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Abstract

Following the concept of normal to a convex body, which is due to Eggle-
ston, we introduce the notion of affine orthogonality with respect to a convex
body. In contrast to Eggleston’s considerations, we do not need a metric and
via this notion we are able to characterize convex bodies of constant width
and further interesting classes of convex bodies.

1 Introduction

The notion of normal to a convex body was introduced by Eggleston (see [7],
[6], and the survey [4]). It is a very useful notion, e.g., for the characterizations
of convex bodies of constant width in Euclidean space as well as in any finite-
dimensional real Banach space. Following this line, we introduce the notion of
affine orthogonality with respect to a convex body. If the convex body is a circular
disc, then our definition coincides with the usual Euclidean orthogonality. But
for bodies of constant width the coincidence is with Eggleston’s notion of nor-
mals. The advantage of our approach is that it allows one to characterize not
only bodies of constant width but also other classes of convex bodies such as
those which are centrally symmetric, ellipses, bodies whose boundary is a Radon
curve, etc. Moreover, we contribute to the solution of the following problem
posed by V. Soltan: to extend the characterization given by Makai Jr. and Martini
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in [12] of bodies of constant width in the Euclidean plane to normed planes by
replacing Euclidean orthogonality by Birkhoff orthogonality. Note that, due to
the counterexample constructed in [1], the mentioned characterization cannot be
extended to all normed planes based on Birkhoff orthogonality. But if Euclidean
orthogonality is replaced by affine orthogonality then such extension is possi-
ble (see Theorem 4.7). It should be noted that, unlike Eggleston’s definition, our
definition needs no metric. In other words, our considerations take place in an
arbitrary affine space.

2 Preliminaries

By Rn we denote the n-dimensional real linear space and by En the n-dimensional
Euclidean space. The linear space Rn equipped with an arbitrary norm ‖ · ‖ is
called a (Minkowski or) normed space. For the distance between two points p, q in
En we write ‖p − q‖; the same notation will be used for the distance between two
points in a normed space. The line through distinct points p and q is denoted by
〈p, q〉, and the closed line segment with endpoints p and q by [p, q].

Let K be a convex body in Rn, i.e., a compact, convex set with non-empty in-
terior. For the boundary of K we write bdK. A convex body K is called strictly
convex if bdK does not contain segments; it is called smooth if any point in bdK
belongs to exactly one supporting hyperplane of K. We call a closed line segment
[p1, p2] a chord of K if p1 6= p2 and p1, p2 ∈ bdK, i.e., it is assumed that all chords
considered in the sequel are non-degenerate. A chord [p1, p2] of K is said to be an
affine diameter if there exist two different parallel supporting hyperplanes, say H1

and H2, of K such that p1 ∈ H1 and p2 ∈ H2.
If K is centrally symmetric and p ∈ K, then we denote by p̄ the point oppo-

site to p with respect to the center of K. Thus, if K is centrally symmetric and
p ∈ bdK, then [p, p̄] is an affine diameter. But if in the boundary of a centrally
symmetric convex body K there is a segment that contains p1 or p2, then [p1, p2]
can be an affine diameter which does not pass through the center of K.

A convex body K in En is said to be of constant width if all its affine diameters
have equal lengths (cf. [6]). This definition makes also sense if K is a convex
body in a Minkowski space, i.e., K is of constant Minkowskian width if all its
affine diameters have equal lengths measured in the respective norm; see [7] and
the survey [13].

The diameter of a set K ⊆ En is defined by

diam K := sup{‖x − y‖ : x, y ∈ K}.

If K is a convex body in En and p, q ∈ bdK are such that ‖p − q‖ = diamK,
then the chord [p, q] is also called a diameter of K. Analogously, the notion of
Minkowskian diameter in a Minkowski space is defined. It is easy to see, that in an
Euclidean space, as well as in an arbitrary normed space, any diameter is also an
affine diameter, but not vice versa.

For x and y in a normed space, x is said to be Birkhoff orthogonal to y, denoted
by x ⊥B y, if ‖x + λy‖ ≥ ‖x‖ for every λ ∈ R. This notion of orthogonality
coincides with the usual one if the space is Euclidean. Geometrically, x ⊥B y
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Figure 1: [p1, p2] ⊣p1
[q1, q2].

means that the line through the point x and parallel to the vector y supports the
sphere centered at the origin and having radius ‖x‖ at x. Birkhoff orthogonality is
always homogeneous, i.e., if x ⊥B y, then αx ⊥B βy for every α, β ∈ R. Thus, we
can use the term of Birkhoff orthogonal directions. Given a direction L1 in a strictly
convex (respectively, smooth) normed plane there is only a direction L2 such that
L2 ⊥B L1 (respectively, L1 ⊥B L2).

