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Abstract

We investigate Banach lattices for which the class of positive semi-compact
operators coincides with that of L-weakly compact (resp. M-weakly com-
pact) operators, and we give some consequences.

1 Introduction and notation

It is well known that each L-weakly compact (resp. regular M-weakly compact)
operator is semi-compact (Theorem 3.6.10 and Corollary 3.6.14 of [4]), but a semi-
compact operator is not necessary L-weakly compact (resp. M-weakly compact).
In fact, the identity operator Idl∞ : l∞ −→ l∞ is semi-compact, but it is not
L-weakly compact (resp. M-weakly compact). However, in [2], it is proved that if
E and F are nonzero Banach lattices, then each semi-compact operator T : E −→ F
is L-weakly compact if and only if the norm of F is order continuous [2, The-
orem 1]. Also, if F is σ-Dedekind complete, then each positive semi-compact
operator T : E −→ F is M-weakly compact if and only if the norms of E′ and F
are order continuous or E is finite dimensional [2, Theorem 2].

Our aim in this paper is to characterize Banach lattices for which every posi-
tive semi-compact operator is L-weakly compact and M-weakly compact. After
that, we establish our second Theorem, with another hypothesis different from
that of [2], for the M-weak compactness of semi-compact operators. Finally, we
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give a necessary and sufficient condition for which the square of a semi-compact
operator is L-weakly compact (resp. M-weakly compact).

Recall from [4] that an operator T from a Banach space E into a Banach lat-
tice F is said to be semi-compact if for each ε > 0, there exists some u ∈ F+

such that T(BE) ⊂ [−u, u] + εBF where BH is the closed unit ball of H = E or F
and F+ = {y ∈ F : 0 ≤ y}. The operator T is called L-weakly compact if for
each disjoint sequence (yn), in the solid hull of T(BE), we have limn ‖yn‖ = 0.
Finally, an operator T from a Banach lattice E into a Banach space F is said to
be M-weakly compact if for each norm bounded disjoint sequence (xn) of E, we
have limn ‖T (xn)‖ = 0. Note that an operator T, between two Banach lattices,
is L-weakly compact (resp. M-weakly compact) if and only if its adjoint T′ is M-
weakly compact (resp. L-weakly compact) [4, Proposition 3.6.11]. We refer to [1]
and [4] for any unexplained terms from Banach lattice theory.

2 Major results

A compact operator is not necessary L-weakly compact (resp. M-weakly com-
pact). In fact, if we consider the operator T : l1 −→ l∞ defined by

T((λn)) = (∑∞
n=1 λn) e for all (λn) ∈ l1

where e = (1, 1, · · ·) is the constant sequence with value 1 [1, p. 322]. It is clear
that T is compact (because its rank is one) but it is neither L-weakly compact nor
M-weakly compact.

Also, this example proves that a semi-compact operator is not necessary M-
weakly compact nor L-weakly compact.

On the other hand, a Dunford-Pettis operator is not necessarily either M-
weakly compact or L-weakly compact. For an example, we have to just take the
preceding example or the identity operator Idl1 : l1 −→ l1.

The following characterization follows immediately from Theorem 1 of [2]
and its proof:

Theorem 2.1. Let E and F be nonzero Banach lattices. Then the following assertions are
equivalent:

1. Every positive semi-compact operator T : E −→ F is L-weakly compact.

2. Every positive compact operator T : E −→ F is L-weakly compact.

3. The norm of F is order continuous.

As a consequence, we obtain the following characterization:

Theorem 2.2. Let E and F be nonzero Banach lattices. Then the following assertions are
equivalent:

