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Abstract

Let K be an algebraically closed field of characteristic 0, complete with
respect to an ultrametric absolute value. Let f be a transcendental meromor-
phic function in K. We prove that if all zeroes and poles are of order ≥ 2,
then f has no Picard exceptional value different from zero. More generally,
if all zeroes and poles are of order ≥ k ≥ 3, then f (k−2) has no exceptional
value different from zero. Similarly, a result of this kind is obtained for the
k − th derivative when the zeroes of f are at least of order m and the poles of
order n, such that mn > m + n + kn.

If f admits a sequence of zeroes an such that the open disk containing
an, of diameter |an| contains no pole, then f and all its derivatives assume
each non-zero value infinitely often. Several corollaries apply to the Hayman
conjecture in the non-solved cases. Similar results are obtained concerning
”unbounded ” meromorphic functions inside an ”open” disk.

1 Introduction and results

Notation and definitions: Let K be an algebraically closed field of characteristic
0, complete with respect to an ultrametric absolute value | . |. Given α ∈ K and
R ∈ IR∗

+, we denote by d(α, R) the disk {x ∈ K | |x − α| ≤ R} and by d(α, R−) the
disk {x ∈ K | |x − α| < R}, by A(K) the K-algebra of analytic functions in K (i.e.
the set of power series with an infinite radius of convergence) and by M(K) the
field of meromorphic functions in K.
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In the same way, given α ∈ K, r > 0 we denote by A(d(α, r−)) the K-algebra of
analytic functions in d(α, r−) (i.e. the set of power series with a radius of conver-
gence ≥ r) and by M(d(α, r−)) the field of fractions of A(d(α, r−)). We then de-
note by Ab(d(α, r−)) the K-algebra of bounded analytic functions in d(α, r−) and
by Mb(d(α, r−)) the field of fractions of Ab(d(α, r−)). And we set Au(d(α, r−)) =
A(d(α, r−)) \ Ab(d(α, r−)) and Mu(d(α, r−)) = M(d(α, r−)) \Mb(d(α, r−)). As
in complex functions, a meromorphic function is said to be transcendental if it is
not a rational function.

Recall that we call exceptional value or Picard value for a meromorphic function
f (in K or in a disk d(a, R−)) a value b ∈ K such that f − b has no zero. Similarly,
we call quasi-exceptional value for a transcendental meromorphic function f in K
or a function f ∈ Mu(d(a, R−)) a value b ∈ K such that f − b has finitely many
zeros.

Notation: Let f ∈ M(d(0, R−)). For every r ∈]0, R[, we know that | f (x)| admits
a limit when |x| approaches r while keeping different from r. This limit is denoted

by | f |(r). Particularly, if f ∈ A(d(0, R−)), then f (x) is of the form
∞

∑
n=0

anxn and

then | f |(r) = supn∈IN |an|rn [4], [5].

Given f ∈ M(K), a value b ∈ K is called a special value for f if lim
r→+∞

| f − b|(r) = 0.

Similarly, consider f ∈ M(d(a, R−)) and let g(x) = f (a + x). A value b ∈ K is
called a special value for f if lim

r→R
|g − b|(r) = 0.

Many previous studies were made on Picard’s exceptional values for complex
and p-adic functions and their derivatives and particularly on various questions
related to the famous Hayman Conjecture [1], [6], [7], [9], [11].

Here we mean to study whether the derivatives of a meromorphic function
may admit a quasi-exceptional value. Certain study was made on the same topic
concerning complex functions in [1], [10]. But the tools used in that study, such as
properties of normal families, have no analogue on a p-adic field. Here we shall
use other methods, particularly the non-Archimedean Nevanlinna Theory.

Let us now recall the Hayman conjecture. Given a transcendental meromor-
phic function in IC and b ∈ IC∗, as conjectured by Hayman, we know that f ′ + b f m

has infinitely many zeroes that are not zeroes of f for every m ≥ 3, while counter-
examples exist for m = 1, 2. Now, on a field such as K, we know that given
f ∈ M(K), transcendental, or f ∈ Mu(d(α, r−)), f ′ + b f m has infinitely many
zeroes that are not zeroes of f for m = 1 and every m ≥ 5. And this is also true
for m = 3, 4 when K has residue characteristic 0 [9]. But if the residue charac-
teristic of K is different from 0, it is not known whether or not certain particular
meromorphic functions might violate the Hayman conjecture. In [2], the first au-
thor proposes other hypotheses on a transcendental meromorphic function f to
assure that f ′ + f 3 or f ′ + f 4 has infinitely many zeroes that are not zeroes of f .