3 Affine orthogonality in the two-dimensional case

Let [p1, p2] and [q1, q2] be two chords of a convex body K in R
2, and let P1 be the

line through p1 parallel to 〈q1, q2〉. We say that [p1, p2] is affine orthogonal to [q1, q2]
through p1, denoted by

[p1, p2] ⊣p1
[q1, q2],

if one of the following two conditions holds (see Figure 1):

a) P1 supports K at p1, and also the line through p2 parallel to P1 supports K.
Thus, [p1, p2] is an affine diameter of K.

b) P1 ∩ bdK = {p1, p′1}, p1 6= p′1, and [p′1, p2] is an affine diameter of K.

If K is a Euclidean disc, then the so-defined relation coincides with the usual
Euclidean orthogonality. It is also clear that, in general, affine orthogonality is not
symmetric with respect to the chords [p1, p2] and [q1, q2]. It is also not symmetric
with respect to the points p1 and p2. As we shall see later, these properties of
symmetry will characterize special types of convex bodies. On the other hand,
affine orthogonality is obviously symmetric with respect to q1 and q2.

The next proposition follows directly from the definition above. Property (1)
shows that the position of the second chord [q1, q2] does not matter: of importance
is only the (non-oriented) direction of [q1, q2]. Property (2) recalls what happens if
K is a Euclidean disc: if p, q and r are points in bdK and [q, r] is a diameter, then
[p, q] is orthogonal to [p, r]. This is, in fact, Thales’ theorem, and was motivating
for the definition of affine orthogonal chords.
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Proposition 3.1. Let K be a convex body in R2.

(1) If [p1, p2] ⊣p1
[q1, q2], then for any chord [q′1, q′2] of K that is parallel to [q1, q2] the

relation [p1, p2] ⊣p1
[q′1, q′2] holds.

(2) Let [p2, q2] be an affine diameter of K and let the point p1 ∈ bdK be such that the
segment [p1, q2] does not belong to the boundary of K. Then [p1, p2] ⊣p1

[p1, q2].

It is immediate that for a given chord [q1, q2] always another chord [p1, p2]
exists such that [p1, p2] ⊣p1

[q1, q2]. But Figure 2 points out that for a given chord
[p1, p2] there is not always a chord [q1, q2] such that [p1, p2] ⊣p1

[q1, q2]. For that
reason we introduce the following notion: a convex body K has the orthogonal
chords existence property (o.c.e.p.) if it is possible to find for any chord [p1, p2]
another chord [q1, q2] such that [p1, p2] ⊣p1

[q1, q2]. Proposition 3.2 shows that
large classes of convex bodies have this property.

p2

p1

p′1

K

Figure 2: There is no q ∈ bdK such that [p1, p2] ⊣p1
[p1, q], because the only

possible candidate is p′1, but 〈p1, p′1〉 supports K and the line parallel to 〈p1, p′1〉
through p2 does not support K.

Proposition 3.2. Assume that K is a convex body in R2 that satisfies at least one of the
following properties:

(i) It is strictly convex.

(ii) It is smooth.

(iii) It is centrally symmetric.

Then K has o.c.e.p.

Proof. (i) If K is strictly convex, the result follows easily from Proposition 3.1,
(2). (ii) Assume that K is smooth, and let [p1, p2] be a chord of K. Let P be the
support line of K at p2. If the support line at p1 is parallel to P, then [p1, p2] is
affine orthogonal to any chord parallel to P. On the other hand, if the support
line at p1 is not parallel to P, let q1 ∈ bdK be such that the line Q parallel to P
through q1 supports K and p1 is between P and Q. Then the line 〈p1, q1〉 does
not support K at p1, and then [p1, p2] ⊣p1

[p1, q1]. (iii) Assume finally that K
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is centrally symmetric and let [p1, p2] be a chord of K. Then [p2, p̄2] is an affine
diameter. If 〈p1, p̄2〉 does not support K, it follows that [p1, p2] ⊣p1

[p1, p̄2]. On
the other hand, if 〈p1, p̄2〉 supports K, then by symmetry 〈p2, p̄1〉 also supports
K and both lines are parallel. This implies that [p1, p2] is an affine diameter and
[p1, p2] ⊣p1

[p1, p̄2].

If K satisfies none of the properties (i)-(iii) in Proposition 3.2, then it can lack
o.c.e.p.; see the example presented by Figure 2. Nevertheless, Figure 3 shows
that there exist convex bodies satisfying o.c.e.p. but lacking properties (i)-(iii).
Proposition 3.3 describes exactly the class of convex bodies possessing o.c.e.p.

Figure 3: Example of convex body that lacks properties (i)-(iii) in Proposition 3.2,
but satisfies o.c.e.p.

Proposition 3.3. For a convex body K in R2 the following properties are equivalent:

(i) K has o.c.e.p.