1. Every positive semi-compact operator T : E −→ F is L-weakly compact and M-
weakly compact.



On some properties of the class of semi-compact operators 763

2. Every positive Dunford-Pettis operator T : E −→ F is L-weakly compact and
M-weakly compact.

3. Every positive compact operator T : E −→ F is L-weakly compact and M-weakly
compact.

4. The norms of E′ and F are order continuous.

Proof. The implications (1) ⇒ (3) and (2) ⇒ (3) are clear.
(3) ⇒ (4) Assume that (3) holds. It follows from Theorem 2.1 that the norm

of F is order continuous.
Assume by way of contradiction that the norm of E′ is not order continuous. It

follows from Theorem 4.14 of [1] that there exists some f ∈ (E′)
+

and there exists
a disjoint sequence ( fn) ⊂ [0, f ] which does not converge to zero in norm. Pick

some y ∈ F+ with ‖y‖ = 1. By Theorem 39.3 of [9] there exists some ψ ∈ (F′)+

such that ‖ψ‖ = 1 and ψ (y) = ‖y‖ = 1.
Now, we consider the positive operator T : E → F defined by

T (x) = f (x) y for each x ∈ E.

It is clear that T is compact (it has rank one).
On the other hand, we claim that T is not M-weakly compact. By Theorem

3.6.11 of [4], it suffices to show that its adjoint T′ : F′ → E′ is not L-weakly
compact. Note that T′ (ϕ) = ϕ (y) f for each ϕ ∈ F′. In particular, T′ (ψ) =
ψ (y) f = f . So, f ∈ T′ (BF′). From ( fn) ⊂ [0, f ], it follows that ( fn) is a disjoint
sequence in the solid hull of T′ (BF′). Since ( fn) is not norm convergent to zero,
then T′ is not L-weakly compact. Hence T is not M-weakly compact. But this is
in contradiction with our hypothesis (3). So, the norm of E′ is order continuous.

(4) ⇒ (1) We have just to apply Theorem 2.1 and Theorem 3.6.17 of [4].
(4) ⇒ (2) We have just to apply Theorem 3.7.10 and Theorem 3.6.17 of [4].

To establish another characterization of the M-weak compactness of semi-
compact operators, we need to give some Lemmas. The first one is just a charac-
terization of infinite-dimensional Banach lattices.

Lemma 2.3. Let E be a Banach lattice. Then E is infinite-dimensional if and only if there
exists a positive disjoint sequence (xn) of E+ such that ‖xn‖ = 1 for all n.

Proof. Assume that there exists a disjoint sequence (xn) of E+ such that ‖xn‖ = 1
for each n. It follows from Corollary 2 [5, p. 53] that the subset A = {xn : n ∈ N}
is linearly independent. Then E is infinite-dimensional.

Conversely, assume that E is infinite-dimensional. By Proposition 0.2.11 of
[7], there exists a disjoint positive sequence (yn) of E such that yn 6= 0 for all
n. For every n, pick xn = 1

‖yn‖
yn. Then the sequence (xn) satisfies the desired

properties.

Lemma 2.4. Let E be a Banach lattice, and let (xn) be a disjoint sequence of E. If ( fn)
is a sequence of E′, then there exists a disjoint sequence (gn) of E′ such that |gn| ≤ | fn|,
gn(xn) = fn(xn) for all n and gn(xm) = 0 for n 6= m.

Moreover, if ( fn) is a positive sequence of E′ then we may take (gn) in (E′)+.
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Proof. Follows immediately from Proposition 0.3.11 of [7] and its proof.

Lemma 2.5. Let E be a Banach lattice. If (xn) is a positive disjoint sequence of E such
that ‖xn‖ = 1 for all n, then there exists a positive disjoint sequence (gn) of E′ with
‖gn‖ = 1 such that gn(xn) = 1 for all n and gn(xm) = 0 for n 6= m.

Proof. It follows from Theorem 39.3 of [9] that for each n there exists fn ∈ (E′)+

such that ‖ fn‖ = 1 and fn(xn) = ‖xn‖ = 1. Now, by applying Lemma 2.4 to the
two sequences (xn) and ( fn), there exists a positive disjoint sequence (gn) of E′

with 0 ≤ gn ≤ fn such that gn(xn) = fn(xn) = 1 for all n and gn(xm) = 0 for
n 6= m.

Finally, it is clear that ‖gn‖ = ‖ fn‖ = 1 for all n.

