Value distribution of p-adic meromorphic functions

Kamal Boussaf Jacqueline Ojeda*

Abstract

Let K be an algebraically closed field of characteristic 0, complete with respect to an ultrametric absolute value. Let f be a transcendental meromorphic function in K. We prove that if all zeroes and poles are of order ≥ 2 , then f has no Picard exceptional value different from zero. More generally, if all zeroes and poles are of order $\geq k \geq 3$, then $f^{(k-2)}$ has no exceptional value different from zero. Similarly, a result of this kind is obtained for the k-th derivative when the zeroes of f are at least of order m and the poles of order n, such that mn > m+n+kn.

If f admits a sequence of zeroes a_n such that the open disk containing a_n , of diameter $|a_n|$ contains no pole, then f and all its derivatives assume each non-zero value infinitely often. Several corollaries apply to the Hayman conjecture in the non-solved cases. Similar results are obtained concerning "unbounded" meromorphic functions inside an "open" disk.

1 Introduction and results

Notation and definitions: Let K be an algebraically closed field of characteristic 0, complete with respect to an ultrametric absolute value $|\cdot|$. Given $\alpha \in K$ and $R \in \mathbb{R}_+^*$, we denote by $d(\alpha, R)$ the disk $\{x \in K \mid |x - \alpha| \leq R\}$ and by $d(\alpha, R^-)$ the disk $\{x \in K \mid |x - \alpha| < R\}$, by $\mathcal{A}(K)$ the K-algebra of analytic functions in K (i.e. the set of power series with an infinite radius of convergence) and by $\mathcal{M}(K)$ the field of meromorphic functions in K.

Communicated by F. Brackx.

2000 Mathematics Subject Classification: Primary 12J25 Secondary 46S10.

Key words and phrases: p-adic meromorphic functions, value distribution, exceptional values.

^{*}Partially supported by CONICYT N° 79090014 (Inserción de Capital Humano a la Academia) Received by the editors August 2010.

In the same way, given $\alpha \in K$, r > 0 we denote by $\mathcal{A}(d(\alpha, r^-))$ the K-algebra of analytic functions in $d(\alpha, r^-)$ (i.e. the set of power series with a radius of convergence $\geq r$) and by $\mathcal{M}(d(\alpha, r^-))$ the field of fractions of $\mathcal{A}(d(\alpha, r^-))$. We then denote by $\mathcal{A}_b(d(\alpha, r^-))$ the K-algebra of bounded analytic functions in $d(\alpha, r^-)$ and by $\mathcal{M}_b(d(\alpha, r^-))$ the field of fractions of $\mathcal{A}_b(d(\alpha, r^-))$. And we set $\mathcal{A}_u(d(\alpha, r^-)) = \mathcal{A}(d(\alpha, r^-)) \setminus \mathcal{A}_b(d(\alpha, r^-))$ and $\mathcal{M}_u(d(\alpha, r^-)) = \mathcal{M}(d(\alpha, r^-)) \setminus \mathcal{M}_b(d(\alpha, r^-))$. As in complex functions, a meromorphic function is said to be *transcendental* if it is not a rational function.

Recall that we call *exceptional value* or *Picard value* for a meromorphic function f (in K or in a disk $d(a, R^-)$) a value $b \in K$ such that f - b has no zero. Similarly, we call *quasi-exceptional value* for a transcendental meromorphic function f in K or a function $f \in \mathcal{M}_u(d(a, R^-))$ a value $b \in K$ such that f - b has finitely many zeros.

Notation: Let $f \in \mathcal{M}(d(0,R^-))$. For every $r \in]0$, R[, we know that |f(x)| admits a limit when |x| approaches r while keeping different from r. This limit is denoted by |f|(r). Particularly, if $f \in \mathcal{A}(d(0,R^-))$, then f(x) is of the form $\sum_{n=0}^{\infty} a_n x^n$ and then $|f|(r) = \sup_{n \in \mathbb{N}} |a_n| r^n$ [4], [5]. Given $f \in \mathcal{M}(K)$, a value $b \in K$ is called a special value for f if $\lim_{r \to +\infty} |f - b|(r) = 0$. Similarly, consider $f \in \mathcal{M}(d(a,R^-))$ and let g(x) = f(a+x). A value $b \in K$ is called a special value for f if $\lim_{r \to R} |g - b|(r) = 0$.

Many previous studies were made on Picard's exceptional values for complex and p-adic functions and their derivatives and particularly on various questions related to the famous Hayman Conjecture [1], [6], [7], [9], [11].