(ii) For any chord [p1, p2] that is not an affine diameter of K there exists an affine
diameter [p′1, p2] such that [p1, p′1] 6⊂ bdK.

Proof. Assume that K satisfies o.c.e.p., and let p1, p2 ∈ bdK be such that the chord
[p1, p2] is not an affine diameter. Let [q1, q2] be such that [p1, p2] ⊣p1

[q1, q2], and let
P be the line through p1 parallel to [q1, q2]. Since [p1, p2] is not an affine diameter,
P ∩ bdK = {p1, p′1} and [p′1, p2] is an affine diameter. Conversely, assume that
property (ii) holds and let p1, p2 ∈ bdK. If [p1, p2] is an affine diameter, then
[p1, p2] ⊣p1

[q1, q2] for any chord [q1, q2] parallel to a supporting line at p1. If
[p1, p2] is not an affine diameter, then there exists p′1 ∈ bdK such that [p′1, p2]
is an affine diameter (and then p′1 6= p1), and 〈p1, p′1〉 ∩ bdK = {p1, p′1}. This
implies [p1, p2] ⊣p1

[p1, p′1]. Thus, K has o.c.e.p.

4 Characterization of special types of convex bodies

Now we will see that affine orthogonality allows to characterize special types of
convex bodies. For more information about such bodies we refer, e.g., to [9].
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4.1 Centrally symmetric, strictly convex bodies

Example (A) in Figure 4 shows that, in general, [p1, p2] ⊣p1
[q1, q2] does not imply

[p1, p2] ⊣p2 [q1, q2].

p1p2

q2

q1

p′1

(A) q2p1

q1

p2

(B)

Figure 4: (A) [p1, p2] ⊣p1
[q1, q2], but [p1, p2] 6⊣p2 [q1, q2], (B) [p1, p2] ⊣p1,p2 [q1, q2].

Theorem 4.1. For a convex body K ⊂ R2, the following properties are equivalent:

(i) K is centrally symmetric and strictly convex.

(ii) If [p1, p2] and [q1, q2] are two chords of K and [p1, p2] ⊣p1
[q1, q2], then [p1, p2] ⊣p2

[q1, q2].

Proof. (i)⇒(ii) Let x be the center of K and assume that [p1, p2] ⊣p1
[q1, q2]. Let

P1 be the line through p1 parallel to 〈q1, q2〉. If P1 supports K at p1, then trivially
[p1, p2] ⊣p2 [q1, q2]. Let now P1 not support K at p1, and P1 ∩ bdK = {p1, p′1}.
Then [p′1, p2] is an affine diameter, and since K is strictly convex, p′1 and p2 are
opposite with respect to x, i.e., p′1 = p̄2. Since 〈p̄1, p2〉 is parallel to 〈p1, p̄2〉 = P1

and [p1, p̄1] is an affine diameter, we get [p1, p2] ⊣p2 [q1, q2].

(ii)⇒(i) Let us show first that property (ii) implies that K is strictly convex. As-
sume, on the contrary, that bdK contains a segment [p, q], and let p1 and p2 be
two different points in the relative interior of that segment. Let q2 ∈ bdK be
such that [p2, q2] (and then also [p1, q2]) is an affine diameter. Then we have that
[p1, p2] ⊣p1

[p1, q2]. By (ii) also [p1, p2] ⊣p2 [p1, q2]. Since the line Q through p2

and parallel to 〈p1, q2〉 does not support K, we have that Q cuts bdK in a point q′2
such that [p2, q′2] is an affine diameter and 〈p1, p2〉 is parallel to 〈q2, q′2〉. But this
implies that [q2, q′2] is a segment contained in bdK and having the same length
as [p1, p2]. Interchanging the roles of p1 and p2, the above argument shows that
there exists another point q′′2 in bdK such that q2 is the midpoint of [q′2, q′′2 ], and
thus bdK contains a segment having the double length of [p1, p2]. Since p1 and
p2 are arbitrary points in the interior of [p, q], we have proved that if bdK has a
segment, then it has another segment of double length, which is an absurdity.

Let us now show that K has the following property:
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Figure 5: (A) Centrally symmetric but not strictly convex, (B) Strictly convex but
not centrally symmetric. In both cases [p1, p2] ⊣p1

[q1, q2] but [p1, p2] 6⊣p2 [q1, q2].

(∗)
If [p, q] is an affine diameter and P is a line that supports K at p, then the
line Q through q and parallel to P also supports K.

Indeed, assume that Q ∩ bdK = {q, q′}, where q 6= q′. Then [p, q′] ⊣q′ [q, q′]

and by (ii), [p, q′] ⊣p [q, q′]. But this implies that Q supports K at q (recall (a) in
the definition of affine orthogonality), which is impossible because K is strictly
convex.