On the other hand, the problem of exceptional values for a transcendental
meromorphic function that is the derivative of another one is an old problem. In
a joint paper with A. Escassut [3], we proved that if a transcendental meromor-
phic function f in K has finitely many multiple poles, then f ′ has infinitely many
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zeroes. Here, on the contrary, we will consider functions having multiple zeroes
and poles.

Theorem 1: Let f ∈ M(K) be transcendental and be such that each zero is at least of
order k ≥ 2 except finitely many m and each pole is at least of order k, except finitely many
w. Suppose that f admits at least s zeroes and t poles of order at least k + 1 and, when

k > 2, f (k−2) admits at least u multiple zeroes that are not zeroes of f (s, t, u ∈ IN).

Then for each b ∈ K∗, f (k−2) − b has a number of distinct zeroes q ≥ 2 − 2
k + u +

t+s(k−1)
k(k+1)

− (w+m(k−1))(k−1)
k .

Corollary 1.1: Let f ∈ M(K) be transcendental and be such that each zero and each

pole is at least of order k ≥ 2. Then f (k−2) has no exceptional value different from 0.

Corollary 1.2: Let f ∈ M(K) be transcendental and be such that each zero is at least
of order k ≥ 2 and each pole is at least of order k ≥ 2 except finitely many for both. If f

also satisfies one of the following three conditions, then f (k−2) has no quasi-exceptional
value different from 0.

1) f admits infinitely many zeroes of order ≥ k + 1
2) f admits infinitely many poles of order ≥ k + 1,

3) f (k−2) admits infinitely many multiple zeroes that are not zeroes of f .

Corollary 1.3: Let f ∈ M(K) be transcendental. Then f ′ f 2 has no exceptional value
different from 0. Further, if f has infinitely many zeroes or poles of order ≥ 2, then f ′ f 2

has no quasi-exceptional value different from 0.

Proof: We check that f 3 satisfies the hypothesis of Theorem 1.

Corollary 1.4: Let f ∈ M(K) be transcendental and have infinitely many zeroes or
poles of order ≥ 2 or be such that f ′ admits infinitely many zeroes of order ≥ 2. Then for
every b ∈ K∗, f ′ − b f 4 has infinitely many zeroes that are not zeroes of f .

Theorem 2: Let f ∈ Mu(d(0, R−)) be such that each zero is at least of order k ≥ 2
and each pole is at least of order k except finitely many, satisfying further at least one of
the following three conditions:

1) f admits a sequence of zeroes (an) of order sn ≥ k + 1 such that

limn→∞ |an| = R,
∞

∏
n=0

( |an|

R

)sn

= 0,

2) f admits a sequence of poles (bn) of order tn ≥ k + 1 such that

limn→∞ |bn| = R,
∞

∏
n=0

( |bn|

R

)tn

= 0,

3) f (k−2) admits a sequence of zeroes (cn) of order un ≥ 2 that are not zeroes of f such
that

limn→∞ |cn| = R,
∞

∏
n=0

( |cn|

R

)un

= 0,

Then f (k−2) has no quasi-exceptional value different from 0 .
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Corollary 2.1: Let f ∈ Mu(d(0, R−))) have infinitely many zeroes or poles (an) of

order qn ≥ 2 such that
∞

∏
n=0

( |an|

R

)qn

= 0. Then f ′ f 2 has no quasi-exceptional value

different from 0 and for every b ∈ K∗, f ′ − b f 4 has infinitely many zeroes that are not
zeroes of f .

Corollary 2.2: Let f ∈ Mu(d(0, R−))) be such that f ′ has infinitely many zeroes

(an) of order qn ≥ 2 such that
∞

∏
n=0

( |an|

R

)qn

= 0. Then f ′ f 2 has no quasi-exceptional

value and for every b ∈ K∗, f ′ − b f 4 has infinitely many zeroes that are not zeroes of f .