Here we mean to study whether the derivatives of a meromorphic function may admit a quasi-exceptional value. Certain study was made on the same topic concerning complex functions in [1], [10]. But the tools used in that study, such as properties of normal families, have no analogue on a p-adic field. Here we shall use other methods, particularly the non-Archimedean Nevanlinna Theory.

Let us now recall the Hayman conjecture. Given a transcendental meromorphic function in \mathbb{C} and $b \in \mathbb{C}^*$, as conjectured by Hayman, we know that $f' + bf^m$ has infinitely many zeroes that are not zeroes of f for every $m \geq 3$, while counterexamples exist for m=1,2. Now, on a field such as K, we know that given $f \in \mathcal{M}(K)$, transcendental, or $f \in \mathcal{M}_u(d(\alpha,r^-))$, $f' + bf^m$ has infinitely many zeroes that are not zeroes of f for m=1 and every $m \geq 5$. And this is also true for m=3, 4 when K has residue characteristic 0 [9]. But if the residue characteristic of K is different from 0, it is not known whether or not certain particular meromorphic functions might violate the Hayman conjecture. In [2], the first author proposes other hypotheses on a transcendental meromorphic function f to assure that $f' + f^3$ or $f' + f^4$ has infinitely many zeroes that are not zeroes of f.

On the other hand, the problem of exceptional values for a transcendental meromorphic function that is the derivative of another one is an old problem. In a joint paper with A. Escassut [3], we proved that if a transcendental meromorphic function f in K has finitely many multiple poles, then f' has infinitely many

zeroes. Here, on the contrary, we will consider functions having multiple zeroes and poles.

Theorem 1: Let $f \in \mathcal{M}(K)$ be transcendental and be such that each zero is at least of order $k \geq 2$ except finitely many m and each pole is at least of order k, except finitely many $k \geq 2$. Suppose that $k \geq 2$ admits at least $k \geq 2$ admits at least $k \geq 2$, $k \geq 2$, admits at least $k \geq 2$, $k \geq$

Corollary 1.1: Let $f \in \mathcal{M}(K)$ be transcendental and be such that each zero and each pole is at least of order $k \geq 2$. Then $f^{(k-2)}$ has no exceptional value different from 0.

Corollary 1.2: Let $f \in \mathcal{M}(K)$ be transcendental and be such that each zero is at least of order $k \geq 2$ and each pole is at least of order $k \geq 2$ except finitely many for both. If f also satisfies one of the following three conditions, then $f^{(k-2)}$ has no quasi-exceptional value different from 0.

- 1) f admits infinitely many zeroes of order $\geq k+1$
- 2) f admits infinitely many poles of order $\geq k + 1$,
- 3) $f^{(k-2)}$ admits infinitely many multiple zeroes that are not zeroes of f.

Corollary 1.3: Let $f \in \mathcal{M}(K)$ be transcendental. Then $f'f^2$ has no exceptional value different from 0. Further, if f has infinitely many zeroes or poles of order ≥ 2 , then $f'f^2$ has no quasi-exceptional value different from 0.

Proof: We check that f^3 satisfies the hypothesis of Theorem 1.

Corollary 1.4: Let $f \in \mathcal{M}(K)$ be transcendental and have infinitely many zeroes or poles of order ≥ 2 or be such that f' admits infinitely many zeroes of order ≥ 2 . Then for every $b \in K^*$, $f' - b f^4$ has infinitely many zeroes that are not zeroes of f.

Theorem 2: Let $f \in \mathcal{M}_u(d(0, R^-))$ be such that each zero is at least of order $k \ge 2$ and each pole is at least of order k except finitely many, satisfying further at least one of the following three conditions:

1) f admits a sequence of zeroes (a_n) of order $s_n \ge k+1$ such that

$$\lim_{n\to\infty}|a_n|=R,\ \prod_{n=0}^{\infty}\left(\frac{|a_n|}{R}\right)^{s_n}=0,$$

2) f admits a sequence of poles (b_n) of order $t_n \ge k + 1$ such that

$$\lim_{n\to\infty}|b_n|=R,\ \prod_{n=0}^{\infty}\left(\frac{|b_n|}{R}\right)^{t_n}=0,$$

3) $f^{(k-2)}$ admits a sequence of zeroes (c_n) of order $u_n \ge 2$ that are not zeroes of f such that

$$\lim_{n\to\infty} |c_n| = R$$
, $\prod_{n=0}^{\infty} \left(\frac{|c_n|}{R}\right)^{u_n} = 0$,

Then $f^{(k-2)}$ has no quasi-exceptional value different from 0.

Corollary 2.1: Let $f \in \mathcal{M}_u(d(0,R^-))$ have infinitely many zeroes or poles (a_n) of order $q_n \geq 2$ such that $\prod_{n=0}^{\infty} \left(\frac{|a_n|}{R}\right)^{q_n} = 0$. Then $f'f^2$ has no quasi-exceptional value different from 0 and for every $b \in K^*$, $f' - bf^4$ has infinitely many zeroes that are not zeroes of f.