If we replace “F is σ-Dedekind complete” by “E has an order continuous
norm” in Theorem 2 of [2], we obtain the following characterization:

Theorem 2.6. Let E and F be two Banach lattices such that E has an order continuous
norm. Then the following assertions are equivalent:

1. Each positive semi-compact operator T : E −→ F is M-weakly compact.

2. One of the following conditions holds:

(a) both E′ and F have order continuous norms.

(b) E is finite-dimensional.

Proof. (1) ⇒ (2) Assume that (1) holds. If the norm of E′ is not order contin-
uous, then it follows from the proof of Theorem 2.2 that there exists a positive
compact operator T : E −→ F which is not M-weakly compact. Hence T is semi-
compact but it is not M-weakly compact, and this gives a contradiction with our
hypothesis (1). So, the norm of E′ is order continuous.

Assume by way of contradiction that the norm of F is not order continuous. By
Theorem 4.14 of [1], there exists some u ∈ F+ and there exists a disjoint sequence
(un) ⊂ [0, u] which does not converge to zero in norm. We may assume that
‖un‖ = 1 for all n.

On the other hand, since E is an infinite-dimensional Banach lattice, it follows
from Lemma 2.3 and Lemma 2.5 the existence of a positive disjoint sequence (xn)
in E+ with ‖xn‖ = 1 for all n and there exists a positive disjoint sequence (gn) of
E′ with ‖gn‖ = 1 for each n, such that

gn(xn) = 1 for all n and gn(xm) = 0 for n 6= m. (∗)

To finish the proof, we have to construct a positive semi-compact operator
T : E −→ F which is not M-weakly compact.

Since E has an order continuous norm, it follows from Corollary 2.4.3 of [4]
that gn → 0 for σ (E′, E). Hence the positive operator R : E → c0 defined by

R (x) = (gn (x))∞
n=1 for each x ∈ E,
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is well defined and R (BE) ⊂ Bc0 . Also, it follows from the proof of Theorem 117.1
of [8] that the positive operator

S : c0 −→ F, (α1, α2, · · ·) 7−→ ∑
∞

i=1
αiui

defines a lattice isomorphism from c0 into F and S (Bc0) ⊂ [−u, u].
Next, we consider the composed operator

T = S ◦ R : E −→ F, x 7−→ ∑
∞

i=1
gi(x)ui .

It follows from T (BE) = S (R (BE)) ⊆ S (Bc0) ⊆ [−u, u] that T is semi-
compact but the operator T is not M-weakly compact. In fact, by (∗) we have

T(xn) = un for all n.

Since (xn) is a disjoint sequence of E+ with ‖xn‖ = 1 for all n and ‖T(xn)‖ =
‖un‖ = 1 for all n, it follows that T is not M-weakly compact, and this gives a
contradiction with our hypothesis (1). So, the norm of F is order continuous and
this completes the proof of (1) ⇒ (2).

(a) ⇒ (1) Follows from Theorem 2.2.
(b) ⇒ (1) In this case, every operator T : E −→ F is M-weakly compact.

In fact, if E is finite-dimensional then for every norm bounded disjoint sequence
(xn) of E there exists some n0 such that xn = 0 for all n ≥ n0. So, T(xn) = 0 for
all n ≥ n0. Then ‖T(xn)‖ → 0 and hence T is M-weakly compact.

Remark 2.7. The assumption “the norm of E is order continuous” in Theorem 2.6 or
“F is σ-Dedekind complete” in Theorem 2 of [2] is essential. For instance, take E = l∞

and F = c. It is clear that every operator T : l∞ −→ c is semi-compact (because c is an
AM-space with unit). On the other hand, every operator T : l∞ −→ c is weakly compact
(see the proof of Proposition 1 of [6]). Since l∞ is an AM-space, T is M-weakly compact
[1, Theorem 5.62], and then the class of semi-compact operators coincides with that of
M-weakly compact operators from l∞ into c. But the condition (2) of Theorem 2.6 (resp.
Theorem 2 of [2]) is not satisfied.

