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Abstract

The property (gw) is a variant of generalized Weyls theorem, for a boun-
ded operator T acting on a Banach space. In this note we consider the preser-
vation of property (gw) under a finite rank perturbation commuting with T,
whenever T is isoloid, polaroid, or T has analytical core K(λ0 I − T) = {0}
for some λ0 ∈ C. The preservation of property (gw) is also studied under
commuting nilpotent or under algebraic perturbations. The theory is exem-
plified in the case of some special classes of operators.

1 Introduction

Throughout this paper let B(X ), denote, the algebra of bounded linear operators
acting on an infinite dimensional Banach space X . If T ∈ B(X ) we shall write
ker(T) and R(T) (or ran(T)) for the null space and range of T, respectively. Also,
let α(T) := dim ker(T), β(T) := dimR(T), and let σ(T), σa(T), σp(T) denote the
spectrum, approximate point spectrum and point spectrum of T, respectively. An
operator T ∈ B(X ) is called Fredholm if it has closed range, finite dimensional null
space, and its range has finite codimension. The index of a Fredholm operator is
given by

ind(T) := α(T)− β(T).

An operator T is called a Weyl if it is a Fredholm of index 0, and Browder if it is
Fredholm ”of finite ascent and descent”; equivalently, [33, Theorem 7.9.3] if T is
Fredholm and T − λI (Abbreviate T − λ) is invertible for sufficiently small λ 6= 0
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in C.
Recall that the ascent, a(T), of an operator T is the smallest non-negative in-

teger p such that ker(Tp) = ker(Tp+1). If such integer does not exist we put
a(T) = ∞. Analogously, the descent, d(T), of an operator T is the smallest non-
negative integer q such that R(Tq) = R(Tq+1), and if such integer does not exist
we put d(T) = ∞. The essential spectrum σF(T), the Weyl spectrum σW(T) and
the Browder spectrum σb(T) of T are defined by

σF(T) := {λ ∈ C : T − λ is not Fredholm}

σW(T) := {λ ∈ C : T − λ is not Weyl}

and
σb(T) := {λ ∈ C : T − λ is not Browder}

respectively. Evidently

σF(T) ⊆ σW(T) ⊆ σb(T) ⊆ σF(T) ∪ accσ(T)

where we write accK for the accumulation points of K ⊆ C.
For a bounded operator T and nonnegative integer n, define T[n] to be the

restriction of T to R(Tn) viewed as a map from R(Tn) into R(Tn) (in particular
T[0] = T). If for some n the range R(Tn) is closed and T[n] is an upper (resp. a
lower) semi-Fredholm operator, then T is called an upper (resp. a lower) semi-B-
Fredholm operator. In this case the index of T is defined as the index of the semi-
Fredholm operator T[n], see [18, 19]. Moreover, if T[n] is a Fredholm operator,
then T is called a B-Fredholm operator. A semi-B-Fredholm operator is an upper
or a lower semi-Fredholm operator. An operator T ∈ B(X ) is said to be a B-
Weyl operator if it is a B-Fredholm operator of index zero. the semi-B-Fredholm
spectrum σSBF(T) and the B-Weyl spectrum σBW of T are defined by

σSBF(T) := {λ ∈ C : T − λI is not a semi-B-Fredholm operator} ,

σBW := {λ ∈ C : T − λI is not a B-Weyl operator} .

If we write isoK = K \ accK, then we let

E0(T) := {λ ∈ isoσ(T) : 0 < α(T − λ) < ∞}

and
π0(T) := σ(T) \ σb(T).

Given T ∈ B(X ), we say that Weyl’s theorem holds for T (or that T satisfies
Weyl’s theorem, in symbol, T ∈ W), see [26] if

σ(T) \ σW(T) = E0(T),

and that Browder’s theorem holds for T (in symbol, T ∈ B) if

σ(T) \ σW(T) = π0(T).

Recall that an operator T ∈ B(X ) is a Drazin invertible if and only if it has a
finite ascent and descent, which is also equivalent to the fact that T = T0 ⊕ T1,
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where T0 is nilpotent operator and T1 is invertible operator, see [36, Proposi-
tion A]. The Drazin spectrum is given by

σD(T) := {λ ∈ C : T − λI is not Drazin invertible}.

We observe that σD(T) = σ(T) \ π(T), where π(T) is the set of all poles. Define

E(T) := {λ ∈ isoσ(T) : 0 < α(T − λ)} ,

we also say that the generalized Weyl’s theorem holds for T (in symbol, T ∈ gW) if

σ(T) \ σBW(T) = E(T),

and that the generalized Browder’s theorem holds for T (in symbol, T ∈ gB) if

σ(T) \ σBW(T) = π(T).