Theorem 3: Let f ∈ M(K) be transcendental (resp. f ∈ Mu(d(0, R−))) and be such
that each zero is at least of order m ≥ 3, except finitely many and each pole is at least of

order n except finitely many and let k ∈ IN∗ satisfy mn > m + n + nk. Then f (k) has no
quasi-exceptional value different from 0.

Application: Let f ∈ M(K) be transcendental (resp. f ∈ Mu(d(0, R−))) be such
that each zero is at least of order m ≥ 5 and each pole is at least of order 2 except finitely
many. Then both f , f ′ have no quasi-exceptional value different from 0. Moreover, if
each pole of f is at least of order 3, then f ′′ has no quasi-exceptional value different from
0 either.

Theorem 4: Let f ∈ M(K) be transcendental (resp. f ∈ M(d(a, R−))) admitting
a special value c 6= 0. There exists S > 0 (resp. S ∈]0, R[) such that for each b ∈
K∗ \ d(0, S) (resp. b ∈ d(0, R−) \ d(a, S)), the number of zeroes of f is equal to its
number of poles in d(b, |b|−).

Corollary 4.1: Let f ∈ M(K) be transcendental (resp. f ∈ M(d(a, R−))), having
an infinite sequence (am)m∈IN such that for all m ∈ IN, d(am , |am|−) does not contain
any pole of f . Then f has no special value different from 0.

Corollary 4.2: Let f ∈ M(K) be transcendental (resp. f ∈ M(d(a, R−))), having
an infinite sequence (bm)m∈IN of poles such that for all m ∈ IN, d(bm, |bm|−) does not
contain any zero of f . Then f has no special value different from 0.

Corollary 4.3: Let f ∈ M(K) be transcendental (resp. f ∈ M(d(a, R−))), having
an infinite sequence of zeroes (am)m∈IN such that for all m ∈ IN, d(am, |am|−) does not

contain any pole of f . Then for all n, k ∈ IN∗, k < n, ( f n)(k) assumes each value c ∈ K∗

infinitely often.

Corollary 4.4: Let f ∈ M(K) be transcendental (resp. f ∈ M(d(a, R−))), having
an infinite sequence of zeroes (am)m∈IN such that for all m ∈ IN, d(am, |am|−) does not
contain any pole of f . Then for all n ∈ IN∗, f ′ f n assumes each value c ∈ K∗ infinitely
often.

Remark: Since the Hayman conjecture concerning f ′ f n is solved for n ≥ 3 [9],
Corollary 4.4 actually only applies to the cases n = 1 and n = 2.
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2 The Proofs

Lemmas 1 is well known [4], [5], [8]:

Lemma 1: Let f ∈ M(d(0, R−)). Then | f (k)|(r) ≤
| f |(r)

rk
∀r < R, ∀k ∈ IN.

We shall use the following classical lemma 2 (Corollary 1.7.6 [5])

Lemma 2: Let K̂ be an algebraically closed complete extension of K and let f ∈ M(d(a, R−)).

Each zero of f in the disk {x ∈ K̂ | |x − a| < R} is a zero of f in d(a, R−), with the same
order of multiplicity.

Let us recall the classical notation of the Nevanlinna Theory:

Notation: Let f ∈ M(d(0, R−)) be such that 0 is neither a zero nor a pole of
f . Let (an)n∈IN be the sequence of zeroes of f with 0 < |an| ≤ |an+1| and let kn

denote the order of the zero an. Then we define the counting function of zeroes
of f , counting multiplicity as Z(r, f ) = ∑|an|≤r kn(log r − log |an|).

Respectively, let the counting function of zeroes, ignoring multiplicities, be
defined as Z(r, f ) = ∑|an|≤r(log r − log |an|).

Similarly, let (bn)n∈IN be the sequence of poles of f with 0 < |bn| ≤ |bn+1| and
let qn be the order of the pole bn. We denote by N(r, f ) the counting function of
the poles of f , counting multiplicity N(r, f ) = ∑|bn|≤r qn(log r − log |bn|).