Corollary 2.2: Let $f \in \mathcal{M}_u(d(0, R^-))$ be such that f' has infinitely many zeroes (a_n) of order $q_n \geq 2$ such that $\prod_{n=0}^{\infty} \left(\frac{|a_n|}{R}\right)^{q_n} = 0$. Then $f'f^2$ has no quasi-exceptional value and for every $b \in K^*$, $f' - bf^4$ has infinitely many zeroes that are not zeroes of f.

Theorem 3: Let $f \in \mathcal{M}(K)$ be transcendental (resp. $f \in \mathcal{M}_u(d(0, R^-))$) and be such that each zero is at least of order $m \geq 3$, except finitely many and each pole is at least of order n except finitely many and let $k \in \mathbb{N}^*$ satisfy mn > m + n + nk. Then $f^{(k)}$ has no quasi-exceptional value different from 0.

Application: Let $f \in \mathcal{M}(K)$ be transcendental (resp. $f \in \mathcal{M}_u(d(0, R^-))$) be such that each zero is at least of order $m \geq 5$ and each pole is at least of order 2 except finitely many. Then both f, f' have no quasi-exceptional value different from 0. Moreover, if each pole of f is at least of order 3, then f'' has no quasi-exceptional value different from 0 either.

Theorem 4: Let $f \in \mathcal{M}(K)$ be transcendental (resp. $f \in \mathcal{M}(d(a, R^-))$) admitting a special value $c \neq 0$. There exists S > 0 (resp. $S \in]0, R[$) such that for each $b \in K^* \setminus d(0, S)$ (resp. $b \in d(0, R^-) \setminus d(a, S)$), the number of zeroes of f is equal to its number of poles in $d(b, |b|^-)$.

Corollary 4.1: Let $f \in \mathcal{M}(K)$ be transcendental (resp. $f \in \mathcal{M}(d(a, R^-))$), having an infinite sequence $(a_m)_{m \in \mathbb{N}}$ such that for all $m \in \mathbb{N}$, $d(a_m, |a_m|^-)$ does not contain any pole of f. Then f has no special value different from f.

Corollary 4.2: Let $f \in \mathcal{M}(K)$ be transcendental (resp. $f \in \mathcal{M}(d(a, R^-))$), having an infinite sequence $(b_m)_{m \in \mathbb{N}}$ of poles such that for all $m \in \mathbb{N}$, $d(b_m, |b_m|^-)$ does not contain any zero of f. Then f has no special value different from f.

Corollary 4.3: Let $f \in \mathcal{M}(K)$ be transcendental (resp. $f \in \mathcal{M}(d(a, R^-))$), having an infinite sequence of zeroes $(a_m)_{m \in \mathbb{N}}$ such that for all $m \in \mathbb{N}$, $d(a_m, |a_m|^-)$ does not contain any pole of f. Then for all $n, k \in \mathbb{N}^*$, k < n, $(f^n)^{(k)}$ assumes each value $c \in K^*$ infinitely often.

Corollary 4.4: Let $f \in \mathcal{M}(K)$ be transcendental (resp. $f \in \mathcal{M}(d(a, R^-))$), having an infinite sequence of zeroes $(a_m)_{m \in \mathbb{N}}$ such that for all $m \in \mathbb{N}$, $d(a_m, |a_m|^-)$ does not contain any pole of f. Then for all $n \in \mathbb{N}^*$, $f'f^n$ assumes each value $c \in K^*$ infinitely often.

Remark: Since the Hayman conjecture concerning $f'f^n$ is solved for $n \ge 3$ [9], Corollary 4.4 actually only applies to the cases n = 1 and n = 2.

2 The Proofs

Lemmas 1 is well known [4], [5], [8]:

Lemma 1: Let
$$f \in \mathcal{M}(d(0,R^-))$$
. Then $|f^{(k)}|(r) \leq \frac{|f|(r)}{r^k} \ \forall r < R, \ \forall k \in \mathbb{N}$.

We shall use the following classical lemma 2 (Corollary 1.7.6 [5])

Lemma 2: Let \widehat{K} be an algebraically closed complete extension of K and let $f \in \mathcal{M}(d(a, R^-))$. Each zero of f in the disk $\{x \in \widehat{K} \mid |x - a| < R\}$ is a zero of f in $d(a, R^-)$, with the same order of multiplicity.