It is Known [21, 22, 23] that

gW ⊆ gB ∪W and that gB ∪W ⊆ B.

Moreover, given T ∈ gB, then it is clear T ∈ gW if and only if E(T) = π(T), see
[21, 23].

Let SF+(X ) be the class of all upper semi-Fredholm operators, SF−
+ (X ) be the

class of all T ∈ SF+(X ) with ind(T) ≤ 0, and for any T ∈ B(X ) let

σSF−
+
(T) :=

{

λ ∈ C : T − λI /∈ SF−
+ (X )

}

.

Let Ea
0 be the set of all eigenvalues of T of finite multiplicity which are isolated in

σa(T). According to [42], we say that T satisfies a-Weyl’s theorem( and we write
T ∈ aW) if

σSF−
+
(T) = σa(T) \ Ea

0(T),

and that a-Browder’s theorem holds for T (in symbol, T ∈ aB) if

σa(T) \ σSF−
+
(T) = πa

0(T),

where πa
0(T) is the set of all left poles of finite rank.

Let SBF+(X ) be the class of all upper semi-B-Fredholm operators, and SBF−
+ (X )

the class of all T ∈ SBF+(X ) such that ind(T) ≤ 0, and

σSBF−
+
(T) := {λ ∈ C : T − λ /∈ SBF−

+ (X )}.

Recall that an operator T ∈ B(X ) satisfies the generalized a-Weyl’s theorem (in sym-
bol, T ∈ gaW) if

σSBF−
+
(T) = σa(T) \ Ea(T),

where Ea(T) is the set of all eigenvalues of T which are isolated in σa(T).
Define a set LD(X ) by

LD(X ) :=
{

T ∈ B(X ) : a(T) < ∞ and R(Ta(T)+1) is closed
}

.
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An operator T ∈ B(H) is called left Drazin invertible if a(T) < ∞ and R(Ta(T)+1)
is closed (see [23, Definition 2.4]). The left Drazin spectrum is given by

σLD(T) := {λ ∈ C : T − λI is not left Drazin invertible}.

Recall [23, Definition 2.5] that λ ∈ σa(T) is a left pole of T if T − λI is left Drazin
invertible operator and λ ∈ σa(T) is a left pole of finite rank if λ is a left pole of
T and α(T − λ) < ∞. We will denote πa(T) the set of all left pole of T. We have
σLD(T) = σa(T) \ πa(T). Note that if λ ∈ πa(T), then it is easily seen that T − λ
is an operator of topological uniform descent. Therefore, it follows from ( [21,
Theorem 2.5]) that λ is isolated in σa(T). Following [23] if T ∈ B(H) and λ ∈ C

is an isolated in σa(T), then λ ∈ πa(T) if and only if λ /∈ σSBF−
+
(T) and λ ∈ πa

0(T)

if and only if λ /∈ σSF−
+
(T).

We will say that generalized a-Browder’s theorem holds for T (in symbol T ∈
gaB) if

σSBF−
+
(T) = σa(T) \ πa(T).

It is Known [23, 21, 42]that

gW ∪ gB ∪ aW ∪ gaB ⊆ gaW and that aB ∪W ⊆ aW and that B ⊆ aB.

This article also deals with the single valued extension property. This property
has a basic role in the local spectral theory, see the recent monograph of Laursen
and Neumann [39] or Aiena [3]. In this article consider a localized version of
this property, recently studied by several authors [1, 4, 11, ?], and previously by
Finch [31].

Let Hol(σ(T)) be the space of all functions that analytic in an open neighbor-
hoods of σ(T). Following [31] we say that T ∈ B(X ) has the single-valued exten-
sion property (SVEP) at point λ ∈ C if for every open neighborhood Uλ of λ, the
only analytic function f : Uλ −→ H which satisfies the equation (T − µ) f (µ) = 0
is the constant function f ≡ 0. An operator T ∈ B(H) is said to have the SVEP if
T has the SVEP at every point λ ∈ C.

An operator T ∈ B(X ) has the SVEP at every point of the resolvent ρ(T) :=
C \ σ(T). The identity theorem for analytic functions ensures that for every
T ∈ B(X ), both T and T∗ have the SVEP at the points of the boundary ∂σ(T)
of the spectrum σ(T). In particular, that both T and T∗ have the SVEP at ev-
ery isolated point of σ(T) = σ(T∗). The SVEP is inherited by the restrictions to
closed invariant subspaces, i.e., if T ∈ B(X ) has the SVEP at λ0 and M is closed
T-invariant subspace then T|M has SVEP at λ0.

