_n = \frac{n}{n+1}$ and defining $T_n(x) = f_{Tx}(\lambda_n) = W(Tx, p, \lambda_n)$, we get the result using Theorem 2.5.

For $\varepsilon = 0$ in Theorem 2.5, we have the following results.

Corollary 2.8. Let T be a continuous self map on a complete metric space (X,d) satisfying (2.1), C a T-invariant subset of X. Let $Tx_i = x_i$ (i = 1, 2) for some x_1, x_2 not in cl(C). If $P_C(x_1, x_2)$ is nonempty, compact and has a contractive jointly continuous family \mathfrak{F} , then it contains a T-invariant point.

Corollary 2.9. Let T be a continuous self map on a complete metric space (X, d) satisfying (2.1), C an approximatively compact and T-invariant subset of X. Let $Tx_i = x_i$ (i = 1, 2) for some x_1, x_2 not in cl(C). If the set $D = P_C(x_1, x_2)$ has a contractive jointly continuous family \mathfrak{F} , then it contains a T-invariant point.

Corollary 2.10. Let T be a continuous self map on a complete convex metric space (X, d) with Property (I) satisfying (2.1), C an approximatively compact and T-invariant subset of X. Let $Tx_i = x_i$ (i = 1, 2) for some x_1, x_2 not in cl(C). If the set D of best simultaneous C-approximants to x_1, x_2 is p-starshaped, then it contains a T-invariant point.

Corollary 2.11. (see [12]) Let T be a continuous self map on a Banach space X satisfying (2.1), C an approximatively compact and T-invariant subset of X. Let $Tx_i = x_i$ (i = 1, 2) for some x_1, x_2 not in cl(C). If the set of best simultaneous C-approximants to x_1, x_2 is starshaped, then it contains a T-invariant point.

If a = b = 0 in Corollary 2.8, the map *T* becomes nonexpansive, so we have the following result.

Corollary 2.12. (see [15]) Let T be a mapping on a metric space (X, d), C a T-invariant subset of X and x a T-invariant point. If $P_C(x)$ is a non-empty, compact set for which there exists a contractive jointly continuous family \mathfrak{F} of functions and T is non-expansive on $P_C(x) \cup \{x\}$ then $P_C(x)$ contains a T-invariant point.

Corollary 2.13. (see [10]-Theorem 2, [17]-Theorem 3.4) Let T be nonexpansive operator on a normed linear space X. Let C be a T-invariant subset of X and x a T-invariant point. If $P_C(x)$ is non-empty, compact and for which there exists a contractive jointly continuous family \mathfrak{F} of functions, then it contains a T-invariant point.

Since for an approximatively compact subset *C* of a metric space (X, d) the set $P_C(x)$ is non-empty and compact (Corollary 2.3), we have:

Corollary 2.14. Let T be a mapping on a metric space (X,d), C an approximatively compact, T-invariant subset of X and x a T-invariant point. If there exists a contractive jointly continuous family \mathfrak{F} of functions and T is nonexpansive on $P_C(x) \cup \{x\}$, then $P_C(x)$ contains a T-invariant point.

Corollary 2.15. Let T be a mapping on a convex metric space (X, d) with Property (I), C an approximatively compact, p-starshaped, T-invariant subset of X and x a T-invariant point. If T is nonexpansive on $P_C(x) \cup \{x\}$, then $P_C(x)$ contains a T-invariant point.

Corollary 2.16. (see [14]-Theorem 4) Let T be a quasi-nonexpansive mapping on a convex metric space (X, d) with Property (I), C a T-invariant subset of X and x a T-invariant point. If $P_C(x)$ is nonempty, compact and starshaped, and T is nonexpansive on $P_C(x)$, then $P_C(x)$ contains a T-invariant point.

Corollary 2.17. (see [14]-Theorem 5) Let T be a quasi-nonexpansive mapping on a convex metric space (X, d) with Property (I), C an approximatively compact, T-invariant subset of X and x a T-invariant point. If $P_C(x)$ is starshaped and T is nonexpansive on $P_C(x)$, then $P_C(x)$ contains a T-invariant point.