Let us recall the classical notation of the Nevanlinna Theory:

Notation: Let $f \in \mathcal{M}(d(0, R^-))$ be such that 0 is neither a zero nor a pole of f. Let $(a_n)_{n \in \mathbb{N}}$ be the sequence of zeroes of f with $0 < |a_n| \le |a_{n+1}|$ and let k_n denote the order of the zero a_n . Then we define the counting function of zeroes of f, counting multiplicity as $Z(r, f) = \sum_{|a_n| < r} k_n (\log r - \log |a_n|)$.

Respectively, let the counting function of zeroes, ignoring multiplicities, be defined as $\overline{Z}(r, f) = \sum_{|a_n| \le r} (\log r - \log |a_n|)$.

Similarly, let $(b_n)_{n\in\mathbb{N}}$ be the sequence of poles of f with $0<|b_n|\leq |b_{n+1}|$ and let q_n be the order of the pole b_n . We denote by N(r,f) the counting function of the poles of f, counting multiplicity $N(r,f)=\sum_{|b_n|\leq r}q_n(\log r-\log|b_n|)$.

And we denote by $\overline{N}(r, f)$ the counting function of poles ignoring multiplicities be defined as $\overline{N}(r, f) = \sum_{|b_n| \le r} (\log r - \log |b_n|)$.

Finally, we define the characteristic function T(r, f) as $T(r, f) = \max(Z(r, f) + \log |f(0)|, N(r, f))$.

Lemma 3 comes from classical properties of meromorphic functions [5].

Lemma 3: Let $f \in \mathcal{M}(K)$, (resp. $f \in \mathcal{M}(d(0, R^-))$). Then, fixing $r_0 \in]0, +\infty[$, (resp. $r_0 \in]0, R[$), we have $\log(|f|(r)) = Z(r, f) - N(r, f) + O(1)$, $\forall r \in]r_0, +\infty[$ (resp. $\forall r \in]r_0, R[$).

As a corollary of Lemma 1, we have Lemma 4:

Lemma 4: Let $f \in \mathcal{M}(K)$, (resp. $f \in \mathcal{M}(d(0,R^-))$) be such that $f^{(k)}$ has a quasi-exceptional value $b \in K^*$. Then $Z(r,f) \geq N(r,f) + k \log r + O(1)$.

We will also need Lemma 5 that is classical.

Lemma 5: Let $f \in \mathcal{M}(d(0,r^-))$. If f has no zero and no pole in a disk $d(b,|b|^-)$, then |f(b)| = |f|(|b|).

The following Lemma 6 [5] is useful to derive Corollary 4.1 from Theorem 4.

Lemma 6: Let $f \in \mathcal{M}(K)$ be transcendental (resp. $f \in \mathcal{M}_u(d(a, R^-))$). Then f admits at most one special value b. If b is a quasi-exceptional value of f, it is a special value. If f admits a special value $b \in K$, then f' admits 0 as a special value.

Proof of Theorem 1: Suppose that f has at least s zeroes and t poles of order $\geq k+1$ and that, if k>2, $f^{(k-2)}$ has u zeroes of order ≥ 2 that are not zeroes of f.

Suppose that $f^{(k-2)}$ has a quasi-exceptional value $b \neq 0$. Then $f^{(k-2)}$ is of the form $b + \frac{P(x)}{g(x)}$ with $g \in \mathcal{A}(K) \setminus K[x]$ and therefore, there exists R such that $|f^{(k-2)}|(r) = |b| \ \forall r > R$. Particularly, by Lemma 3, $f^{(k-2)}$ admits as many zeroes as many poles in any disk d(0,r) whenever $r \geq R$.

Consequently, by Lemma 4 we have

(1)
$$Z(r, f) \ge N(r, f) + (k - 2) \log r + O(1)$$
 when $r < R$.

Now, applying the p-adic Nevanlinna Second Main Theorem we have:

$$(2) T(r, f^{(k-2)}) \le \overline{Z}(r, f^{(k-2)}) + \overline{Z}(r, f^{(k-2)} - b) + \overline{N}(r, f^{(k-2)}) - \log r + O(1).$$

But since b is a quasi-exceptional value of $f^{(k-2)}$, the number q of distinct zeroes of $f^{(k-2)} - b$ is $\leq \deg(P)$ and we have $\overline{Z}(r, f^{(k-2)} - b) \leq q \log r + O(1)$. Consequently, (2) yields:

$$Z(r, f^{(k-2)}) \le \overline{Z}(r, f^{(k-2)}) + \overline{N}(r, f) + (q-1)\log r + O(1)$$
 i.e.