The quasinilpotent part H0(T − λI) and the analytic core K(T − λI) of T − λI are
defined by

H0(T − λI) := {x ∈ X : lim
n−→∞

‖(T − λI)nx‖
1
n = 0}.

and

K(T − λI) = {x ∈ X : there exists a sequence {xn} ⊂ X and δ > 0 for which

x = x0, (T − λI)xn+1 = xn and ‖xn‖ ≤ δn‖x‖ for all n = 1, 2, · · · }.



Property (gw) and perturbations 639

We note that H0(T − λI) and K(T − λI) are generally non-closed hyper-inva-
riant subspaces of T − λI such that (T − λI)−p(0) ⊆ H0(T − λI) for all p =
0, 1, · · · and (T − λI)K(T − λI) = K(T − λI). Recall that if λ ∈ iso(σ(T)), then
H0(T − λI) = χT({λ}), where χT({λ}) is the glocal spectral subspace consisting
of all x ∈ H for which there exists an analytic function f : C \ {λ} −→ X that
satisfies (T − µI) f (µ) = x for all µ ∈ C \ {λ}(see [29]). From [2], the following
implication holds for every T ∈ B(X ),

H0(T − λI) is closed =⇒ T has SVEP at λ.

Definition 1.1. ( [42]) An operator T ∈ B(X ) is said to satisfy property (w) if

∆a(T) = σa(T) \ σSF−
+
(T) = E0(T).

In [6], it is shown that the property (w) implies Weyls theorem. For
T ∈ B(H), let ∆g(T) = σ(T) \ σBW(T) and ∆

g
a(T) = σ(T) \ σSBF−

+
(T). If T∗

has the SVEP, then it is known from [39] that σ(T) = σa(T) and from [12] we
have σBW(T) = σSBF−

+
(T). Thus E(T) = Ea(T) and ∆g(T) = ∆

g
a(T).

Definition 1.2. ( [16]) An operator T ∈ B(X ) is said to satisfy property (gw) if

∆
g
a(T) = E(T).

The following diagram resume the relationships between generalized a-Weyls
theorem, generalized Weyl’s theorem, a-Weyls theorem, generalized a-Browders
theorem, a-Browders theorem, property (gw) and property (w), see [5, 7, 8, 10,
16, 28].

Property (gw) +3

��

gW ks gaW +3 gaB

Property (w) +3 W
��

ks aW
��

+3 aB
��

KS

2 Results

We begin this section by some results about the structural of gaB and gaW .

Theorem 2.1. Let T ∈ B(X ). Then the following statements are equivalent:
(i) T ∈ gaB;
(ii) σSBF−

+
(T) = σlD(T);

(iii) σa(T) = σSBF−
+
(T) ∪ Ea(T);

(iv) acc(σa(T)) ⊆ σSBF−
+
(T);

(v) σa(T) \ σSBF−
+
(T) ⊆ Ea(T).

Proof. (i)⇒ (ii). Suppose that T ∈ gaB. Then σa(T) \ σSBF−
+
(T) = πa(T). Let

λ ∈ σa(T) \ σSBF−
+
(T). Then λ ∈ πa(T), and so T − λI is left Drazin invertible.

Therefore, λ ∈ σa(T) \σlD(T), and hence σlD(T) ⊆ σSBF−
+
(T). On the other hand,

since σSBF−
+
(T) ⊆ σlD(T) is always verified for any operator T [21, Lemma 2.12.].
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(ii)⇒ (i). We assume that σSBF−
+
(T) = σlD(T) and we will establish that σa(T) \

σSBF−
+
(T) = πa(T). Suppose first that λ ∈ σa(T) \ σSBF−

+
(T). Then λ ∈ σa(T) \

σlD(T), and so T − λI is left Drazin invertible. Therefore, d = a(T) < ∞ and
ran(Td+1) is closed. Since λ ∈ σa(T), we have λ ∈ πa(T). Thus σa(T) \σSBF−

+
(T) ⊆

πa(T).
Conversely, suppose that λ ∈ πa(T). Then T − λI is left Drazin invertible but not
bounded below. Since λ is an isolated point of σa(T), then T − λ ∈ SBF−

+ (X ).
Therefore, λ ∈ σa(T) \ σSBF−

+
(T). Thus πa(T) ⊇ σa(T) \ σSBF−

+
(T).

