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Abstract

Let K be an algebraically closed field of characteristic 0, complete with
respect to an ultrametric absolute value. Let f be a transcendental meromor-
phic function in K. We prove that if all zeroes and poles are of order > 2,
then f has no Picard exceptional value different from zero. More generally,
if all zeroes and poles are of order > k > 3, then f (k~2) has no exceptional
value different from zero. Similarly, a result of this kind is obtained for the
k — th derivative when the zeroes of f are at least of order m and the poles of
order n, such that mn > m 4+ n + kn.

If f admits a sequence of zeroes a, such that the open disk containing
a, of diameter |a,| contains no pole, then f and all its derivatives assume
each non-zero value infinitely often. Several corollaries apply to the Hayman
conjecture in the non-solved cases. Similar results are obtained concerning
“unbounded ” meromorphic functions inside an “open” disk.

1 Introduction and results

Notation and definitions: Let K be an algebraically closed field of characteristic
0, complete with respect to an ultrametric absolute value | . |. Given a« € K and
R € R, we denote by d(a, R) the disk {x € K | |[x —a| < R} and by d(a, R™) the
disk {x € K| |[x — «| < R}, by A(K) the K-algebra of analytic functions in K (i.e.
the set of power series with an infinite radius of convergence) and by M (K) the
tield of meromorphic functions in K.
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In the same way, given « € K, r > 0 we denote by A(d(«a,r~)) the K-algebra of
analytic functions in d(a,r7) (i.e. the set of power series with a radius of conver-
gence > r) and by M(d(a,r™)) the field of fractions of A(d(«,r)). We then de-
note by A (d(«, r~)) the K-algebra of bounded analytic functions in d(a, 7~ ) and
by M (d(a, ™)) the field of fractions of Ay (d(a,r~)). And we set A, (d(a, 7)) =
A(d(a,r7)) \ Ap(d(a,r7)) and My, (d(a,77)) = M(d(a, 7)) \ Mp(d(a,77)). As
in complex functions, a meromorphic function is said to be transcendental if it is
not a rational function.

Recall that we call exceptional value or Picard value for a meromorphic function
f (inKorina diskd(a,R7)) a value b € K such that f — b has no zero. Similarly,
we call quasi-exceptional value for a transcendental meromorphic function f in K
or a function f € M, (d(a,R™)) a value b € K such that f — b has finitely many
Zeros.

Notation: Let f € M(d(0,R™)). Foreveryr €]0, R[, we know that | f(x)| admits
a limit when |x| approaches r while keeping different from r. This limit is denoted

by |f|(r). Particularly, if f € A(d(0,R™)), then f(x) is of the form )  a,x" and

n=0
then |f|(r) = sup,,cp |an|r" [4], [5].
Given f € M(K), avalue b € Kis called a special value for f if ET |f —b|(r) = 0.
r (o]

Similarly, consider f € M(d(a,R7)) and let g(x) = f(a+ x). Avalueb € K is
called a special value for f if 1irr112 g —b|(r) =0.
r—

Many previous studies were made on Picard’s exceptional values for complex
and p-adic functions and their derivatives and particularly on various questions
related to the famous Hayman Conjecture [1], [6], [7], [9], [11].

Here we mean to study whether the derivatives of a meromorphic function
may admit a quasi-exceptional value. Certain study was made on the same topic
concerning complex functions in [1], [10]. But the tools used in that study, such as
properties of normal families, have no analogue on a p-adic field. Here we shall
use other methods, particularly the non-Archimedean Nevanlinna Theory.

Let us now recall the Hayman conjecture. Given a transcendental meromor-
phic function inC and b € C*, as conjectured by Hayman, we know that " + b f"
has infinitely many zeroes that are not zeroes of f for every m > 3, while counter-
examples exist for m = 1, 2. Now, on a field such as K, we know that given
f € M(K), transcendental, or f € M, (d(«,r™)), f' + bf™ has infinitely many
zeroes that are not zeroes of f for m = 1 and every m > 5. And this is also true
for m = 3, 4 when K has residue characteristic 0 [9]. But if the residue charac-
teristic of K is different from 0, it is not known whether or not certain particular
meromorphic functions might violate the Hayman conjecture. In [2], the first au-
thor proposes other hypotheses on a transcendental meromorphic function f to
assure that f' + f° or f’ + f* has infinitely many zeroes that are not zeroes of f.