(3)
$$(Z(r, f^{(k-2)}) - \overline{Z}(r, f^{(k-2)})) \le \overline{N}(r, f) + (q-1)\log r + O(1)$$

Notice that due to the hypothesis, we have

(4)
$$\overline{Z}(r,f) \le \frac{Z(r,f)}{k} + \left(\frac{(k-1)m}{k} - \frac{s}{k(k+1)}\right) \log r$$

and

(5)
$$\overline{N}(r,f) \le \frac{N(r,f)}{k} + \left(\frac{(k-1)w}{k} - \frac{t}{k(k+1)}\right) \log r.$$

Now, by hypothesis, each zero of f is a zero of order at least k, hence is a zero of $f^{(k-2)}$ of order ≥ 2 , except m of them, hence we have

$$Z(r, f^{(k-2)}) - \overline{Z}(r, f^{(k-2)}) > Z(r, f) - (k-1)\overline{Z}(r, f) + u \log r + O(1)$$

and then (3) yields

$$Z(r,f) - (k-1)\overline{Z}(r,f) \le \overline{N}(r,f) + (q-u-1)\log r + O(1)$$

hence by (4) and (5)

$$Z(r,f) \le (\frac{k-1}{k})Z(r,f) + (k-1)\left[\frac{(k-1)m}{k} - \frac{s}{k(k+1)}\right]\log r$$

$$+\frac{N(r,f)}{k}+\left[\frac{(k-1)w}{k}-\frac{t}{k(k+1)}\right]\log r+(q-u-1)\log r+O(1)$$

Now by (1), the last inequality yields

$$Z(r,f) \le \frac{(k-1)}{k} Z(r,f) + (k-1) \left[\frac{(k-1)m}{k} - \frac{s}{k(k+1)} \right] \log r + \frac{Z(r,f)}{k} - \frac{k-2}{k} \log r + \left[\frac{(k-1)w}{k} - \frac{t}{k(k+1)} + (q-u-1) \right] \log r + O(1)$$

hence

$$0 \le \left[\frac{(k-1)((k-1)m+w)}{k} - \frac{s(k-1)}{k(k+1)} - \frac{t}{k(k+1)} - \frac{k-2}{k} + (q-u-1) \right] \log r + O(1)$$

Consequently,

$$q \geq 2 - \frac{2}{k} + u + \frac{t + s(k-1)}{k(k+1)} - \frac{(w + m(k-1))(k-1)}{k}$$

which ends the proof.

The following Lemma 7 will be useful in the proof of Theorem 2 and is an immediate consequence of Corollary 1.7.17 [5].

Lemma 7: Let $f \in \mathcal{A}(d(0,R^-))$ and let $(a_n)_{n \in \mathbb{N}}$ be the sequence of zeroes of f, with respective multiplicity q_n . Then f belongs to $\mathcal{A}_u(d(0,R^-))$ if and only if $\prod_{n=0}^{\infty} \left(\frac{|a_n|}{R}\right)^{q_n} = 0$.

Proof of Theorem 2: The proof is similar to this of Theorem 1, with some changes. Thanks to Lemma 2, without loss of generality, we can assume that K is spherically complete. Then we can write $f = \frac{h}{l}$ with h, $l \in \mathcal{A}(d(0, R^-))$, having no common zeroes. We shall first show that $f^{(k-2)}$ belongs to $\mathcal{M}_u(d(0, R^-))$.

Suppose that Hypothesis 2) of Theorem 2 is satisfied. Then by Lemma 7, l belongs to $\mathcal{A}_u(d(0,R^-))$ and hence the denominator of $f^{(k-2)}$, in a reduced form, also belongs to $\mathcal{A}_u(d(0,R^-))$ because l divides it in $\mathcal{A}(d(0,R^-))$. Hence $f^{(k-2)}$ belongs to $\mathcal{M}_u(d(0,R^-))$.

If Hypothesis 3) of Theorem 2 is satisfied, by Lemma 7, it is obvious that the numerator of $f^{(k-2)}$, in a reduced form, is unbounded, hence $f^{(k-2)}$ belongs to $\mathcal{M}_u(d(0,R^-))$.

Now, suppose that Hypothesis 1) of Theorem 2 is satisfied. Since $s_n \ge k + 1$, we can check that $s_n - k + 2 \ge \frac{s_n}{k}$ and therefore by Hypothesis 1), we have

$$\prod_{n=0}^{\infty} \left(\frac{|a_n|}{R} \right)^{s_n - (k-2)} \le \prod_{n=0}^{\infty} \left(\frac{|a_n|}{R} \right)^{\frac{s_n}{k}} = 0.$$

Consequently, by Lemma 7 $f^{(k-2)}$ belongs to $\mathcal{M}_u(d(0,R^-))$.