Fix now an affine diameter [p2, q2] of K. We shall see that K is centered at
the midpoint of [p2, q2]. Denote by P2 and Q2 the parallel supporting lines at
p2 and q2, respectively. Let p1 be an arbitrary point in bdK, different from p2

and q2. By Proposition 3.1 we have that [p1, p2] ⊣p1
[p1, q2], and then by (ii) we

have [p1, p2] ⊣p2 [p1, q2]. This, together with property (∗), implies that the line
P′

2 through p2 and parallel to [p1, q2] cuts bdK in a point p′2 6= p2, with [p1, p′2]
being an affine diameter. Moreover, we have [p′2, p2] ⊣p′2

[p′2, q2], and by (ii) we

get [p′2, p2] ⊣p2 [p
′
2, q2]. Again by (∗), the line P′′

2 through p2 and parallel to [p′2, q2]
cuts bdK in a point p′′2 6= p2, and [p′2, p′′2 ] is an affine diameter. Since [p1, p′2] and
[p′2, p′′2 ] are both affine diameters, property (∗) and the strict convexity of K imply
that p′′2 = p1. Hence the points p1, p2, p′2 and q2 form a parallelogram and p′2 is
the symmetric point of p1 with respect to the midpoint of [p2, q2].

In Figure 5 we see examples confirming that if in Theorem 4.1 property (i)
fails, then also (ii) fails. But, as Proposition 4.1 below shows, if the chord [p1, p2]
has a special position, then strict convexity is not necessary to obtain property
(ii).

Proposition 4.1. Let p, q1, q2 be three different points of the boundary of a centrally
symmetric convex body K. If [p, p̄] ⊣p [q1, q2], then the line P through p and parallel to
[q1, q2] supports K at p, yielding [p, p̄] ⊣p̄ [q1, q2].

Proof. Assume that [p, p̄] ⊣p [q1, q2] but P ∩ bdK = {p, p′}, where p 6= p′. Then
K has supporting lines at p̄ and at p′, that are parallel, and by the symmetry of K
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these lines are also parallel to a supporting line at p that, by the convexity of K,
coincides with P, a contradiction.

In view of the situations described in Theorem 4.1 and in Proposition 4.1, if
[p1, p2] ⊣p1

[q1, q2] and [p1, p2] ⊣p2 [q1, q2], we simply write [p1, p2] ⊣ [q1, q2].

Remark 4.1. Let K be a centrally symmetric convex body in R
2, taken as the unit ball of

a norm. Then from Proposition 4.1 it follows that in this case [p, p̄] ⊣ [q1, q2] if and only
if p − p̄ ⊥B q1 − q2.

4.2 Radon curves

Radon curves form a special class of centrally symmetric, closed, convex curves
in the plane. They were introduced by Radon [16] in 1916 and independently
rediscovered by Birkhoff [2]. A centrally symmetric, closed, convex curve C is
called a Radon curve if it has the following property:

For p ∈ C, let P be a supporting line of C at p and assume that the line
parallel to P through the center of C cuts C at q and q̄. Then the line
through q parallel to 〈p, p̄〉 supports C.

Any Radon curve centered at the origin defines a norm whose properties are
”almost Euclidean“. In fact, the boundary of a centrally symmetric convex body
K in R

2 is a Radon curve if and only if the Birkhoff orthogonality with respect to
the induced norm is symmetric. For n ≥ 3 the symmetry of the Birkhoff orthog-
onality characterizes the Euclidean spaces. In other words, a centrally symmetric
convex body in Rn (n ≥ 3) is an ellipsoid if and only if the boundaries of its two-
dimensional sections through the center of symmetry are Radon curves. This
characterization was obtained in gradual stages by G. Birkhoff [2], R. C. James
[10, 11] and M. M. Day [5]. For further properties of Radon curves we refer, e.g.,
to [19, § 4.7], [15], and [14].

Theorem 4.2. For a centrally symmetric convex body K ⊂ R2, the following properties
are equivalent:

(i) The boundary of K is a Radon curve.

(ii) If p, q ∈ bdK with [p, p̄] ⊣ [q, q̄], then [q, q̄] ⊣ [p, p̄].

Proof. (i)⇒(ii) This implication follows directly from Remark 4.1. (ii)⇒(i) Let p ∈
bdK, let the line P support K at p, and q ∈ bdK be such that [q, q̄] is parallel to
P. Then [p, p̄] ⊣ [q, q̄], and therefore [q, q̄] ⊣ [p, p̄]. By Proposition 4.1 we obtain
that the line Q through q and parallel to [p, p̄] supports K at q, which implies that
bdK is a Radon curve.