On the other hand, the problem of exceptional values for a transcendental
meromorphic function that is the derivative of another one is an old problem. In
a joint paper with A. Escassut [3], we proved that if a transcendental meromor-
phic function f in K has finitely many multiple poles, then f "has infinitely many



Value distribution of p-adic meromorphic functions 669

zeroes. Here, on the contrary, we will consider functions having multiple zeroes
and poles.

Theorem 1: Let f € M(K) be transcendental and be such that each zero is at least of
order k > 2 except finitely many m and each pole is at least of order k, except finitely many
w. Suppose that f admits at least s zeroes and t poles of order at least k 4+ 1 and, when
k > 2, f*=2) admits at least u multiple zeroes that are not zeroes of f (s, t, u € N).
Then for each b € K*, f*~2) — b has a number of distinct zeroes g > 2 — 24u+

t+s(k=1)  (w4m(k=1))(k=1)
k(k+1) k ‘

Corollary 1.1:  Let f € M(K) be transcendental and be such that each zero and each
pole is at least of order k > 2. Then f*~2) has no exceptional value different from 0.

Corollary 1.2: Let f € M(K) be transcendental and be such that each zero is at least
of order k > 2 and each pole is at least of order k > 2 except ﬁnitely many for both. If f

also satisfies one of the following three conditions, then f*~2) has no quasi-exceptional
value different from 0.

1) f admits infinitely many zeroes of order > k + 1
2) f admits infinitely many poles of order > k + 1,
3) f&=2) admits infinitely many multiple zeroes that are not zeroes of f.

Corollary 1.3: Let f € M(K) be transcendental. Then f'f? has no exceptional value
different from 0. Further, if f has infinitely many zeroes or poles of order > 2, then f'f>
has no quasi-exceptional value different from 0.

Proof: We check that f> satisfies the hypothesis of Theorem 1.
Corollary 1.4: Let f € M(K) be transcendental and have infinitely many zeroes or

poles of order > 2 or be such that f" admits infinitely many zeroes of order > 2. Then for
every b € K*, f' — bf* has infinitely many zeroes that are not zeroes of f.

Theorem 2: Let f € M, (d(0,R™)) be such that each zero is at least of order k > 2
and each pole is at least of order k except finitely many, satisfying further at least one of
the following three conditions:

1) f admits a sequence of zeroes (a,) of order s, > k + 1 such that
- o (Jan] o

hmn—>oo|an| =R, J:[()( R ) =0,

2) f admits a sequence of poles (by) of order t, > k + 1 such that

limy—e0 [bn| = H (’b ’> !

3) f*=2) admits a sequence of zeroes (c,,) of order u, > 2 that are not zeroes of f such
that

. = 7 len]y
11mw|cn|:R,nr_[0('1g') o,

Then f*~2) has no quasi-exceptional value different from 0 .
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Corollary 2.1: Let f € M, (d(0,R™))) have infinitely many zeroes or poles (a,) of

order q, > 2 such that (%—”’)% = 0. Then f'f? has no quasi-exceptional value
n=0

different from 0 and for every b € K*, f' — bf* has infinitely many zeroes that are not

zeroes of f.

Corollary 2.2: Let f € M, (d(0,R™))) be such that f' has infinitely many zeroes

© qn
(an) of order q, > 2 such that (%{—n’) = 0. Then f'f? has no quasi-exceptional
n=0
value and for every b € K*, f' — bf* has infinitely many zeroes that are not zeroes of f.

Theorem 3: Let f € M(K) be transcendental (resp. f € M,,(d(0,R™))) and be such
that each zero is at least of order m > 3, except finitely many and each pole is at least of
order n except finitely many and let k € N* satisfy mn > m + n + nk. Then f) has no
quasi-exceptional value different from 0.

Application: Let f € M(K) be transcendental (resp. f € M, (d(0,R™))) be such
that each zero is at least of order m > 5 and each pole is at least of order 2 except finitely
many. Then both f, f' have no quasi-exceptional value different from 0. Moreover, if
each pole of f is at least of order 3, then f" has no quasi-exceptional value different from
0 either.