Remark 2.1. 1. If a = b = 0 and $x_1 = x_2 = x$ in Theorem 2.5, then it improves and generalizes Theorem 1 of Narang and Chandok [13].

2. Corollary 2.8 is a generalization and extension of Theorem 1 of Rao and Mariadoss [16] for a mapping *T* which maps the set *D* of best simultaneous *C*-approximants to $x_1, x_2 \in X$ into itself and the spaces undertaken are metric spaces.

We shall be using the following result of Bose and Mukherjee [1] in proving our next theorem.

Lemma 2.18. Let $\{F_n\}$ be a sequence of self mappings of complete metric space (X, d) such that

$$d(F_ix, F_jy) \le a_1d(x, F_ix) + a_2d(y, F_jy) + a_3d(y, F_ix) + a_4d(x, F_iy) + a_5d(x, y), \quad (j > i)$$
(2.5)

for all $x, y \in X$ where a_1, a_2, \ldots, a_5 are non-negative numbers such that $\sum_{k=1}^5 a_k < 1$ and $a_3 = a_4$. Then the sequence $\{F_n x\}$ has a unique common fixed point.

Theorem 2.19. Let T_1 and T_2 be a pair of continuous self maps on a complete metric space (X, d) satisfying $d(T_1x, T_2y) \leq d(x, y)$, for $x, y \in X$ $(x \neq y)$. Let the set C be T_i -invariant (i = 1, 2) subset of X. Suppose that x_1 and x_2 are two common fixed points for the pair T_1 and T_2 not in cl(C). If the set $D = P_C(x_1, x_2, \varepsilon)$ is compact and has a contractive jointly continuous family \mathfrak{F} , then it has a point which is both T_1 - and T_2 -invariant.

Proof. Since x_1 and x_2 are common fixed points of T_1 and T_2 , proceeding as in Theorem 2.5, we get that $T_1(D) \subseteq D$ and $T_2(D) \subseteq D$. Now we show that there is a point $z_0 \in D$ such that $T_i z_0 = z_0$ (i = 1, 2). Define T_{1n} and T_{2n} as $T_{1n}x = f_{T_1x}(\lambda_{1n})$, and $T_{2n}x = f_{T_2x}(\lambda_{2n})$, $x \in D$ where $< \lambda_{1n} >$ and $< \lambda_{2n} >$ are sequences in (0, 1) such that $< \lambda_{1n} >, < \lambda_{2n} > \rightarrow$ 1. Then using Lemma 2.18, we have $T_{1n}z_n = T_{2n}z_n = z_n \in D$. Since D is compact, there is a subsequence

 $\langle z_{n_i} \rangle$ of $\langle z_n \rangle$ such that $z_{n_i} \to z_o \in D$. We claim that $T_1 z_o = z_o = T_2 z_o$. Consider $z_{n_i} = T_{1n_i} z_{n_i} = f_{T_1 z_{n_i}}(\lambda_{1n_i}) \to f_{T_1 z_o}(1) = T_1 z_o$ as the family \mathfrak{F} is jointly continuous and T_{1n} is continuous. Thus $z_{n_i} \to T_1 z_o$ and similarly, $z_{n_i} \to T_2 z_o$. Hence the result.

Corollary 2.20. Let T_1 and T_2 be a pair of continuous self maps on a complete metric space (X, d) satisfying $d(T_1x, T_2y) \leq d(x, y)$, for $x, y \in X$ $(x \neq y)$. Let C be an ε -simultaneous approximatively compact, T_i -invariant (i = 1, 2) subset of X. Suppose that x_1 and x_2 are two common fixed points for the pair T_1 and T_2 not in cl(C). If the set $D = P_C(x_1, x_2, \varepsilon)$ has a contractive jointly continuous family \mathfrak{F} , then it has a point which is both T_1 - and T_2 -invariant.