(ii)⇒ (iii). Let λ ∈ σa(T) \ σSBF−
+
(T). Then λ ∈ σa(T) \ σlD(T), and so T − λI

is left Drazin invertible but not bounded below. Therefore, λ ∈ Ea(T). Thus
σa(T) ⊆ σSBF−

+
(T) ∪ Ea(T). Since the other inclusion is always true, we must

have σa(T) = σSBF−
+
(T) ∪ Ea(T).

(iii)⇒ (ii). Suppose σa(T) = σSBF−
+
(T)∪ Ea(T). To show that σSBF−

+
(T) = σlD(T).

it suffices to show that σSBF−
+
(T) ⊆ σlD(T). Suppose that λ ∈ σa(T) \ σSBF−

+
(T).

Then T − λI ∈ SBF−
+ (X ) but not invertible. Since σa(T) = σSBF−

+
(T)∪ Ea(T), we

see that λ ∈ Ea(T). In particular, λ is an isolated point of σa(T). Hence T − λI is
left Drazin invertible, and so σSBF−

+
(T) = σlD(T).

(i)⇔ (iv). Suppose T ∈ gaB. Then σSBF−
+
(T) = σa(T) \ πa(T). Let λ ∈ σa(T) \

σSBF−
+
(T). Then λ ∈ πa(T), and so λ is an isolated point of σa(T). Therefore,

λ ∈ σa(T) \ acc(σa(T)), and hence acc(σa(T)) ⊆ σSBF−
+
(T).

Conversely, let λ ∈ σa(T) \ σSBF−
+
(T). Since acc(σa(T)) ⊆ σSBF−

+
(T), it follows

that λ ∈ iso(σa(T)) and T − λI ∈ SBF−
+ (X ). It follows from [21, Theorem 2.8.]

that λ ∈ πa(T). Therefore, σa(T) \ σSBF−
+
(T) ⊆ πa(T). For the converse, suppose

λ ∈ πa(T). Then λ is a left pole of the resolvent of T, and so λ is an isolated point
of σa(T). Therefore, λ ∈ σa(T) \ acc(σa(T)). It follows from [21, Theorem 2.11.]
that λ ∈ σa(T) \ σSBF−

+
(T). Thus πa(T) ⊆ σa(T) \ σSBF−

+
(T), and so T ∈ gaB.

(iv)⇔ (v). Suppose that acc(σa(T)) ⊆ σSBF−
+
(T), and let λ ∈ σa(T) \ σSBF−

+
(T).

Then T − λ ∈ SBF−
+ (X ) but not bounded below. Since acc(σa(T)) ⊆ σSBF−

+
(T),

λ is an isolated point of σa(T). It follows from [21, Theorem 2.8.] that λ is a left
pole of of the resolvent of T. Therefore, λ ∈ πa(T), and hence σa(T) \σSBF−

+
(T) ⊆

Ea(T).
Conversely, suppose that σa(T) \ σSBF−

+
(T) ⊆ Ea(T) and let λ ∈ σa(T) \

σSBF−
+
(T) ⊆ Ea(T). Then λ ∈ Ea(T), and so λ is an isolated point of σa(T). There-

fore, λ ∈ σa(T) \ acc(σa(T)), which implies that acc(σa(T)) ⊆ σSBF−
+
(T).

The next result gives simple necessary and sufficient conditions for an opera-
tor T ∈ gaB to belong to the smaller class gaW .

Theorem 2.2. Let T ∈ gaB. The following statements are equivalent:
(i) T ∈ gaW .
(ii) σSBF−

+
(T) ∩ Ea(T) = ∅.

(iii) πa(T) = Ea(T).
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Proof. (i)⇒(ii). Assume T ∈ gaW , that is, σa(T) \ σSBF−
+
(T) = Ea(T). It then

easily that σSBF−
+
(T) ∩ Ea(T) = ∅, as required for (ii).

(ii)⇒(iii). Let λ ∈ Ea(T). The condition in (ii) implies that λ ∈ σa(T) \ σSBF−
+
(T),

and since T ∈ gaB, we must have λ ∈ πa(T). It follows that Ea(T) ⊆ πa(T), and
since the reverse inclusion always holds, we obtain (iii).
(iii)⇒(i). Since T ∈ gaB, we know that σa(T) \ σSBF−

+
(T) = πa(T), and since we

are assuming Ea(T) = πa(T), it follows that σa(T) \ σSBF−
+
(T) = Ea(T), that is,

T ∈ gaW .

Theorem 2.3. ( [16]) Let T ∈ B(X ). The following statements are equivalent:
i) T satisfies property (gw);
ii) generalized a-Browders theorem holds for T and πa(T) = E(T).