Theorem 4: Let f € M(K) be transcendental (resp. f € M(d(a,R™))) admitting
a special value ¢ # 0. There exists S > 0 (resp. S €]0,R]) such that for each b €
K* \d(0,S) (resp. b € d(0,R™) \ d(a,S)), the number of zeroes of f is equal to its
number of poles in d(b, |b| ™).

Corollary 4.1: Let f € M(K) be transcendental (resp. f € M(d(a,R™))), having
an infinite sequence (am )men Such that for all m € N, d(an, |am|™) does not contain
any pole of f. Then f has no special value different from 0.

Corollary 4.2: Let f € M(K) be transcendental (resp. f € M(d(a,R™))), having
an infinite sequence (by )men of poles such that for all m € N, d(by, |by| ™) does not
contain any zero of f. Then f has no special value different from 0.

Corollary 4.3: Let f € M(K) be transcendental (resp. f € M(d(a,R™))), having
an infinite sequence of zeroes (ay ) meN such that for all m € N, d(ap, |am|™) does not
contain any pole of f. Then for all n, k € N*, k < n, (f")*) assumes each value c € K*
infinitely often.

Corollary 4.4: Let f € M(K) be transcendental (resp. f € M(d(a,R™))), having
an infinite sequence of zeroes (A, )men such that for all m € N, d(ay,, |am|~) does not
contain any pole of f. Then for all n € N*, f' f* assumes each value c € K* infinitely
often.

Remark: Since the Hayman conjecture concerning f'f" is solved for n > 3 [9],
Corollary 4.4 actually only applies to the casesn =1 and n = 2.
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2 The Proofs

Lemmas 1 is well known [4], [5], [8]:

Lemmal: Let f € M(d(0,R™)). Then |f®)|(r) < £1(r)

p Vr < R, Vk € N.
»

We shall use the following classical lemma 2 (Corollary 1.7.6 [5])

Lemma?2: Let K be an algebraically closed complete extension of K and let f € M(d(a,R™)).
Each zero of f in the disk {x € K | |x —a| < R} isa zero of f in d(a, R™), with the same
order of multiplicity.

Let us recall the classical notation of the Nevanlinna Theory:

Notation: Let f € M(d(0,R™)) be such that 0 is neither a zero nor a pole of
f. Let (an)nen be the sequence of zeroes of f with 0 < |a,| < |a,41| and let k,
denote the order of the zero a,. Then we define the counting function of zeroes
of f, counting multiplicity as Z(r, f) = Y4, <, kn(logr — log |an]|).

Respectively, let the counting function of zeroes, ignoring multiplicities, be
defined as Z(r, f) = Y|, < (log r — log |ax]).

Similarly, let (b, ),en be the sequence of poles of f with 0 < |b,| < |b,+1| and
let g, be the order of the pole b,. We denote by N(r, f) the counting function of
the poles of f, counting multiplicity N(r, f) = ¥, |<, g (logr — log [b|).

And we denote by N(r, f) the counting function of poles ignoring multiplici-
ties be defined as N (7, f) = ¥jp,|<,(logr — log |bx]).

Finally, we define the characteristic function T(r, ) as T(r, f) = max(Z(r, f) +

log [f(0)], N(r, f))-

Lemma 3 comes from classical properties of meromorphic functions [5].

Lemma 3: Let f € M(K), (resp. f € M(d(0,R™))). Then, fixing ry €]0,+oo],
(resp. ro €]0, R[), we have log(|f|(r)) = Z(r,f) — N(r, f) + O(1), Vr €]ry, +o0]
(resp. ¥r €]rg, R]).

As a corollary of Lemma 1, we have Lemma 4:
Lemma 4: Let f € M(K), (resp. f € M(d(0,R™))) be such that f*% has a quasi-
exceptional value b € K*. Then Z(r, f) > N(r, f) + klogr+ O(1).

We will also need Lemma 5 that is classical.

Lemma 5: Let f € M(d(0,r7)). If f has no zero and no pole in a disk d(b, |b|™),
then |f(b)| = | f1(|]).

The following Lemma 6 [5] is useful to derive Corollary 4.1 from Theorem 4.