Corollary 2.21. Let T_1 and T_2 be a pair of continuous self maps on a complete convex metric space (X, d) with Property (I) satisfying $d(T_1x, T_2y) \leq d(x, y)$, for $x, y \in X$ $(x \neq y)$. Let C be an ε -simultaneous approximatively compact, T_i -invariant (i = 1, 2)subset of X. Suppose that x_1 and x_2 are two common fixed points for the pair T_1 and T_2 not in cl(C). If the set $D = P_C(x_1, x_2, \varepsilon)$ is starshaped, then it has a point which is both T_1 - and T_2 -invariant.

For $\varepsilon = 0$, we have the following result.

Corollary 2.22. Let T_1 and T_2 be a pair of continuous self maps on a complete metric space (X, d) satisfying $d(T_1x, T_2y) \le d(x, y)$, for $x, y \in X$ $(x \ne y)$. Let the set C be T_i -invariant (i = 1, 2) subset of X. Suppose that x_1 and x_2 are two common fixed points for the pair T_1 and T_2 not in cl(C). If the set $D = P_C(x_1, x_2)$ is nonempty, compact and has a contractive jointly continuous family \mathfrak{F} , then it has a point which is both T_1 - and T_2 -invariant.

Corollary 2.23. Let T_1 and T_2 be a pair of continuous self maps on a complete metric space (X, d) satisfying $d(T_1x, T_2y) \leq d(x, y)$, for $x, y \in X$ ($x \neq y$). Let C be an approximatively compact, T_i -invariant (i = 1, 2) subset of X. Suppose that x_1 and x_2 are two common fixed points for the pair T_1 and T_2 not in cl(C). If the set D of best simultaneous C-approximants to x_1, x_2 has a contractive jointly continuous family \mathfrak{F} , then it has a point which is both T_1 - and T_2 -invariant.

Corollary 2.24. Let T_1 and T_2 be a pair of continuous self maps on a complete convex metric space (X, d) with Property (I) satisfying $d(T_1x, T_2y) \leq d(x, y)$, for $x, y \in X$ $(x \neq y)$. Let C be an approximatively compact, T_i -invariant (i = 1, 2) subset of X. Suppose that x_1 and x_2 are two common fixed points for the pair T_1 and T_2 not in cl(C). If the set D of best simultaneous C-approximants to x_1, x_2 is starshaped, then it has a point which is both T_1 - and T_2 -invariant.

Corollary 2.25. (see [12]) Let T_1 and T_2 be a pair of continuous self maps on a Banach space X satisfying $d(T_1x, T_2y) \le d(x, y)$, for $x, y \in X$ ($x \ne y$). Let C be an approximatively compact, T_i -invariant (i = 1, 2) subset of X. Suppose that x_1 and x_2 are two common fixed points for the pair T_1 and T_2 not in cl(C). If the set D of best simultaneous C-approximants to x_1, x_2 is starshaped, then it has a point which is both T_1 - and T_2 -invariant.

Definition 2.1. A subset *K* of a metric space (X, d) is said to be **contractive** if there exists a sequence $\langle f_n \rangle$ of contraction mappings of *K* into itself such that $f_n y \to y$ for each $y \in K$.

Theorem 2.26. Let *T* be a self mapping on a metric space (X, d), *G* a *T*-invariant subset of X and $Tx_i = x_i$ (i = 1, 2) for some x_1, x_2 not in cl(G). If *T* is nonexpansive and the set $D = P_G(x_1, x_2, \varepsilon)$ is compact and contractive, then D contains a *T*-invariant point.

Proof. Proceeding as in Theorem 2.5, we can prove that *T* is a self map of *D*. Since *D* is contractive, there exists a sequence $\langle f_n \rangle$ of contraction mapping of *D* into itself such that $f_n z \to z$ for every $z \in D$.