The following example show that property (gw) is not intermediate between
generalized Weyl’s theorem and generalized a-Weyl’s theorem.

Example 2.4. Let T be the hyponormal operator given by the direct sum of the
1-dimensional zero operator and the unilateral right shift R on ℓ2(N). Then
σ(T) = D, D the closed unit disc in C. Moreover, 0 is an isolated point of σa(T) =
C(0, 1)∪ {0}, C(0, 1) the unit circle of C, 0 ∈ Ea(T) and σSBF−

+
(T) = C(0, 1) while

0 /∈ πa(T) = ∅ since a(T) = a(R) = ∞. Hence, T does not satisfy generalized
a-Weyls theorem. On the other hand E(T) = ∅, since σ(T) has no isolated points,
so πa(T) = E(T). Since every hyponormal operator has SVEP we also know that
generalized a-Browders theorem holds for T , so from Theorem 2.3 we see that
property (gw) holds for T.

The following example shows that generalized a-Weyls theorem and general-
ized Weyls theorem does not imply property (gw).

Example 2.5. Let R ∈ ℓ2(N) be the unilateral right shift and let U defined by
U(x1, x2, · · · ) = (0, x2, x3, ...), (xn) ∈ ℓ2(N). If T = R ⊕ U, then σ(T) = D(0, 1)
the closed unit disc in C, isoσ(T) = ∅ and σa(T) = C(0, 1) ∪ {0} , where C(0, 1)
is unit circle of C. It follows from [6, Example 2.14] that σSF−

+
(T) = C(0, 1). This

implies that

σSBF−
+
(T) = C(0, 1) and σa(T) \ σSBF−

+
(T) = {0}

Moreover, we have E(T) = ∅ and Ea(T) = {0} . Hence T satisfies generalized
a- Weyls theorem and so T satisfies generalized Weyls theorem. But T does not
satisfy property (gw).

The class of operators T ∈ B(X ) for which K(T) = {0} was introduced and
studied by M. Mbekhta in [40]. It was shown that for such operators, the spec-
trum is connected and the SVEP holds.

Theorem 2.6. Let T ∈ B(X ). If there exists λ such that K(T − λ) = {0} , then
f (T) ∈ gaB , for every f ∈ Hol(σ(T)). Moreover, if in addition ker(T − λ) = 0, then
property (gw) holds for f (T)
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Proof. Since T has the SVEP, then by Theorem 3.2 of [14] , generalized a- Brow-
der’s theorem holds for f (T). Let γ ∈ σ( f (T)), then

f (z)− γI = P(z)g(z),

where g is complex-valued analytic function on a neighborhood of σ(T) without
any zeros in σ(T) while P is a complex polynomial of the form P(z) = ∏

n
j=1(z −

λj I)
kj with distinct roots λ1, · · · , λn ∈ σ(T). Since g(T) is invertible, then we

deduce that

ker( f (T) − γI) = ker(P(T)) =
n

⊕

j=1

ker(T − λj I)
kj .

On the other hand, it follows from [40, Proposition 2.1] that σp(T) ⊆ {λ} . If
we assume that ker(T − λI) = 0, then T − λI is an injective and consequently
σp(T) = ∅. Hence ker( f (T) − λI) = 0. Therefore, σp( f (T)) = ∅. To prove that
property (gw) holds for f (T), by Theorem 2.3 it then suffices to prove that

πa( f (T)) = E( f (T)).

Obviously, the condition σp( f (T)) = ∅ entails that

E( f (T)) = Ea( f (T)) = ∅.

On the other hand, the inclusion πa( f (T)) ⊆ Ea( f (T)) holds for every operator
T ∈ B(X ). So also πa( f (T)) = ∅. By Theorem 2.6 of [16] it then follows that
property (gw) holds for f (T).

Theorem 2.7. Let T be a bounded linear operator on X satisfying the SVEP. If T − λI
has finite descent at every λ ∈ Ea(T), then property (gw) holds for f (T∗), for every
f ∈ Hol(σ(T)).

Proof. Let λ ∈ Ea(T), then p = d(T − λI) < ∞ and since T has the SVEP it
follows that a(T − λI) = d(T − λI) = p and hence λ is a pole of the resolvent
of T of order p, consequently λ is an isolated point in σa(T). Then X = K(T −
λI)⊕ H0(T −λI), with K(T −λI) = R(T −λI)p is closed, Therefore, λ ∈ πa(T).
Hence, T is a-polaroid. Now the result follows now from Theorem 2.11 of [16].