And we denote by N(r, f ) the counting function of poles ignoring multiplici-
ties be defined as N(r, f ) = ∑|bn|≤r(log r − log |bn|).

Finally, we define the characteristic function T(r, f ) as T(r, f ) = max(Z(r, f )+
log | f (0)|, N(r, f )).

Lemma 3 comes from classical properties of meromorphic functions [5].

Lemma 3: Let f ∈ M(K), (resp. f ∈ M(d(0, R−))). Then, fixing r0 ∈]0,+∞[,
(resp. r0 ∈]0, R[), we have log(| f |(r)) = Z(r, f ) − N(r, f ) + O(1), ∀r ∈]r0,+∞[
(resp. ∀r ∈]r0, R[).

As a corollary of Lemma 1, we have Lemma 4:

Lemma 4: Let f ∈ M(K), (resp. f ∈ M(d(0, R−))) be such that f (k) has a quasi-
exceptional value b ∈ K∗. Then Z(r, f ) ≥ N(r, f ) + k log r + O(1).

We will also need Lemma 5 that is classical.

Lemma 5: Let f ∈ M(d(0, r−)). If f has no zero and no pole in a disk d(b, |b|−),
then | f (b)| = | f |(|b|).

The following Lemma 6 [5] is useful to derive Corollary 4.1 from Theorem 4.

Lemma 6: Let f ∈ M(K) be transcendental (resp. f ∈ Mu(d(a, R−)) ). Then f
admits at most one special value b. If b is a quasi-exceptional value of f , it is a special
value. If f admits a special value b ∈ K, then f ′ admits 0 as a special value.
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Proof of Theorem 1: Suppose that f has at least s zeroes and t poles of order ≥

k + 1 and that, if k > 2, f (k−2) has u zeroes of order ≥ 2 that are not zeroes of f .

Suppose that f (k−2) has a quasi-exceptional value b 6= 0. Then f (k−2) is of

the form b +
P(x)

g(x)
with g ∈ A(K) \ K[x] and therefore, there exists R such that

| f (k−2)|(r) = |b| ∀r > R. Particularly, by Lemma 3, f (k−2) admits as many zeroes
as many poles in any disk d(0, r) whenever r ≥ R.

Consequently, by Lemma 4 we have

(1) Z(r, f ) ≥ N(r, f ) + (k − 2) log r + O(1) when r < R.

Now, applying the p-adic Nevanlinna Second Main Theorem we have:

(2) T(r, f (k−2)) ≤ Z(r, f (k−2)) + Z(r, f (k−2) − b) + N(r, f (k−2))− log r + O(1).

But since b is a quasi-exceptional value of f (k−2), the number q of distinct

zeroes of f (k−2) − b is ≤ deg(P) and we have Z(r, f (k−2) − b) ≤ q log r + O(1).
Consequently, (2) yields:

Z(r, f (k−2)) ≤ Z(r, f (k−2)) + N(r, f ) + (q − 1) log r + O(1) i.e.

(3) (Z(r, f (k−2))− Z(r, f (k−2))) ≤ N(r, f ) + (q − 1) log r + O(1)

Notice that due to the hypothesis, we have

(4) Z(r, f ) ≤
Z(r, f )

k
+

( (k − 1)m

k
−

s

k(k + 1)

)
log r

and

(5) N(r, f ) ≤
N(r, f )

k
+

( (k − 1)w

k
−

t

k(k + 1)

)
log r.

Now, by hypothesis, each zero of f is a zero of order at least k, hence is a zero

of f (k−2) of order ≥ 2, except m of them, hence we have

Z(r, f (k−2))− Z(r, f (k−2)) ≥ Z(r, f )− (k − 1)Z(r, f ) + u log r + O(1)

and then (3) yields

Z(r, f )− (k − 1)Z(r, f ) ≤ N(r, f ) + (q − u − 1) log r + O(1)

hence by (4) and (5)

Z(r, f ) ≤ (
k − 1

k
)Z(r, f ) + (k − 1)[

(k − 1)m

k
−

s

k(k + 1)
] log r
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+
N(r, f )

k
+ [

(k − 1)w

k
−

t

k(k + 1)
] log r + (q − u − 1) log r + O(1)