Clearly, $f_n T$ is a contraction on the compact set D for each n and so by Banach contraction principle, each $f_n T$ has a unique fixed point, say z_n in D. Now the compactness of D implies that the sequence $\langle z_n \rangle$ has a subsequence $\langle z_{n_i} \rangle \rightarrow z_o \in D$. We claim that z_o is a fixed point of T. Let $\varepsilon > 0$ be given. Since $z_{n_i} \rightarrow z_o$ and $f_n T z_o \rightarrow T z_o$, there exist a positive integer m such that for all $n_i \ge m$

$$d(z_{n_i}, z_\circ) < \frac{\varepsilon}{2}$$
 and $d(f_{n_i}Tz_\circ, Tz_\circ) < \frac{\varepsilon}{2}$

Again,

$$d(f_{n_i}Tz_{n_i},f_{n_i}Tz_{\circ})\leq d(z_{n_i},z_{\circ})<\frac{\varepsilon}{2}.$$

Hence

$$d(f_{n_i}Tz_{n_i},Tz_{\circ}) \leq d(f_{n_i}Tz_{n_i},f_{n_i}Tz_{\circ}) + d(f_{n_i}Tz_{\circ},Tz_{\circ})$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

i.e. $d(f_{n_i}Tz_{n_i}, Tz_{\circ}) < \varepsilon$ for all $n_i \ge m$ and so $f_{n_i}Tz_{n_i} \to Tz_{\circ}$. But $f_{n_i}Tz_{n_i} = z_{n_i} \to z_{\circ}$ and therefore $Tz_{\circ} = z_{\circ}$.

Using Proposition 2.1 we have the following result.

Corollary 2.27. Let T be a self mapping on a metric space (X, d), G an ε -simultaneous approximatively compact, T-invariant subset of X and $Tx_i = x_i$ (i = 1, 2) for some x_1, x_2 not in cl(G). If T is nonexpansive and the set $D = P_G(x_1, x_2, \varepsilon)$ is contractive, then D contains a T-invariant point.

If $\varepsilon = 0$, we have the following results.

Corollary 2.28. Let T be a self mapping on a metric space (X, d), G a T-invariant subset of X and $Tx_i = x_i$ (i = 1, 2) for some x_1, x_2 not in cl(G). If T is nonexpansive and the set $D = P_G(x_1, x_2)$ is nonempty compact, contractive, then D contains a T-invariant point.

Corollary 2.29. Let T be a self mapping on a metric space (X,d), G an ε - approximatively compact, T-invariant subset of X and $Tx_i = x_i$ (i = 1, 2) for some x_1, x_2 not in cl(G). If T is nonexpansive and the set $D = P_G(x_1, x_2)$ is contractive, then D contains a T-invariant point.

Remark 2.2. Theorem 2.26 improves and generalizes the corresponding results of Brosowski [2], Mukherjee and Verma [11] [12], Narang and Chandok [13], Rao and Mariadoss [16], Singh [18] and of Subrahmanyam [21].

Definition 2.2. For each bounded subset *G* of a metric space (X, d), the **Kuratowski's measure of noncompactness** of *G*, $\alpha[G]$ is defined as,

 $\alpha[G] = \inf\{\varepsilon > 0 : G \text{ is covered by a finite number of closed} \\ \text{balls centered at points of } X \text{ of radius } \leq \varepsilon\}.$

A mapping $T : X \to X$ is called **condensing** if for all bounded sets $G \subset X$, $\alpha[T(G)] \le \alpha[G]$.

Lemma 2.30. [3] Let X be a complete contractive metric space with contractions $\{f_n\}$. Let C be a closed bounded subsets of X and $f_n : C \to C$ is nonexpansive and condensing, then T has a fixed point in C.

Theorem 2.31. Let (X, d) be a complete, contractive metric space with contractions f_n . Let G be a closed and bounded subset of X. If T is a nonexpansive and condensing self map on X such that $Tx_1 = x_1$ and $Tx_2 = x_2$ for some $x_1, x_2 \in X$, then $D = P_G(x_1, x_2, \varepsilon)$ has a T-invariant point.

Proof. As *G* is closed and bounded, *D* is nonempty, closed and bounded. Using Theorem 2.5, we can prove that *T* is a self map of *D*. Now a direct application of Lemma 2.30, gives a *T*-invariant point in *D*.

Corollary 2.32. ([12]-Theorem 3.1) Let X be a complete, contractive metric space with contractions f_n . Let G be a closed and bounded subset of X. If T is a nonexpansive and condensing self map on X such that $Tx_1 = x_1$ and $Tx_2 = x_2$ for some $x_1, x_2 \in X$, and $D = P_G(x_1, x_2)$ is nonempty, then it has a T-invariant point.