A bounded operator T ∈ B(X ) is said to be polaroid (respectively, a-polaroid)
if isoσ(T) = ∅ or every isolated point of σ(T) is a pole of the resolvent of T
(respectively, if isoσa(T) = ∅ or every isolated point of σa(T) is a pole of the
resolvent of T ).
In [41] Oudghiri introduced the class H(p) of operators on Banach spaces for
which there exists p := p(λ) ∈ N such that

H0(λI − T) = ker(T − λI)p for all λ ∈ C.

Let P(X ) be the class of all operators T ∈ B(X ) having the property H(p). The
class P(X ) contains the classes of subscalar, algebraically totally paranormal and
transaloid operators on a Banach space, ∗-totally paranormal, M-hyponormal,
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p-hyponormal (0 < p < 1) and log-hyponormal operators on a Hilbert space
(see [25, 26, 27, 32, 35]).

It is known that if H0(T − λI) is closed for every complex number λ, then T
has the SVEP ( see [3, 38]). So that, the SVEP is shared by all the operators of
P(X ). Moreover, T is polaroid, see [5, Lemma 3.3].

Theorem 2.8. Suppose that T ∈ B(X ) is generalized scalar. Then T satisfies property
(gw) if and only if T satisfies generalized Weyl’s theorem

Proof. If T is generalized scalar then both T and T∗ has SVEP. Moreover, T is
polaroid since every generalized scalar has the property H(p). Then T satisfies
property (gw) by Theorem 2.10 of [16]. The equivalence then follows from [16,
Theorem 2.7].

Theorem 2.9. Let T ∈ P(X ) be such that σ(T) = σa(T) then property (gw) holds for
f (T), for every f ∈ Hol(σ(T)).

Proof. Since σ(T) = σa(T), it follows that

Ea(T) = σp(T) ∩ iso(σa(T)) = σp(T) ∩ iso(σ(T)) = E(T).

Let λ ∈ Ea(T) = E(T), Since T ∈ P(X ), then there exists dλ ∈ N such that
H0(T − λI) = ker(T − λI)dλ . Since λ is isolated in σ(T) then, by [3, Theorem
3.74],

X = H0(T − λI)⊕ K(T − λI) = ker(T − λI)dλ ⊕ K(T − λI),

from which we obtain

R((T − λI)dλ) = (T − λI)dλ(K(T − λI)) = K(T − λI),

so
X = ker(T − λI)dλ ⊕R((T − λI)dλ),

which implies, by [3, Theorem 3.6], that a(T − λI) = d(T − λI) ≤ dλ, hence
λ is a pole of the resolvent, so that T is polaroid. As T∗ has the SVEP and T is
polaroid, then f (T) satisfies property (gw) for every f ∈ Hol(σ(T)) by Theorem
2.11 of [16].

Theorem 2.10. Let T a bounded operator on X . If there exists a function g ∈ Hol(σ(T))
non constant in any connected component of its domain, and such that g(T∗) ∈ P(X ∗),
then property (gw) holds for f (T), for every f ∈ Hol(σ(T)).

Proof. Suppose that g(T∗) ∈ P(X ∗), then by [41, Theorem 3.4], we have T∗ ∈
P(X ∗). Since T∗ has the SVEP, then as it had been already mentioned, we have

σa(T) = σ(T), σSBF−
+
(T) = σBW(T), Ea(T) = E(T) and ∆

g
a(T) = ∆a(T),

it suffices to show that πa(T) = Ea(T). For this let λ ∈ Ea(T), then λ is isolated
eigenvalue of σa(T). So X ∗ = H0(T

∗ − λ̄)⊕ K(T∗ − λ̄), where the direct sum is
topological. Since T∗ ∈ P(X ∗), then there exists dλ ∈ N such that H0(T

∗ − λ̄I) =
ker(T∗ − λ̄I)dλ , and hence X ∗ = ker(T∗ − λ̄)dλ ⊕ K(T∗ − λ̄). Since

R((T − λ̄I)dλ) = (T − λ̄)dλ(K(T − λ̄I)) = K(T − λ̄I),
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so

X = ker(T − λ̄I)dλ ⊕R((T − λ̄I)dλ),

which implies, by [3, Theorem 3.6], that a(T∗ − λ̄I) = d(T − λ̄I) ≤ dλ, hence
λ̄ is a pole of the resolvent of T∗, so that T∗ is polaroid. Hence we have X ∗ =
ker((T∗ − λ̄I)dλ ⊕R(T∗ − λ̄I)dλ) and R(T∗ − λ̄I)dλ) is closed. Therefore, R(T −
λI)n0) is closed and X = ker((T∗ − λ̄I)dλ)⊥ ⊕ R(T∗ − λ̄I)dλ)⊥ = ker((T −
λI)dλ) ⊕ R(T − λI)dλ). So λ ∈ πa(T). As T∗ has the SVEP and T is polaroid,
then f (T) satisfies property (gw) for every f ∈ Hol(σ(T)) by Theorem 2.11 of
[16].