Now by (1), the last inequality yields

Z(r, f ) ≤
(k − 1)

k
Z(r, f ) + (k − 1)[

(k − 1)m

k
−

s

k(k + 1)
] log r

+
Z(r, f )

k
−

k − 2

k
log r + [

(k − 1)w

k
−

t

k(k + 1)
+ (q − u − 1)] log r + O(1)

hence

0 ≤ [
(k − 1)

(
(k − 1)m + w

)

k
−

s(k − 1)

k(k + 1)
−

t

k(k + 1)
−

k − 2

k
+(q−u− 1)] log r+O(1)

Consequently,

q ≥ 2 −
2

k
+ u +

t + s(k − 1)

k(k + 1)
−

(w + m(k − 1))(k − 1)

k

which ends the proof.

The following Lemma 7 will be useful in the proof of Theorem 2 and is an
immediate consequence of Corollary 1.7.17 [5].

Lemma 7: Let f ∈ A(d(0, R−)) and let (an)n∈IN be the sequence of zeroes of f , with re-

spective multiplicity qn. Then f belongs to Au(d(0, R−)) if and only if
∞

∏
n=0

( |an|

R

)qn

= 0.

Proof of Theorem 2: The proof is similar to this of Theorem 1, with some changes.
Thanks to Lemma 2, without loss of generality, we can assume that K is spher-

ically complete. Then we can write f =
h

l
with h, l ∈ A(d(0, R−)), having no

common zeroes. We shall first show that f (k−2) belongs to Mu(d(0, R−)).
Suppose that Hypothesis 2) of Theorem 2 is satisfied. Then by Lemma 7, l

belongs to Au(d(0, R−)) and hence the denominator of f (k−2), in a reduced form,

also belongs to Au(d(0, R−)) because l divides it in A(d(0, R−)). Hence f (k−2)

belongs to Mu(d(0, R−)).
If Hypothesis 3) of Theorem 2 is satisfied, by Lemma 7, it is obvious that the

numerator of f (k−2), in a reduced form, is unbounded, hence f (k−2) belongs to
Mu(d(0, R−)).

Now, suppose that Hypothesis 1) of Theorem 2 is satisfied. Since sn ≥ k + 1,

we can check that sn − k + 2 ≥
sn

k
and therefore by Hypothesis 1), we have

∞

∏
n=0

( |an|

R

)sn−(k−2)
≤

∞

∏
n=0

( |an|

R

) sn
k
= 0.
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Consequently, by Lemma 7 f (k−2) belongs to Mu(d(0, R−)).

Suppose f (k−2) has a quasi-exceptional value b 6= 0, hence f (k−2) is of the

form b+
P(x)

g(x)
and therefore, there exists S ∈]0, R[ such that | f (k−2)|(r) = |b| ∀r ∈

]S, R[. Particularly, f (k−2) admits as many zeroes as many poles in any disk d(0, r)
whenever r ∈]S, R[.

Consequently, Z( f (k−2) , r) = N( f (k−2) , r)+O(1) when r ∈]S, R[. On the other

hand, by Lemma 1, we have | f |(r) ≥ | f (k−2)|(r)rk−2, hence finally, by Lemma 3,
we have

(1) Z(r, f )) ≥ N(r, f ) + O(1).

T( f (k−2), r) ≥ N( f (k−2) , r) = N(r, f ) + (k − 2)N(r, f ) + O(1). Now, applying the
p-adic Nevanlinna Main Theorem we have:

(2) T( f (k−2), r) ≤ Z(r, f (k−2)) + Z(r, f (k−2) − b) + N(r, f (k−2)) + O(1)

Now, since b is a quasi-exceptional value and since N(r, f ) = N(r, f (k−2)), (2)
yields:

Z(r, f (k−2)) ≤ Z(r, f (k−2)) + N(r, f ) + O(1) hence

(3) Z(r, f (k−2))− Z(r, f (k−2)) ≤ N(r, f ) + O(1)