Corollary 2.33. ([16]-Theorem 4) Let X be a complete, contractive metric space with contractions f_n . Let G be a closed and bounded subset of X. If T is a nonexpansive and condensing self map on X such that Tx = x for some $x \in X$, and $P_G(x)$ is nonempty, then it has a T-invariant point.

Definition 2.3. A mapping *T* on a metric space (*X*, *d*) is called **Kannan**[8] if there exists $\alpha \in (0, \frac{1}{2})$ such that

$$d(Tx, Ty) \le \alpha[d(x, Tx) + d(y, Ty)]$$
(2.6)

for all $x, y \in X$.

Kannan [8] proved that if *X* is complete, then every Kannan mapping has a unique fixed point.

Theorem 2.34. Let G be an ε -simultaneous approximatively compact subset of a complete metric space (X,d). Let T be a self map on X with $Tx_1 = x_1$ and $Tx_2 = x_2$ for some $x_1, x_2 \in X \setminus G$ and let T^m satisfies

$$d(T^{m}y, T^{m}z) \le \alpha [d(y, T^{m}y) + d(z, T^{m}z)],$$
(2.7)

for some positive integer $m, y, z \in G$ and $0 < \alpha < \frac{1}{2}$. Then $D = P_G(x_1, x_2, \varepsilon)$ has a unique fixed point of T.

Proof. As $Tx_1 = x_1$, and $Tx_2 = x_2$, $T^nx_1 = x_1$ and $T^nx_2 = x_2$ for all positive integer *n*. Let $y_0 \in D$. Then, for $0 < \alpha < \frac{1}{2}$,

$$d(x_1, T^m y_0) + d(x_2, T^m y_0)$$

$$= d(Tx_1, T^m y_0) + d(Tx_2, T^m y_0)$$

$$\leq \alpha [d(x_1, T^m x_1) + d(y_0, T^m y_0)] + \alpha [d(x_2, T^m x_2) + d(y_0, T^m y_0)]$$

$$= 2\alpha d(y_0, T^m y_0)$$

$$\leq \alpha [d(y_0, x_1) + d(x_1, T^m y_0)] + \alpha [d(y_0, x_2) + d(x_2, T^m y_0)],$$

which implies that

$$d(x_1, T^m y_0) + d(x_2, T^m y_0) \leq \frac{\alpha}{1-\alpha} d(y_0, x_1) + \frac{\alpha}{1-\alpha} d(y_0, x_2).$$

Further, for all $y \in G$, we have

$$d(x_1, T^m y_0) + d(x_2, T^m y_0) \leq \frac{\alpha}{1-\alpha} [d(y, x_1) + d(y, x_2) + \varepsilon].$$

Therefore, $T^m y_0 \in D$, $T^m(D) \subset D$. Since T^m satisfies the conditions of Kannan map, T^m has a unique fixed point x_0 in D. Now, $T^m(Tx_0) = T(T^m x_0) = Tx_0$, implies that Tx_0 is a fixed point of T^m . But the fixed point of T^m is unique and equals x_0 . Therefore $Tx_0 = x_0$ and hence x_0 is a unique fixed point of T in D.

Remarks 2.1. i) If $\varepsilon = 0$, Theorem 2.34 extends Theorem 3.2 of Mukherjee and Verma [12] and further if $x_1 = x_2 = x$, then it extends Theorem 5 of Rao and Mariadoss [16].

ii)It is interesting to note that Theorem 2.34 gives a unique fixed point in the set $P_G(x_1, x_2, \varepsilon)$ and it also extends Brosowski's result to a generalized form (2.7) of Kannan map (2.6).

We now prove a result for *T*-invariant points from the set of ε -simultaneous coapproximations.

A mapping $T : X \to X$ satisfies **condition (A)** (see [11]) if $d(Tx, y) \le d(x, y)$ for all $x, y \in X$.