As an easy consequence of the previous theorem, we have the following corol-
lary

Corollary 2.11. If T∗ ∈ P(X ∗), then property (gw) holds for for f (T), for every f ∈
Hol(σ(T)).

Example 2.12. Property (gw), as well as generalized Weyl’s theorem, is not trans-
mitted from T to its dual T∗. To see this, consider the weighted right shift
T ∈ (

¯
ℓ2(N)), defined by

T(x1, x2, · · · ) := (0,
x1

2
,

x2

3
, · · · ) for all (xn) ∈ ℓ

2(N).

Then

T∗(x1, x2, · · · ) := (
x2

2
,

x3

3
, · · · ) for all (xn) ∈ ℓ

2(N).

Both T and T∗ are quasi-nilpotent, and hence are decomposable, T satisfies gen-
eralized Weyls theorem since σ(T) = σBW(T) = {0} and E(T) = π(T) = ∅

and hence T has property (gw). On the other hand, we have σ(T∗) = σa(T∗) =
σSBF−

+
(T∗) = Ea(T∗) = σBW(T∗) = E(T∗) = {0} and πa(T∗) = ∅, so T∗ does

not satisfy generalized Weyl’s theorem (and nor generalized a-Weyl’s theorem).
Since T∗ has SVEP, then T∗ does not satisfy property (gw).

Lemma 2.13. Suppose that T ∈ B(X ) satisfying property (gw) and F is a finite opera-
tor commuting with T such that σa(T + F) = σa(T). Then πa(T + F) ⊆ E(T + F).

Proof. Let λ ∈ πa(T + F) be arbitrary given. Then λ ∈ isoσa(T + F) and λ /∈
σLD(T + F) and so T + F − λI is left Drazin invertible. Hence m = a(T + F −
λI) < ∞ and R((T + F − λ)m+1) is closed. Since (T + F − λ)m+1 has closed
range, the condition λ ∈ σa(T + F) entails that α((T + F − λ)m+1) > 0. There-
fore,, in order to show that λ ∈ E(T + F), we need only to prove that λ is an
isolated of σ(T + F).

We know that λ ∈ isoσa(T). We also have λI − (T + F)− F = λI − T ∈ gaB
so that λ ∈ σa(T) \ σSBF−

+
(T) = πa(T).

Now, by assumption T satisfies property (gw), so, by Theorem 2.3, πa(T) =
E(T). Moreover, T satisfies generalized Weyl’s theorem and hence, by [20, Corol-
lary 2.6],

E(T) = π(T) = σ(T) \ σBW(T).
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Therefore, T − λI ∈ gB and hence also T + F − λI ∈ gB, so

0 < a(T + F − λI) = d(T + F − λI) < ∞

and hence λ is a pole of the resolvent of T + F. Consequently, λ an isolated point
of σ(T + F), as desired.

Recall that a bounded operator T ∈ B(X ) is said to be isoloid (respectively, a-
isoloid) if every isolated point of σ(T) (respectively, every isolated point of σa(T))
is an eigenvalue of T. Every a-isoloid operator is isoloid. This is easily seen: if T
is a-isoloid and λ ∈ isoσ(T) then λ ∈ σa(T) or λ /∈ σa(T). In the first case T − λI
is bounded below, in particular upper semi-Fredholm. The SVEP of both T and
T∗ at λ then implies that a(T − λI) = d(T − λI) < ∞, so λ is a pole. Obviously,
also in the second case λ is a pole, since by assumption T is a-isoloid. However,
the converse is not true . Consider the following example: Let U ⊕ Q, where U
is the unilateral forward shift on ℓ2 and Q is an injective quasinilpotent on ℓ2,
respectively. Then σ(T) = {λ ∈ C : |λ| ≤ 1} and σa(T) = {λ ∈ C : |λ| = 1} ∪
{0} . Therefore, T is isoloid but not a-isoloid.

Theorem 2.14. Suppose that T ∈ B(X ) is a-isoloid and F is a finite rank operator
commuting with T such that σa(T + F) = σa(T). If T satisfies property (gw), then
T + F satisfies property (gw).

Proof. Suppose that T satisfies property (gw). Then, by Theorem 2.3, T ∈ gaB,
and hence also T + K ∈ gaB.