Characterization of different classes of convex bodies via orthogonality 715

4.3 Ellipses

Theorem 4.2 above shows that the fact that affine orthogonality is symmetric over
a particular class of chords of K is characteristic for Radon curves. The next theo-
rem shows that if this symmetry is extended to a wider class of affine orthogonal
chords, then it is even characteristic for ellipses.

Theorem 4.3. For a centrally symmetric convex body K ⊂ R2, the following properties
are equivalent:

(i) The boundary of K is an ellipse.

(ii) If p, q1, q2 ∈ bdK and [p, p̄] ⊣ [q1, q2], then [q1, q2] ⊣q1
[p, p̄] or [q1, q2] ⊣q2

[p, p̄].

Proof. (i)⇒(ii) This is evident. (ii)⇒(i) First we show that K is strictly convex.
Assume the contrary, namely that [s, t] is a segment contained in bdK and that
there is no larger segment containing it. Assume, without loss of generality, that
the center of K is the origin of R2 and consider the points of R2 as vectors. Let p =
1
4s + 3

4 t, q1 = 4
5 s̄ + 1

5 t̄ and q2 = 5
6 s̄ + 1

6 t̄. Then p ∈ [s, t], q1, q2 ∈ [s̄, t̄] and [p, p̄] ⊣

[q1, q2]. If [q1, q2] ⊣q1
[p, p̄], then p + q1 − p̄ = 2p + q1 = −3

10 s + 13
10 t ∈ bdK, which

implies [s, t]  [s, −3
10 s + 13

10 t] ⊂ bdK, contradicting the hypothesis. If [q1, q2] ⊣q2

[p, p̄], we obtain a similar result. Thus, by Theorem 4.1, our assumption (ii) can
be rewritten as: If p, q1, q2 ∈ bdK and [p, p̄] ⊣ [q1, q2], then [q1, q2] ⊣ [p, p̄].

Now we shall see that the midpoints of every family of parallel chords lie
in a line, which is a well known characterization of ellipses; see, e.g., [10]. Let
q ∈ bdK, and let P be a line parallel to [q, q̄] that supports K at a point, say p.
Then [p, p̄] ⊣ [q1, q2] for any chord [q1, q2] parallel to [q, q̄]. By (ii), [q1, q2] ⊣ [p, p̄].
Let Qi, i = 1, 2, denote the lines parallel to [p, p̄] and passing through qi. By the
definition of affine orthogonality it follows that if Q1 supports K, then Q2 also
supports K, and since K is strictly convex we get q2 = q̄1. This implies that the
midpoint of [q1, q2] is the center of K, thus lying in [p, p̄]. On the other hand,
if Q1 ∩ bdK = {q1, q′1}, then [q′1, q2] is an affine diameter and its midpoint is
again the center of K. Since Q1 is parallel to [p, p̄], this chord cuts [q1, q2] in its
midpoint.

Theorem 4.4. For a centrally symmetric convex body K ⊂ R2, the following properties
are equivalent:

(i) The boundary of K is a circular disc.

(ii) For p, q1, q2 ∈ bdK, if [p, p̄] ⊣ [q1, q2], then [p, p̄] is orthogonal to [q1, q2] in the
Euclidean sense.

Proof. (i)⇒(ii) This is evident. (ii)⇒(i) First we show that K is smooth. Assume,
on the contrary, that at a point p of bdK there are two different supporting lines,
say L1 and L2. Let q1, q2 ∈ bdK be such that [q1, q̄1] is parallel to L1 and [q2, q̄2] is
parallel to L2. Then [p, p̄] ⊣ [q1, q̄1] and [p, p̄] ⊣ [q2, q̄2], which implies that [p, p̄]
is orthogonal to [q1, q̄1] and to [q2, q̄2] in the Euclidean sense, which is absurd.
Without loss of generality we can assume that K is centered at the origin. Since
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it is smooth, we can consider K as the unit ball of a Gateaux differentiable norm
and parameterize bdK via a function

θ ∈ [0, 2π] → x(θ) = ρ(θ)(cos θ, sin θ) ∈ bdK,

where ρ(θ) = ‖(cos θ, sin θ)‖−1 is thus a positive differentiable function. Then,
for each θ ∈ [0, 2π], the line through x(θ) parallel to x′(θ) supports K at x(θ),
which implies that [x(θ),−x(θ)] is affine orthogonal (and then also orthogonal in
the Euclidean sense) to that line. Therefore, the scalar product x(θ) · x′(θ) is zero
and then

0 = ρ(θ)
(

cos θ, sin θ
)

·
(

ρ′(θ) cos θ − ρ(θ) sin θ, ρ′(θ) sin θ + ρ(θ) cos θ
)

= ρ(θ)ρ′(θ),

which implies that ρ′(θ) = 0 for θ ∈ [0, 2π]. Consequently bdK is the circle of
center zero and radius ρ(0).