Lemma 6: Let f € M(K) be transcendental (resp. f € My (d(a,R™)) ). Then f
admits at most one special value b. If b is a quasi-exceptional value of f, it is a special
value. If f admits a special value b € K, then f" admits 0 as a special value.
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Proof of Theorem 1: Suppose that f has at least s zeroes and t poles of order >
k41 and that, ifk > 2, f (k=2) has u zeroes of order > 2 that are not zeroes of f.
Suppose that f(*~2) has a quasi-exceptional value b # 0. Then f*~2) is of

P(x)

the form b + 2 with ¢ € A(K) \ K[x] and therefore, there exists R such that
|f*=2)|(r) = |b| Vr > R. Particularly, by Lemma 3, f*~2) admits as many zeroes
as many poles in any disk d(0,7) whenever r > R.

Consequently, by Lemma 4 we have
(1) Z(r,f) > N(r, f) + (k—2)logr+ O(1) whenr < R.

Now, applying the p-adic Nevanlinna Second Main Theorem we have:

(@) T(r f%2) < Z(r, f52) + Z(r, f52 = b) + N(1, f5) —logr +O(1).

But since b is a quasi-exceptional value of f*~2), the number g of distinct
zeroes of f(k=2) —pis < deg(P) and we have Z(r, f*~2) —b) < glogr + O(1).
Consequently, (2) yields:

Z(r, f%=2) < Z(r, f&2) + N(r, f) + (g — 1) logr + O(1) i.e.

(3) (Z(r, f*72) = Z(r, f*72)) <N, f) + (g — 1) logr +O(1)

Notice that due to the hypothesis, we have

= Z(r, f) (k—1)m s
) 2 )< ==+ (o ) o
and

— N(r, f) (k—1w t
(5) N f) < =2+ (- T 1)) log 7.

Now, by hypothesis, each zero of f is a zero of order at least k, hence is a zero
of f (k=2) of order > 2, except m of them, hence we have

Z(r, f9=2) —Z(r, F* 2 > Z(r, f) — (k= 1)Z(r, f) + ulogr + O(1)
and then (3) yields
Z(r,f) = (k=1)Z(r,f) < N(r, f) + (g —u —1)logr + O(1)
hence by (4) and (5)

2(r,) < (D20 0) + (k=D ESD - S g
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N(rrf)_i_[(k_l)w— t ]logr+(q_u—1)10g7+o(1)

T kK Kkt 1)

Now by (1), the last inequality yields

(k—1) (k—1)m s
2(r,f) < S 20 ) + (= DS - s log
—i—Z(};('f) - kzzlogr—l— [(k —kl)w - k(k:—l) +(q—u—1)]logr+0O(1)
hence
Oé[(k_1>((k;1)m+w)—iﬁiﬂi—ukin‘kiz“q‘”‘”“"g”o“)
Consequently,
2 t+sk—1) (w+mk—1))(k—1)
122t k) k
which ends the proof.

The following Lemma 7 will be useful in the proof of Theorem 2 and is an
immediate consequence of Corollary 1.7.17 [5].

Lemma?7: Letf € A(d(0,R™))and let (a,),en be the sequence of zeroes of f, with re-

0 n
spective multiplicity q,,. Then f belongs to A, (d(0, R™)) ifand only if (%) = 0.
n=0
Proof of Theorem 2:  The proof is similar to this of Theorem 1, with some changes.
Thanks to Lemma 2, without loss of generality, we can assume that K is spher-

ically complete. Then we can write f = ? with i, I € A(d(0,R™)), having no

common zeroes. We shall first show that f~2) belongs to M, (d(0, R™)).

Suppose that Hypothesis 2) of Theorem 2 is satisfied. Then by Lemma 7, [
belongs to A, (d(0, R~)) and hence the denominator of f*~2), in a reduced form,
also belongs to A, (d(0, R)) because I divides it in A(d(0,R~)). Hence f*~2)
belongs to M,,(d(0,R7)).

If Hypothesis 3) of Theorem 2 is satisfied, by Lemma 7, it is obvious that the
numerator of f (k=2) "in a reduced form, is unbounded, hence f (k—2) belongs to
M, (d(0,R7)).