Now, by hypothesis, each zero of f is a zero of order at least k, except finitely

many. So, each zero of f of order ≥ k is a zero of f (k−2) of order ≥ 2, hence

Z(r, f (k−2))− Z(r, f (k−2)) ≥ Z(r, f ) − (k − 1)Z(r, f ) + O(1), therefore (3) yields

(4) Z(r, f ) ≤ (k − 1)Z(r, f ) + N(r, f ) + O(1)

hence

(5) Z(r, f ) ≤ (k − 1)Z(r, f ) +
N(r, f )

k
+ O(1)

Suppose now that f has infinitely many zeroes (an) of order ≥ k+ 1 satisfying
Hypothesis 1). Then we can check that

(6) lim
r→R

Z(r, f )− kZ(r, f ) = +∞

Now, by (1) and (5) we have

Z(r, f ) ≤ (k − 1)Z(r, f ) +
Z(r, f )

k
+ O(1), r ∈]S, R[

hence



Value distribution of p-adic meromorphic functions 675

Z(r, f ) − kZ(r, f ) ≤
Z(r, f )

k
− Z(r, f ) + O(1), r ∈]S, R[.

Therefore
(k − 1)

k

(
Z(r, f ) − kZ(r, f )

)
≤ O(1), r ∈]S, R[

a contradiction to (6).

Suppose now that f has infinitely many poles of order ≥ k + 1 satisfying Hy-

pothesis 2). Then the function θ(r) =
N(r, f )− kN(r, f )

k
satisfies

(7) lim
r→R

θ(r) = +∞.

Now, by (5) we have

Z(r, f ) ≤
(k − 1)

k
Z(r, f ) +

N(r, f )

k
− θ(r) + O(1)

and hence by (1) we obtain

Z(r, f ) ≤
(k − 1)

k
Z(r, f ) +

Z(r, f )

k
− θ(r) + O(1),

but by (7) the contradiction follows.

Finally, suppose that f (k−2) has infinitely many zeroes that are not zeroes of f ,
satisfying hypothesis 3). We set again

ψ(r) = ∑
∞
n=0(un − 1)(log r − log(|cn|)). Since

∞

∏
n=0

( |cn|

R

)uk−1
= 0 the function ψ

satisfies

(8) lim
r→R

ψ(r) = +∞

and by construction, we can check that

Z(r, f (k−2))− Z(r, f (k−2)) ≥ Z(r, f )− (k − 1)Z(r, f ) + ψ(r) + O(1)

Then by (3) we obtain Z(r, f ) − (k − 1)Z(r, f ) + ψ(r) ≤ N(r, f ) + O(1), hence
Z(r, f )

k
+ ψ(r) ≤ N(r, f ) + O(1) and hence by (1), we have

Z(r, f )

k
+ ψ(r) ≤

Z(r, f )

k
+ O(1), a contradiction by (8). This finishes the proof of Theorem 2.

Proof of Corollary 2.2 : By hypothesis, f ′ f 2 does not admit 0 as a quasi-exceptional
value. We set g = 1

f .

The function f ′ admits a subsequence (bm)m∈IN of (an)n∈IN satisfying
∞

∏
m=0

( |bm|

R

)τm

= 0,

with τm ≥ 2 and such that either all bm are zeroes f or none of the bm are zeroes
of f .
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Suppose the first case holds. That means that each bm is a zero of f of order
τm + 1 ≥ 3. Then f 3 satisfies 1) in Theorem 2 with k = 3. Hence f ′ f 2 has no
quasi-exceptional value different from 0. Furthermore each bm is a pole of g = 1

f

of order ≥ 3. Then by Corollary 2.1, for all b ∈ K∗, g′g2 + b admits infinitely many

zeroes. Let β be a zero of g′g2 + b i.e. a zero of −
f ′

f 4
+ b. Then f (β) 6= 0, ∞, hence

β is a zero of f ′ − b f 4, that is not a zero of f , which completes the proof.
Suppose now the second case holds. Then f 3 satisfies 3) in Theorem 2 with

k = 3, hence f ′ f 2 has no quasi-exceptional value different from 0. Now, (bm)m∈IN

is a sequence of zeroes of g′ of order ≥ 2 that are not zeroes of g. We can apply
Theorem 2, hypothesis 3) to g3. This proves that g′g2 has no quasi-exceptional
value different from zero. Consequently, given b 6= 0, g′g2 + b has infinitely many
zeroes. Consequently f ′ − b f 4 = − f 4(g′g2 + b) admits infinitely many zeros that
are not zeroes of f .