Suppose $f^{(k-2)}$ has a quasi-exceptional value $b \neq 0$, hence $f^{(k-2)}$ is of the form $b + \frac{P(x)}{g(x)}$ and therefore, there exists $S \in]0$, R[such that $|f^{(k-2)}|(r) = |b| \ \forall r \in]S$, R[. Particularly, $f^{(k-2)}$ admits as many zeroes as many poles in any disk d(0,r) whenever $r \in]S$, R[.

Consequently, $Z(f^{(k-2)},r) = N(f^{(k-2)},r) + O(1)$ when $r \in]S,R[$. On the other hand, by Lemma 1, we have $|f|(r) \ge |f^{(k-2)}|(r)r^{k-2}$, hence finally, by Lemma 3, we have

$$(1) Z(r,f)) \ge N(r,f) + O(1).$$

 $T(f^{(k-2)},r) \ge N(f^{(k-2)},r) = N(r,f) + (k-2)\overline{N}(r,f) + O(1)$. Now, applying the p-adic Nevanlinna Main Theorem we have:

(2)
$$T(f^{(k-2)},r) \le \overline{Z}(r,f^{(k-2)}) + \overline{Z}(r,f^{(k-2)}-b) + \overline{N}(r,f^{(k-2)}) + O(1)$$

Now, since b is a quasi-exceptional value and since $\overline{N}(r,f) = \overline{N}(r,f^{(k-2)})$, (2) yields:

$$Z(r, f^{(k-2)}) \le \overline{Z}(r, f^{(k-2)}) + \overline{N}(r, f) + O(1)$$
 hence

(3)
$$Z(r, f^{(k-2)}) - \overline{Z}(r, f^{(k-2)}) \le \overline{N}(r, f) + O(1)$$

Now, by hypothesis, each zero of f is a zero of order at least k, except finitely many. So, each zero of f of order $\geq k$ is a zero of $f^{(k-2)}$ of order ≥ 2 , hence $Z(r,f^{(k-2)})-\overline{Z}(r,f^{(k-2)})\geq Z(r,f)-(k-1)\overline{Z}(r,f)+O(1)$, therefore (3) yields

(4)
$$Z(r,f) \le (k-1)\overline{Z}(r,f) + \overline{N}(r,f) + O(1)$$

hence

(5)
$$Z(r,f) \le (k-1)\overline{Z}(r,f) + \frac{N(r,f)}{k} + O(1)$$

Suppose now that f has infinitely many zeroes (a_n) of order $\geq k+1$ satisfying Hypothesis 1). Then we can check that

(6)
$$\lim_{r \to R} Z(r, f) - k\overline{Z}(r, f) = +\infty$$

Now, by (1) and (5) we have

$$Z(r,f) \le (k-1)\overline{Z}(r,f) + \frac{Z(r,f)}{k} + O(1), \ r \in]S,R[$$

hence

$$Z(r,f) - k\overline{Z}(r,f) \le \frac{Z(r,f)}{k} - \overline{Z}(r,f) + O(1), r \in]S, R[.$$

Therefore

$$\frac{(k-1)}{k} \left(Z(r,f) - k \overline{Z}(r,f) \right) \le O(1), \ r \in]S, R[$$

a contradiction to (6).

Suppose now that f has infinitely many poles of order $\geq k+1$ satisfying Hypothesis 2). Then the function $\theta(r) = \frac{N(r,f) - k\overline{N}(r,f)}{k}$ satisfies

$$\lim_{r \to R} \theta(r) = +\infty.$$

Now, by (5) we have

$$Z(r,f) \le \frac{(k-1)}{k} Z(r,f) + \frac{N(r,f)}{k} - \theta(r) + O(1)$$

and hence by (1) we obtain

$$Z(r,f) \le \frac{(k-1)}{k} Z(r,f) + \frac{Z(r,f)}{k} - \theta(r) + O(1),$$

but by (7) the contradiction follows.

Finally, suppose that $f^{(k-2)}$ has infinitely many zeroes that are not zeroes of f, satisfying hypothesis 3). We set again

$$\psi(r) = \sum_{n=0}^{\infty} (u_n - 1)(\log r - \log(|c_n|))$$
. Since $\prod_{n=0}^{\infty} \left(\frac{|c_n|}{R}\right)^{u_k - 1} = 0$ the function ψ satisfies

$$\lim_{r \to R} \psi(r) = +\infty$$

and by construction, we can check that

$$Z(r, f^{(k-2)}) - \overline{Z}(r, f^{(k-2)}) \ge Z(r, f) - (k-1)\overline{Z}(r, f) + \psi(r) + O(1)$$

Then by (3) we obtain $Z(r,f)-(k-1)\overline{Z}(r,f)+\psi(r)\leq \overline{N}(r,f)+O(1)$, hence $\frac{Z(r,f)}{k}+\psi(r)\leq \overline{N}(r,f)+O(1)$ and hence by (1), we have $\frac{Z(r,f)}{k}+\psi(r)\leq \overline{Z}(r,f)+O(1)$, a contradiction by (8). This finishes the proof of Theorem 2.