4.4 Convex bodies of constant width

Let (M, ‖ · ‖) be a normed plane, and let K ⊂ M be a convex body. Following
Eggleston [7, p. 166], a chord [p, q] of K is called a normal of K at p if [p, q] is
Birkhoff orthogonal to a supporting line of K at p.

Theorem 4.5. ([4, (VI’)]) In a strictly convex and smooth normed plane, a convex body
K is of constant width if and only if every chord [p, q] of K that is a normal of K at p is
also a normal of K at q.

Our next theorem characterizes bodies of constant width by relating affine
orthogonal chords to normal chords.

Theorem 4.6. Let K be a convex body in a strictly convex and smooth normed plane.
The following properties are equivalent:

(i) K is of constant width.

(ii) If [p1, p2] is a normal chord of K at p1 and [p1, p2] is Birkhoff orthogonal to the
chord [q1, q2], then [p1, p2] ⊣p1

[q1, q2].

Proof. (i)⇒(ii) Assume that [p1, p2] is a normal chord of K at p1. Then [p1, p2] is
Birkhoff orthogonal to a line L that supports K at p1. By Theorem 4.5, the line
through p2 parallel to L supports K at p2. If [p1, p2] is Birkhoff orthogonal to the
chord [q1, q2], then [q1, q2] is parallel to L, from which it follows that [p1, p2] ⊣p1

[q1, q2].
(ii)⇒(i) Let [p1, p2] be a chord of K that is a normal of K at p1, and let L be a
supporting line of K at p1 such that [p1, p2] is Birkhoff orthogonal to L. Let [q1, q2]
be any chord parallel to L. Then [p1, p2] is Birkhoff orthogonal to [q1, q2], and by
(ii) we have [p1, p2] ⊣p1

[q1, q2], which implies that the line through p2 parallel to
L supports K at p2. Thus [p1, p2] is also a normal of K at p2 and, by Theorem 4.5,
K is of constant width.



Characterization of different classes of convex bodies via orthogonality 717

In [12] Martini and Makai Jr. gave the following characterization of bodies
of constant width in the Euclidean plane: a convex body of diameter 1 in E2 is
of constant width 1 if and only if any two perpendicular chords of it have total
length greater than or equal to 1. V. Soltan posed the question of extending this
characterization to normed planes by replacing the usual Euclidean orthogonality
by Birkhoff orthogonality. But as the counterexample constructed in [1] shows, in
general this cannot be done. Now we prove that such an extension is possible if
Euclidean orthogonality is replaced by affine orthogonality. For that purpose we
need the following lemma.

Lemma 4.1 ([18, Property 3.2]). Let K ⊂ Rn be a convex body. Then for any line
L there exist q1, q2 ∈ bdK such that [q1, q2] is an affine diameter of K and 〈q1, q2〉 is
parallel to L.

Let [q1, q2] be a chord of a convex body K ⊂ R2, and let p ∈ bdK. We say that
p is in the neighbourhood of [q1, q2] if there exists an affine diameter [q′1, q′2] which is
parallel to [q1, q2] such that [p, q′1] ∩ [q1, q2] 6= ∅. And we say that a convex body
K in a normed plane has the affine orthogonality property if for any two intersecting
chords [p1, p2] and [q1, q2], with p1 in the neighbourhood of [q1, q2] and [p1, p2] ⊣p1

[q1, q2], the inequality

‖p1 − p2‖+ ‖q1 − q2‖ ≥ diamK

holds.

Theorem 4.7. A convex body K in a normed plane is of constant width if and only if it
has the affine orthogonality property.

Proof. Assume that K is of constant width, and let [p1, p2] and [q1, q2] be two inter-
secting chords of K such that [p1, p2] ⊣p1

[q1, q2] and p1 is in the neighbourhood
of [q1, q2]. Let P1 be the line through p1 and parallel to [q1, q2]. Then there exists
p′1 ∈ P1 ∩ bdK (it is possible that p′1 = p1) such that [p′1, p2] is an affine diameter.
Since p1 is in the neighbourhood of [q1, q2], we have that ‖p1 − p′1‖ ≤ ‖q1 − q2‖,
and then

diamK = ‖p2 − p′1‖ ≤ ‖p2 − p1‖+ ‖p1 − p′1‖ ≤ ‖p1 − p2‖+ ‖q1 − q2‖.