Now, suppose that Hypothesis 1) of Theorem 2 is satistied. Since s, > k +1,

S
we can check thats, —k+2 > 22

p and therefore by Hypothesis 1), we have

Sn
k

10 <105 o

n=0 n=0
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Consequently, by Lemma 7 f*~2) belongs to M, (d(0,R7)).
Suppose f(*~2) has a quasi-exceptional value b # 0, hence fk=2) is of the

g((x)) and therefore, there exists S €]0, R[ such that |f(*=2)|(r) = |b| Vr €
]S, R[. Particularly, f(*~2) admits as many zeroes as many poles in any disk d(0, r)
whenever r €S, R|.

Consequently, Z(f=2),r) = N(fk=2),7) + O(1) when r €]S, R[. On the other
hand, by Lemma 1, we have |f|(r) > |f( (k-2) )| (r)r*=2, hence finally, by Lemma 3,
we have

form b +

(1) Z(r,f)) = N(r, f) + O(1).
T(f52,r) > N(f6=2,r) = N(r, f) + (k — 2)N(r, f) + O(1). Now, applying the

p-adic Nevanlinna Main Theorem we have:

@) T(*2 ) <Z(r, &)+ Z(r, f5 —b) + N(r, ) + 0(1)

Now, since b is a quasi-exceptional value and since N(r, f) = N(r, f*=2), (2)
yields:
Z(r, f*=2)) < Z(r, f*=2) £ N(r, f) + O(1) hence

(3) Z(r, f*2) = Z(r, f*2) < N(r, f) + O(1)

Now, by hypothesis, each zero of f is a zero of order at least k, except finitely
many. So, each zero of f of order > ks a zero of fk=2) of order > 2, hence

Z(r, f*&=2)) = Z(r, f*&=2)y > Z(r, f) — (k — 1)Z(r, f) + O(1), therefore (3) yields

@ Z(r,f) < (k= VZ(r,f) + N(r, ) + O(1)
hence
5 Z(r,f) < k- VZ(r, ) + V) 4 oy

Suppose now that f has infinitely many zeroes (a,,) of order > k + 1 satisfying
Hypothesis 1). Then we can check that

(6) lim Z(r, f) —kZ(r, f) = +o0

r—R

Now, by (1) and (5) we have

Z(r, f) < (k—=1)Z(r, f) + Z(rk,f) +0(1), r €]S,R]

hence
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20r,f) - kZ(r. ) < 255 _ 70 0y 1001, 1 €8, R

Therefore

. o (Z(r, f) —KZ(r, f)) <OQ1), r €]S, K|
a contradiction to (6).

Suppose now that f has infinitely many poles of order > k + 1 satisfying Hy-

N(r, f) — kN(r, f)

pothesis 2). Then the function 6(r) = e satisfies
(7) lim 6(r) = +oo.
r—R
Now, by (5) we have
k—1 N(r,
20, /) < © V20,5 + NI gy 1 001)
and hence by (1) we obtain
k—1 Z(r,
Z(r, f) < ( . )Z(r,f) + % —0(r) +0(1),
but by (7) the contradiction follows.
Finally, suppose that f*=2) has infinitely many zeroes that are not zeroes of f,

satisfying hypothesis 3). We set again

© up—1
P(r) = Lozo(un — 1)(logr —log(|ex|)). Since [ | <|C£|) “ = 0 the function P
n=0

satisfies

(8) lim (r) = +o0

r—R

and by construction, we can check that

Z(r, f*) = Z(r, f*) = Z(r, f) = (k= DZ(r, f) + (r) + O(1)
Then by (3) we obtain Z(r, f) — (k — 1)Z(r, f) + ¥(r) < N(r, f) + O(1), hence
# +(r) < N(r, f) + O(1) and hence by (1), we have # +y(r) <

2t.f) |

p (1), a contradiction by (8). This finishes the proof of Theorem 2.

Proof of Corollary 2.2 : By hypothesis, f’ f2 does not admit 0 as a quasi-exceptional
value. We set g = %

Tm
The function f’" admits a subsequence (by,) en Of (4 ) en satisfying H <|bR |) =0,

with 7, > 2 and such that either all b,, are zeroes f or none of the bm are zeroes

of f.
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Suppose the first case holds. That means that each b, is a zero of f of order
Tm +1 > 3. Then f3 satisfies 1) in Theorem 2 with k = 3. Hence f’f? has no
quasi-exceptional value different from 0. Furthermore each by, is a pole of § = %

of order > 3. Then by Corollary 2.1, for all b € K*, g’ g% + b admits infinitely many

zeroes. Let B be a zero of ¢'g? + b i.e. a zero of Bz +b. Then f(B) # 0, oo, hence
B is a zero of f' — bf?, that is not a zero of f, which completes the proof.