Proof of Corollary 2.2: By hypothesis, $f'f^2$ does not admit 0 as a quasi-exceptional value. We set $g = \frac{1}{f}$.

The function f' admits a subsequence $(b_m)_{m\in\mathbb{N}}$ of $(a_n)_{n\in\mathbb{N}}$ satisfying $\prod_{m=0}^{\infty} \left(\frac{|b_m|}{R}\right)^{\tau_m} = 0$, with $\tau_m \geq 2$ and such that either all b_m are zeroes f or none of the b_m are zeroes of f.

Suppose the first case holds. That means that each b_m is a zero of f of order $\tau_m + 1 \ge 3$. Then f^3 satisfies 1) in Theorem 2 with k = 3. Hence $f'f^2$ has no quasi-exceptional value different from 0. Furthermore each b_m is a pole of $g = \frac{1}{f}$ of order ≥ 3 . Then by Corollary 2.1, for all $b \in K^*$, $g'g^2 + b$ admits infinitely many zeroes. Let β be a zero of $g'g^2 + b$ i.e. a zero of $g'g^2 + b$. Then $g(\beta) \ne 0$, $g(\beta)$, hence $g(\beta)$ is a zero of $g'g^2 + b$, that is not a zero of $g'g^2 + b$, which completes the proof.

Suppose now the second case holds. Then f^3 satisfies 3) in Theorem 2 with k=3, hence $f'f^2$ has no quasi-exceptional value different from 0. Now, $(b_m)_{m\in\mathbb{N}}$ is a sequence of zeroes of g' of order ≥ 2 that are not zeroes of g. We can apply Theorem 2, hypothesis 3) to g^3 . This proves that $g'g^2$ has no quasi-exceptional value different from zero. Consequently, given $b\neq 0$, $g'g^2+b$ has infinitely many zeroes. Consequently $f'-bf^4=-f^4(g'g^2+b)$ admits infinitely many zeros that are not zeroes of f.

Proof of Theorem 3: Suppose first $f \in \mathcal{M}(K)$ to be transcendental and suppose $b \neq 0$ is a quasi-exceptional value of $f^{(k)}$. Applying the p-adic Nevanlinna Main Theorem, we have $T(r, f^{(k)}) \leq \overline{Z}(r, f^{(k)}) + \overline{Z}(r, f^{(k)} - b) + \overline{N}(r, f^{(k)}) - \log r + O(1)$.

Now, $Z(r, f^{(k)}) \leq T(r, f^{(k)})$, $\overline{N}(r, f^{(k)}) = \overline{N}(r, f)$ and, since b is a quasi-exceptional value of $f^{(k)}$, $\overline{Z}(r, f^{(k)} - b) \leq O(\log r)$. Consequently,

(1)
$$Z(r, f^{(k)}) - \overline{Z}(r, f^{(k)}) \le \overline{N}(r, f) + O(\log r).$$

And now, since each zero of f has order at least $m \ge k$ we have $Z(r, f^{(k)}) \ge Z(r, f) - k\overline{Z}(r, f) + O(\log r)$ hence by (1) we obtain

(2)
$$Z(r,f) - (k+1)\overline{Z}(r,f) \le \overline{N}(r,f) + O(\log r).$$

Now, since each zero of f is of order at least m and since pole is of order at least n exceptly finitely many, we have

$$Z(r,f) - (k+1)\overline{Z}(r,f) \ge (\frac{m-k-1}{m})Z(r,f) + O(\log r)$$
 and $\overline{N}(r,f) \le \frac{N(r,f)}{n} + O(\log r)$ hence (2) yields

(3)
$$Z(r,f)\left(\frac{m-k-1}{m}\right) \le \frac{N(r,f)}{n} + O(\log r).$$

Now by Lemma 4, we have $Z(r,f) \geq N(r,f) + O(\log r)$, and hence (3) yields

$$Z(r,f)\left(\frac{m-k-1}{m}\right) \le \frac{Z(r,f)}{n} + O(\log r)$$

hence finally $m - k - 1 \le mn$, a contradiction to the hypothesis.

Suppose now that f belongs to $\mathcal{M}_u(d(0,R^-))$. The proof is the same by replacing each time $O(\log r)$ by O(1).