Conversely, assume that K has the affine orthogonality property and that there
exists an affine diameter [x, y] with ‖x − y‖ < diamK. Let P be a supporting line
of K at x, and let us first assume that P touches bdK only at x. Then there exists a
chord [q1, q2] of K parallel to P and such that ‖q1 − q2‖ < diamK− ‖x − y‖, with
x in the neighbourhood of [q1, q2]. But then [x, y] ⊣x [q1, q2] and ‖q1 − q2‖+ ‖x −
y‖ < diamK, which contradicts the affine orthogonality property. On the other
hand, if P touches bdK at a segment that contains x then, taking a point x′ in
that segment such that ‖x − x′‖ < diamK− ‖x − y‖, we get also a contradiction,
because [x, y] ⊣x [x, x′].
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5 Concluding remarks

The notion of affine orthogonality defined for a two-dimensional convex body
can be extended to higher dimensions in a natural way. Let K be a convex body
in Rn (n ≥ 3). The intersection of K with a two-dimensional flat α is a plane
convex body (plane section) that will be denoted by Kα. Let [p1, p2] and [q1, q2] be
two intersecting chords of K and let α be the 2-flat that contains them. We say
that [p1, p2] is affine orthogonal through p1 to [q1, q2], denoted again [p1, p2] ⊣p1

[q1, q2], if [p1, p2] is affine orthogonal through p1 to [q1, q2] with respect to Kα. For
defining affine orthogonality it is not necessary that [p1, p2] and [q1, q2] intersect,
but sufficient that there exists a 2-flat containing both chords. If α passes through
the origin, we call Kα a main plane section of K, and if two chords of K determine
a 2-flat passing through the origin, then we call them main chords.

Theorem 5.1 below follows directly from next lemma and Theorems 4.1, 4.3,
4.4, and 4.7.

Lemma 5.1 ([8, § 7.1]). Let K be a convex body in the Euclidean space En and 2 ≤ k ≤
n − 1. Denote by G(n, k) the k-dimensional subspaces of En. Then:

1. If K ∩ S is centrally symmetric for each S ∈ G(n, k), then K is either symmetric
about the origin or an ellipsoid.

2. If K contains the origin in its interior and K ∩ S is an ellipsoid for each S ∈
G(n, k), then K is an ellipsoid.

3. If K ∩ S is a ball for each S ∈ G(n, k), then K is a ball.

4. If K ∩ S is of constant with in S for each S ∈ G(n, k), then K is a ball.

Theorem 5.1. For a convex body K in the Euclidean space En, n ≥ 3, the following
statements holds.

1a. Assume that K is strictly convex and symmetric about the origin. If [p1, p2] and
[q1, q2] are two main chords with [p1, p2] ⊣p1

[q1, q2], then [p1, p2] ⊣p2 [q1, q2].

1b. Assume that for any two main chords [p1, p2] and [q1, q2] the implication

[p1, p2] ⊣p1
[q1, q2] =⇒ [p1, p2] ⊣p2 [q1, q2]

holds. Then K is strictly convex and symmetric about the origin or an ellipsoid.

2. Assume that K is symmetric about the origin. The following properties are equiva-
lent:

(i) K is an ellipsoid.

(ii) If p, q1 and q2 belong to the boundary of a main plane section of K and [p, p̄] ⊣
[q1, q2], then [q1, q2] ⊣q1

[p, p̄] or [q1, q2] ⊣q2 [p, p̄].

3. Assume that K is symmetric about the origin. The following properties are equiva-
lent:
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(i) K is a ball.

(ii) If p, q1 and q2 belong to a main plane section of K and [p, p̄] ⊣ [q1, q2] then
[p, p̄] is orthogonal to [q1, q2] in the Euclidean sense.

4. Assume that for any two main intersecting chords [p1, p2], [q1, q2], with p1 in the
neighbourhood of [q1, q2] and [p1, p2] ⊣p1

[q1, q2], the inequality ‖p1 − p2‖ +
‖q1 − q2‖ ≥ diamK holds. Then K is a ball.

As we mentioned before, the notion of affine orthogonality with respect to
circular discs in the Euclidean plane coincides with the usual Euclidean orthog-
onality. Now we consider two types of non-metrical affine planes, namely the
Lorentzian and the isotropic plane, and we shall see that again the affine orthog-
onality with respect to corresponding circles in such planes coincides with the
usual Lorentzian or isotropic orthogonality. Note that in this framework we are
not working anymore with the boundary of a convex body. We consider closed
convex (in the sense that at any point there is a supporting line) curves which
involve points at infinity. Thus the line at infinity can be also a supporting line.
A chord [p1, p2] of such closed convex curve is an affine diameter if there are
supporting lines at p1 and p2 having an infinity point in common.

Let L
2 be the vector space R2 equipped with the Lorentzian inner product

x · y = x1y1 − x2y2 for x = (x1, x2), y = (y1, y2).