Theorem 2.35. Let T be a self map satisfying condition (A) and inequality (2.1) on a convex metric space (X, d) satisfying Property (I), G a subset of X such that $R_G(x_1, x_2, \varepsilon)$ is compact and starshaped, then $R_G(x_1, x_2, \varepsilon)$ contains a T-invariant point.

Proof. Let $g_{\circ} \in R_G(x_1, x_2, \varepsilon)$. Consider

$$d(Tg_{\circ},g) + \varepsilon \leq d(g_{\circ},g) + \varepsilon \leq \max\{d(x_1,g), d(x_2,g)\},\$$

for all $g \in G$ and so $Tg_{\circ} \in R_G(x_1, x_2, \varepsilon)$ i.e. $T : R_G(x_1, x_2, \varepsilon) \to R_G(x_1, x_2, \varepsilon)$. Since $R_G(x_1, x_2, \varepsilon)$ is starshaped, there exists $p \in R_G(x_1, x_2, \varepsilon)$ such that $W(z, p, \lambda) \in R_G(x_1, x_2, \varepsilon)$ for all $z \in R_G(x_1, x_2, \varepsilon)$, $\lambda \in [0, 1]$. Let $\langle k_n \rangle$, $0 \leq k_n \langle 1$, be a sequence of real numbers such that $k_n \to 1$ as $n \to \infty$. Define T_n as $T_n(z) = W(Tz, p, k_n), z \in R_G(x_1, x_2, \varepsilon)$. Since T is a self map on $R_G(x_1, x_2, \varepsilon)$

and $R_G(x_1, x_2, \varepsilon)$ is starshaped, each T_n is a well defined and maps $R_G(x_1, x_2, \varepsilon)$ into $R_G(x_1, x_2, \varepsilon)$. Moreover,

$$d(T_n y, T_n z) = d(W(Ty, p, k_n), W(Tz, p, k_n)) \leq k_n d(Ty, Tz) \leq k_n [a[d(y, Ty) + d(z, Tz)] + b[d(z, Ty) + d(y, Tz)] + cd(y, z)],$$

where $k_n[2a + 2b + c] \leq 1$. So by Lemma 2.4 each T_n has a unique fixed point $x_n \in R_G(x_1, x_2, \varepsilon)$ i.e. $T_n x_n = x_n$ for each n. Since $R_G(x_1, x_2, \varepsilon)$ is compact, $\langle x_n \rangle$ has a subsequence $x_{n_i} \to x \in R_G(x_1, x_2, \varepsilon)$. We claim that Tx = x. Consider,

$$\begin{aligned} d(x_{n_i}, Tx) &= d(T_{n_i} x_{n_i}, Tx) \\ &= d(W(Tx_{n_i}, p, k_{n_i}), Tx) \\ &\leq k_{n_i} d(Tx_{n_i}, Tx) + (1 - k_{n_i}) d(p, Tx) \\ &\leq k_{n_i} [a[d(x_{n_i}, Tx_{n_i}) + d(x, Tx)] + b[d(x, Tx_{n_i}) + d(x_{n_i}, Tx)] + \\ &\quad cd(x_{n_i}, x)] + (1 - k_{n_i}) d(p, Tx) \\ &\leq k_{n_i} [a[d(x_{n_i}, x_{n_i}) + d(x, x)] + b[d(x, x_{n_i}) + d(x_{n_i}, x)] + cd(x_{n_i}, x)] \\ &\quad + (1 - k_{n_i}) d(p, x) \\ &\rightarrow 0, \end{aligned}$$

and so $x_{n_i} \rightarrow Tx$. Therefore Tx = x i.e. x is T-invariant. Hence the result.

If $\varepsilon = 0$ in the above theorem we have the following result.

Corollary 2.36. Let T be a self map satisfying condition (A) and inequality (2.1) on a convex metric space (X, d) satisfying Property (I), G a subset of X such that $R_G(x_1, x_2)$ is nonempty compact and starshaped, then $R_G(x_1, x_2)$ contains a T-invariant point.