By properties of analytic elements, we know the following lemmas 9, 10 given in [4] and [5]:

Lemma 9: Let $f \in \mathcal{M}(d(0,R^-))$, let $a \in d(0,R^-)$ and let r = |a|. Then

$$\lim_{\substack{|x| \to r, \\ |x| \neq r}} |f(x)| = \lim_{\substack{|x-a| \to r, \\ |x-a| \neq r}} |f(x)| = |f|(r).$$

Lemma 10: Let $f \in \mathcal{M}(d(0,R^-))$ have q zeroes and t poles in d(a,s) and have no zero and no pole in $\Gamma(0,s,r)$ (with s < r < R). Then $|f(x)| = |f|(r) \Big(\frac{|x-a|}{r}\Big)^{q-t}$.

Proof of Theorem 4: Suppose f has a special value $c \neq 0$. Without loss of generality, we may assume c = 1 and a = 0. By hypothesis, there exists S > 0 (resp. $S \in]0, R[)$ such that $|f - 1|(r) < 1 \ \forall r \geq S$ (resp. $|f - 1|(r) < 1 \ \forall r \in]S, R[)$. Let $b \in K^*$ be such that |b| > S (resp. $b \in d(0, R^-)$ be such that S < |b| < R) and set S = |b|. By Lemma 9 we have

$$\lim_{\substack{|x| \to r, \\ |x| \neq r}} |f(x) - 1| = \lim_{\substack{|x - b| \to r, \\ |x - b| \neq r}} |f(x) - 1| = |f - 1|(r)$$

hence $\lim_{\substack{|x-b| \to r, \\ |x-b| \neq r}} |f(x)-1| < 1$. Thus, there exists $s \in]0,r[$ such that |f(x)-1| < 1.

 $1 \forall x \in \Gamma(b, s, r)$ and particularly

$$(1) |f(x)| = 1, \forall x \in \Gamma(b, s, r).$$

Without loss of generality, we can take s < r but big enough to assure that d(b,s) contains all the zeroes and the poles of f inside $d(b,r^-)$. Let q be the number of zeroes of f in d(b,s) and let t be the number of poles of f in d(b,s) taking multiplicity into account. Then by Lemma 10, we have $|f(x)| = |f|(r) \left(\frac{|x-b|}{r}\right)^{q-t}$. Consequently, by (1) we have q = t.

Acknowledgement The authors express their gratitude to Professor Alain Escassut for many helpful suggestions through out the preparation of the paper.

References

- [1] **Bergweiler, W. and Pang, X.C.** *On the derivative of meromorphic functions with multiple zeros, J. Math. Anal. Appl. 278, p. 285-292 (2003).*
- [2] **Boussaf, K.** *Picard values of p-adic meromorphic functions.* p-Adic Numbers, Ultrametric Analysis and Applications, Vol. 2, N. 4, p. 285-292 (2010).
- [3] **Boussaf, K., Ojeda, J. and Escassut, A.** *Zeroes of p-adic meromorphic functions.* Paper submitted for publication.
- [4] **Escassut, A.** *Analytic Elements in p-adic Analysis*. World Scientific Publishing Co. Pte. Ltd. (Singapore, 1995).

- **Escassut**, A. p-adic Value Distribution. Some Topics on Value Distribution and Differentiability in Complex and P-adic Analysis, p. 42- 138. Mathematics Monograph, Series 11. Science Press. (Beijing 2008)
- [6] **Escassut, A. and Ojeda, J.** Exceptional values of p-adic analytic functions and derivatives. Complex Variables and Elliptic Equations. Vol 56, N. 1-4, p.263-269 (2011).
- [7] Hayman W. K., Picard values of meromorphic functions and their derivatives, Ann. of Math. 70, p. 9 - 42 (1959).
- [8] **Hu, P.C. and Yang, C.C.** *Meromorphic Functions over non-Archimedean Fields.* Kluwer Academic Publishers, (2000).
- [9] **Ojeda J.** On Hayman's conjecture over a p-adic field. Taiwanese Journal of Mathematics 12 (9) (2008).
- [10] Wang Yueifei and Fang Mingliang. Picard Values and Normal families of Meromorphic Functions with multiple zeros, Acta Mathematica Sinica, new series, January 1998, Vol 14, N. 1, p. 17-26.
- [11] Yang, C.C. On the value distribution of a transcendental meromorphic functions and its derivatives, Indian J. Pure and Appl.Math. p. 1027-1031 (2004).

Laboratoire de Mathématiques UMR 6620 UFR ST Université Blaise Pascal Les Cezeaux 63177 AUBIERE CEDEX **FRANCE**

mail: Kamal.Boussaf@math.univ-bpclermont.fr

Departamento de Matemática Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción Barrio Universitario s/n, Casilla 160-C Concepción, Chile.

mail: jacqojeda@udec.cl