Two vectors x and y are said to be Lorentzian orthogonal if x · y = 0. A vector
x ∈ L

2 is said to be timelike if x · x < 0, spacelike if x · x > 0, and null if x · x =
0. The affine plane associated to the Lorentzian vector space L

2 is called the
Lorentzian plane; see, e.g., [3] and [20, § 11 and § 12]. It should be noticed that the
terms ”pseudo-Euclidean“ or ”Minkowski“ are also used for this plane. Indeed,
Minkowski introduced this geometry but Lorentz pioneered the notion of the
Lorentzian inner product. We also note that the Minkowski plane in this sense
should be distinguished from Minkowski planes in the sense of normed planes.
A (timelike) Lorentzian circle is said to be a curve with equation

(x1 − p1)
2 − (x2 − p2)

2 = λ2.

From the viewpoint of Klein’s concept of geometry the absolute of the Lorentzian
geometry consists of two points, for example f1 = (1, 1, 0) and f2 = (1,−1, 0)
with respect to an affine coordinate system with homogeneous coordinates such
that the line at infinity has the equation x3 = 0. Let us consider a Lorentzian
circle that is the rectilinear hyperbola H : x2

1 − x2
2 = x2

3. For any point q of H

with x3 6= 0 the vector
−→
Oq is Lorentzian orthogonal to the tangent line at q. The

hyperbola H (together with f1 and f2) is a closed convex curve. One can imagine
this curve gluing the two branches of H at its infinite points. A chord of H is
an affine diameter if and only if p1 and p2 are finite points and p1 = −p2. Thus
we have that for two chords [p1, p2], [q1, q2] of H the relation [p1, p2] ⊣p1

[q1, q2]
holds if and only if p1, p2 are finite, p1 = −p2, and [q1, q2] is parallel to the tangent

of H at p1. In other words, this holds if and only if the vector
−→
0p1 is Lorentzian

orthogonal to the direction determined by [q1, q2].
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The isotropic plane is defined as a projective plane with absolute (in the sense
of Klein) consisting of a line F and a point f on this line; see, e.g, [17] and [20,
Chapter 1 and Chapter 2]. This plane is also called Galilean plane, since its group
of motions describes Galileo’s principle of relativity. This principle says that all
properties studied in mechanics are preserved under transformations of the phys-
ical system obtained by imparting to it a velocity which is constant in magnitude
and direction, i.e., under so-called Galilean transformations. An isotropic circle is a
conic touching F at f . Any line through f is isotropic orthogonal to an arbitrary line;
see again [17]. Choosing again an affine coordinate system such that F : x3 = 0
and f = (0, 1, 0), we have that isotropic circles are parabolas with diameter paral-
lel to the second coordinate axis, and a line parallel to the second coordinate axis
is isotropic orthogonal to any straight line. We can consider an isotropic circle
as a convex closed curve, and then all affine diameters are the chords through
f . Thus we have that two chords [p1, p2], [q1, q2] of an isotropic circle are affine
orthogonal if and only if they are isotropic orthogonal.

The authors want to thank the referee for her/his helpful hints.
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Basel, 1983, pp. 49-96.

[5] DAY, M.M.: Some characterizations of inner product spaces, Trans. Amer.
Math. Soc. 62 (1947), 320-337.

[6] EGGLESTON, H. G.: Convexity, Cambridge Tracts in Mathematics ans Math-
ematical Physics, No. 47, Cambridge Univ. Press, New York, 1959.

[7] EGGLESTON, H. G.: Sets of constant width in finite dimensional Banach
spaces, Israel J. Math. 3 (1965), 163-172.

[8] GARDNER, R. J.: Geometric Tomography, Second Ed., Encyclopedia of Math-
ematics and its Applications, No. 58, Cambridge University Press, Cam-
bridge, 2006.

[9] HEIL, E., MARTINI, H.: Special convex bodies, Handbook of Convex Geometry,
Vol. A, B, 347–385, North-Holland, Amsterdam, 1993.



Characterization of different classes of convex bodies via orthogonality 721

[10] JAMES, R. C.: Inner products in normed linear spaces, Bull. Amer. Math. Soc.
53 (1947), 559-566.

[11] JAMES, R. C.: Orthogonality and linear functionals in normed linear spaces,
Trans. Amer. Math. Soc. 61 (1947), 265-292.

[12] MAKAI, E., JR., MARTINI, H.: A new characterization of convex plates of
constant width, Geom. Dedicata 34 (1990), 199-209.

[13] MARTINI H., SWANEPOEL, K. J.:, The geometry of Minkowski spaces - a
survey. Part II, Expositiones Math. 22 (2004), 93-144.

[14] MARTINI H., SWANEPOEL, K. J.:, Antinorms and Radon curves, Aequationes
Math. 71 (2006), 110-138.

[15] MARTINI, H., SWANEPOEL, K. J., WEISS, G.: The geometry of Minkowski
spaces - a survey, Part I, Expositiones Math. 19 (2001), 97–142.
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