Suppose now the second case holds. Then f3 satisfies 3) in Theorem 2 with
k = 3, hence f’f2 has no quasi-exceptional value different from 0. Now, (by,)men
is a sequence of zeroes of ¢’ of order > 2 that are not zeroes of g. We can apply
Theorem 2, hypothesis 3) to ¢°. This proves that ¢’¢? has no quasi-exceptional
value different from zero. Consequently, given b # 0, ¢’¢? + b has infinitely many
zeroes. Consequently f' — bf* = — f*(¢’¢* + b) admits infinitely many zeros that
are not zeroes of f.

Proof of Theorem 3: Suppose first f € M(K) to be transcendental and suppose
b # 01is a quasi-exceptional value of f¥). Applying the p-adic Nevanlinna Main
Theorem, we have T(r, f0) < Z(r, fO) + Z(r, fO —b) + N(r, fO) —logr +
O(1).

Now, Z(r, fk)) < T(r flk ) N(r, f®) = N(r,f) and, since b is a quasi-
exceptional value of f8), Z(r, ) — b) < O(logr). Consequently,

(1) Z(r, fOY = Z(r, fR) < N(r, f) + O(log ).

And now, Eince each zero of f has order at least m > k we have Z(r, f (k)) >
Z(r,f) —kZ(r, f) + O(logr) hence by (1) we obtain

(2) Z(r,f) — (k+1)Z(r, f) < N(r, f) + O(log ).
Now, since each zero of f is of order at least m and since pole is of order at least n
exceptly finitely many, we have

= m—k—1 — N(r, f)
Z(r, f) = (k+1)Z(r, f) 2 (—— ——)Z(r, f) +O(logr) and N(r, f) < —
O(logr) hence (2) yields

_|_

m—k—1
m

3) Z(r, f)( ) < M0 4 01or)

Now by Lemma 4, we have Z(r, f) > N(r, f) + O(logr), and hence (3) yields

m—k—1
(

- ) < Z(;’f) + O(logr)

Z(r, f)

hence finally m — k —1 < mn, a contradiction to the hypothesis.

Suppose now that f belongs to M, (d(0,R™)). The proof is the same by re-
placing each time O(logr) by O(1).
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By properties of analytic elements, we know the following lemmas 9, 10 given
in [4] and [5]:

Lemma9: Let f € M(d(0,R™)),leta € d(0,R™) and let r = |a|. Then
lim |f(x)] = lim |f(x)] = [f](r).

|x| =7, |x—a|—

|x[7#r |x— ﬂ\#f

Lemma 10: Let f € M(d(0,R™)) have q zeroes and t poles in d(a,s) and have no
zero and no pole in T'(0,s,r) (withs < r < R). Then |f(x)| = |f|(r )(|x |>q_

Proof of Theorem 4: ~ Suppose f has a special value ¢ # 0. Without loss of gener-
ality, we may assume ¢ = 1 and a2 = 0. By hypothesis, there exists S > 0 (resp.
S €]0,R]) such that |[f —1|(r) < 1Vr > S (resp. |f —1|(r) < 1Vr €]S,R]). Let
b € K* be such that |b| > S (resp. b € d(0,R™) be such that S < |b| < R) and set
r = |b|. By Lemma 9 we have

lim |f(x) 1] = lim [f(x) 1] = |f — 1|(r)

|x|—7, |x—b|—r,

|x[7r |x—b|7#r

hence ‘ hr‘n |f(x) —1| < 1. Thus, there exists s €]0,r[ such that |f(x) — 1] <
|x=b|#r

1Vx € T'(b,s,r) and particularly

D) |f(x)] =1, Vx € T(b,s,7).

Without loss of generality, we can take s < r but big enough to assure that d(b, s)

contains all the zeroes and the poles of f inside d(b,7~). Let g be the number of

zeroes of f in d(b,s) and let t be the number of poles of f in d(b,s) taking mul-

tiplicity into account. Then by Lemma 10, we have |f(x)| = |f|(r )(|x bl )”7 t

Consequently, by (1) we have g = t.
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