Proof of Theorem 3: Suppose first f ∈ M(K) to be transcendental and suppose

b 6= 0 is a quasi-exceptional value of f (k). Applying the p-adic Nevanlinna Main

Theorem, we have T(r, f (k)) ≤ Z(r, f (k)) + Z(r, f (k) − b) + N(r, f (k)) − log r +
O(1).

Now, Z(r, f (k)) ≤ T(r, f (k)), N(r, f (k)) = N(r, f ) and, since b is a quasi-

exceptional value of f (k), Z(r, f (k) − b) ≤ O(log r). Consequently,

(1) Z(r, f (k))− Z(r, f (k)) ≤ N(r, f ) + O(log r).

And now, since each zero of f has order at least m ≥ k we have Z(r, f (k)) ≥
Z(r, f ) − kZ(r, f ) + O(log r) hence by (1) we obtain

(2) Z(r, f ) − (k + 1)Z(r, f ) ≤ N(r, f ) + O(log r).

Now, since each zero of f is of order at least m and since pole is of order at least n

exceptly finitely many, we have

Z(r, f )− (k+ 1)Z(r, f ) ≥ (
m − k − 1

m
)Z(r, f ) +O(log r) and N(r, f ) ≤

N(r, f )

n
+

O(log r) hence (2) yields

(3) Z(r, f )
(m − k − 1

m

)
≤

N(r, f )

n
+ O(log r).

Now by Lemma 4, we have Z(r, f ) ≥ N(r, f ) + O(log r), and hence (3) yields

Z(r, f )
(m − k − 1

m

)
≤

Z(r, f )

n
+ O(log r)

hence finally m − k − 1 ≤ mn, a contradiction to the hypothesis.

Suppose now that f belongs to Mu(d(0, R−)). The proof is the same by re-
placing each time O(log r) by O(1).
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By properties of analytic elements, we know the following lemmas 9, 10 given
in [4] and [5]:

Lemma 9: Let f ∈ M(d(0, R−)), let a ∈ d(0, R−) and let r = |a|. Then

lim
|x|→r,
|x|6=r

| f (x)| = lim
|x−a|→r,
|x−a|6=r

| f (x)| = | f |(r).

Lemma 10: Let f ∈ M(d(0, R−)) have q zeroes and t poles in d(a, s) and have no

zero and no pole in Γ(0, s, r) (with s < r < R). Then | f (x)| = | f |(r)
( |x − a|

r

)q−t
.

Proof of Theorem 4: Suppose f has a special value c 6= 0. Without loss of gener-
ality, we may assume c = 1 and a = 0. By hypothesis, there exists S > 0 (resp.
S ∈]0, R[) such that | f − 1|(r) < 1 ∀r ≥ S (resp. | f − 1|(r) < 1 ∀r ∈]S, R[). Let
b ∈ K∗ be such that |b| > S (resp. b ∈ d(0, R−) be such that S < |b| < R) and set
r = |b|. By Lemma 9 we have

lim
|x|→r,
|x|6=r

| f (x)− 1| = lim
|x−b|→r,
|x−b|6=r

| f (x)− 1| = | f − 1|(r)

hence lim
|x−b|→r,
|x−b|6=r

| f (x)− 1| < 1. Thus, there exists s ∈]0, r[ such that | f (x) − 1| <

1 ∀x ∈ Γ(b, s, r) and particularly
(1) | f (x)| = 1, ∀x ∈ Γ(b, s, r).
Without loss of generality, we can take s < r but big enough to assure that d(b, s)
contains all the zeroes and the poles of f inside d(b, r−). Let q be the number of
zeroes of f in d(b, s) and let t be the number of poles of f in d(b, s) taking mul-

tiplicity into account. Then by Lemma 10, we have | f (x)| = | f |(r)
( |x − b|

r

)q−t
.

Consequently, by (1) we have q = t.
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