Finally, we observe that the square of a semi-compact operator T : E −→ E is
not necessary L-weakly compact (resp. M-weakly compact). In fact, the identity

operator Idl∞ : l∞ −→ l∞ is semi-compact but its square (Idl∞)2 = Idl∞ is not
L-weakly compact (resp. M-weakly compact).

In the following, we give a necessary and sufficient condition for which the
square of a semi-compact operator is L-weakly compact (resp. M-weakly com-
pact).

Theorem 2.8. Let E be a Banach lattice. Then the following assertions are equivalent:

1. For every positive operators S and T from E into E such that 0 ≤ S ≤ T and T is
semi-compact, the operator S is L-weakly compact.

2. Every positive semi-compact operator T : E −→ E is L-weakly compact.

3. For every positive semi-compact operator T from E into E, T2 is L-weakly compact.
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4. The norm of E is order continuous.

Proof. (1) ⇒ (2) ⇒ (3) Obvious.
(3) ⇒ (4) Assume by way of contradiction that the norm of E is not order

continuous. By Theorem 4.14 of [1], there exists some u ∈ E+ and there exists a
disjoint sequence (un) ⊂ [0, u] which does not converge to zero in norm. We may
assume that ‖u‖ = 1.

On the other hand, it follows from Theorem 39.3 of [9] that there exists f ∈
(E′)+ such that ‖ f‖ = 1 and f (u) = ‖u‖ = 1.

Now, we consider the positive operator T : E → E defined by

T (x) = f (x) u for each x ∈ E.

It is clear that T is semi-compact (it has rank one) but the operator T2 is not
L-weakly compact. In fact, note that T2(u) = u and ‖u‖ = 1. So it follows from
(un) ⊂ [0, u] that (un) is a disjoint sequence in the solid hull of T2 (BE). Since
(un) is not norm convergent to zero, then T is not L-weakly compact. But this is
in contradiction with our hypothesis (3).

(4) ⇒ (1) It follows from Theorem 5.72 of [1] that S is semi-compact and
hence S is L-weakly compact by Theorem 1 of [2].

Theorem 2.9. Let E be a Banach lattice. Then the following assertions are equivalent:

1. For every positive operators S and T from E into E such that 0 ≤ S ≤ T and T is
semi-compact, the operator S is M-weakly compact.

2. Every positive semi-compact operator T : E −→ E is M-weakly compact.

3. For every positive semi-compact operator T from E into E, T2 is M-weakly compact.

4. The norm of E′ is order continuous.

Proof. (1) ⇒ (2) ⇒ (3) Obvious.
(3) ⇒ (4) Assume by way of contradiction that the norm of E′ is not order

continuous. By Theorem 4.14 of [1], there exists some f ∈ (E′)+ and there exists a
disjoint sequence ( fn) ⊂ [0, f ] which does not converge to zero in norm. We may
assume that ‖ f‖ = 1. Pick some u ∈ E+ such that f (u) > 0.

Now, we consider the positive operator T : E → E defined by

T (x) =
f (x)

f (u)
u for each x ∈ E.

It is clear that T is semi-compact (it has rank one) but the operator T2 is not
M-weakly compact. In fact, by Theorem 3.6.11 of [4], it suffices to show that its

adjoint
(

T2
)′

: E′ → E′ is not L-weakly compact. Note that T′ (ϕ) = ϕ(u)
f (u)

f for

each ϕ ∈ E′. In particular, T′ ( f ) = f and hence
(

T2
)′
( f ) = f . Then it follows

from ( fn) ⊂ [0, f ] that ( fn) is a disjoint sequence in the solid hull of
(

T2
)′
(BE′).

Since ( fn) is not norm convergent to zero, then
(

T2
)′

is not L-weakly compact

and hence T2 is not M-weakly compact. But this is in contradiction with our
hypothesis (3).

(4) ⇒ (1) It follows from Theorem 5.72 of [1] that S is semi-compact and
hence S is M-weakly compact by Theorem 2 of [2].
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