Remarks 2.2. i) Taking $x_1 = x_2 = x$ and a = b = 0, we see that Theorem 2.35 improves and generalizes Theorem 4 of Narang and Chandok [13].

ii) Taking $x_1 = x_2 = x$, a = b = 0 and $\varepsilon = 0$, we see that Theorem 2.35 improves and generalizes Theorem 4.1 of Mukherjee and Verma [11].

Acknowledgements. The authors are thankful to the learned referee for the valuable suggestions.

References

- R.K. Bose and R.N. Mukherjee, Stability of fixed point sets and common fixed points of families of mappings, Indian J. Pure Appl. Math. 11(1980), 1130-1138.
- [2] B. Brosowski, Fixpunktsätze in der Approximationstheorie, Mathematica (Cluj) 11 (1969), 195-220.
- [3] E. Chandler and G. Faulkner, A fixed point theorem for nonexpansive condensing maps, J. Aus. Math. Soc. 29(1980), 393-398.

- [4] W.G. Dotson, On fixed points of nonexpansive mappings in nonconvex sets, Proc. Amer. Math. Soc. 38(1973), 155-156.
- [5] M.D. Guay, K.L. Singh and J.H.M. Whitfield, Fixed point theorems for nonexpansive mappings in convex metric spaces, Proc. Conference on nonlinear analysis (Ed. S.P. Singh and J.H. Bury) Marcel Dekker 80(1982), 179-189.
- [6] G.E. Hardy and T.D. Rogers, A generalization of a fixed point theorem of Reich, Canad. Math. Bull. 16(1973), 201-206.
- [7] S. Itoh, Some fixed point theorems in metric spaces, Fundamenta Mathematicae 52(1979), 109-117.
- [8] R. Kannan, Some results on fixed points II, Amer. Math. Monthly 76(1969), 405-408.
- [9] G. Meinardus, Invarianz bei linearen approximationen, Arch. Rational Mech. Anal. 14 (1963), 301-303.
- [10] R.N. Mukherjee and T. Som, A note on application of a fixed point theorem in approximation theory, Indian J. Pure Appl. Math. 16(1985), 243-244.
- [11] R.N. Mukherjee and V. Verma, Best approximations and fixed points of nonexpansive maps, Bull. Cal. Math. Soc. 81(1989), 191-196.
- [12] R.N. Mukherjee and V. Verma, Some fixed point theorems and their applications to best simultaneous approximations, Publ. de l'Inst. Math. 49(1991), 111-116.
- [13] T. D. Narang and Sumit Chandok, On ε -approximation and fixed points of nonexpansive mappings in metric spaces, Mat. Vesnik 61(2009), 165-171.
- [14] T. D. Narang and Sumit Chandok, Fixed points of quasi-nonexpansive mappings and best approximation, Selçuk J. Appl. Math. 10(2009), 75-80.
- [15] T. D. Narang and Sumit Chandok, Fixed points and best approximation in metric spaces, Indian J. Math. 51(2009), 293-303.
- [16] G.S. Rao and S.A. Mariadoss, Applications of fixed point theorems to best approximations, Serdica-Bulgaricae Math. Publ. 9(1983), 244-248.
- [17] S.A. Sahab and M.S. Khan, Some results on best approximation, Review of Research 17(1987), 143-152.
- [18] S. P. Singh, An application of a fixed-point theorem to approximation theory, J. Approx. Theory 25 (1979), 89-90.
- [19] S. P. Singh, Application of fixed point theorems in approximation theory, Appl. Nonlinear Anal.(Ed. V. Lakshmikantham), Academic Press, New York (1979), 389-397.

- [20] Sankatha Singh, Bruce Watson and Pramila Srivastava, Fixed Point Theory and Best Approximation: The KKM-map Principle, Kluwer Academic Publishers. Dordrecht (1997).
- [21] P.V. Subrahmanyam, An application of a fixed point theorem to best approximation, J. Approx. Theory 20(1977), 165-172.
- [22] W. Takahashi, A convexity in metric space and nonexpansive mappings I, Kodai Math. Sem. Rep. 22(1970), 142-149.

Department of Mathematics, Guru Nanak Dev University, Amritsar-143005, India. email:chansok.s@gmail.com ;tdnarang1948@yahoo.co.in