By Theorem 2.3, in order to show that T + K satisfies property (gw) it suffices
only to prove the equality πa(T + F) = E(T + F). The inclusion πa(T + F) ⊆
E(T + F) follows from Lemma 2.13, so we need only to show the opposite inclu-
sion πa(T + F) ⊇ E(T + F).

We first show the inclusion

E(T + F) ⊆ π(T). (2.1)

Let λ ∈ E(T + F). By assumption λ ∈ isoσ(T + F) and α(T + F − λI) > 0
so λ ∈ isoσa(T + F), and hence λ ∈ isoσa(T). Since T satisfies property (gw)
we then conclude that λ is an isolated point of σ(T). Furthermore, Since T is a-
isoloid, we have also 0 < α(T − λI). Therefore, the inclusion E(T + F) ⊆ π(T)
is proved. Now, since property (gw) entails that T satisfies generalized Weyl’s
theorem, by [20, Corollary 2.6], we then have E(T + F) ⊆ π(T + F) = π(T)
and hence the inclusion 2.1 is established. Consequently, if λ ∈ E(T + F), then
T − λI ∈ gB. By Theorem 2.1 of [37] it then follows that T + F − λI ∈ gB, hence

λ ∈ σ(T + F) \ σBW(T + F) = π(T + F) ⊆ πa(T + F),

so the proof is achieved.

In the sequel we shall consider nilpotent perturbations of operators satisfying
property (gw). It easy to check that if N is a nilpotent operator commuting with
T , then σ(T) = σ(T + N) and σa(T) = σa(T + N).
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Lemma 2.15. Suppose that T ∈ B(X ) satisfying property (gw) and N is a nilpotent
operator commuting with T. Then πa(T + N) ⊆ E(T + N).

Proof. Suppose that λ ∈ πa(T + N). Then

λ ∈ σa(T + N) \ σSBF−
+
(T + N) = σa(T) \ σSBF−

+
(T) = πa(T).

Since T satisfies property (gw) we then have, by Theorem 2.3, πa(T) = E(T).
Hence λ is an isolated point of σ(T) = σ(T∗) and Therefore, both T and T∗

have SVEP at λ. Since T − λI ∈ gaB it then follows that 0 < m = a(T − λI) =
d(T − λI) < ∞. Furthermore, since λ ∈ E(T) we also have α(T − λI) > 0, thus
T − λI ∈ gaB and hence also T + N − λI ∈ gaB, by Theorem 2.1 of [37]. Hence
λ is an isolated point of σ(T + N) and α(T + N − λI) > 0.

On the other hand, (T + N − λI)m+1 has closed range and since λ ∈ σa(T +
N) it then follows that α(T + N − λI) > 0. Thus λ ∈ E(T + N).

Theorem 2.16. Suppose that T ∈ B(X ) is a-isoloid and N is a nilpotent operator that
commutes with T. If T satisfies property (gw), then T + N satisfies property (gw).

Proof. Observe first that aB ⇔ gaB by Theorem 2.2 of [15], B ⇔ gB by Theorem
2.1 of [15]. Then it follows from Theorem 1.2 of [7] that σLD(T + N) = σLD(T)
and σSBF−

+
(T + N) = σSBF−

+
(T). Since T ∈ gaB, by Theorem 1.3 of [24], it then

follows that σLD(T + N) = σSBF−
+
(T + N), i.e. T + N ∈ gaB. By Theorem 2.6 of

[16] and Lemma 2.15 we have only prove the inclusion

E(T + N) ⊆ πa(T + N). (2.2)

Let λ ∈ E(T + N) be arbitrary given. There is no harm if we assume λ = 0.
Clearly, 0 ∈ isoσ(T + N) = isoσ(T). Let s ∈ N be such that Ns = 0. If x ∈
ker(T + N), then

Tsx = (−1)sTsx = 0,

then ker(T + N) ⊆ ker(Ts). Since by assumption α(T + N) > 0 it then follows
that α(Ts) > 0 and this is obviously implies that α(T) > 0. Therefore, 0 ∈ E(T)
and consequently E(T + N) ⊆ E(T). Now, since T ∈ gW we have

E(T) = π(T) ⊆ πa(T).

The inclusion 2.2 will be then proved if we show that πa(T + N) = πa(T). But
this is immediate, since σa(T + N) = σa(T) and σLD(T + N) = σSBF−

+
(T + N), so

the proof is achieved.

Recall that T ∈ B(H) is said to be a Riesz operator if T − λI is a Fredholm op-
erator for all λ 6= 0. Evidently, quasi-nilpotent operators and compact operators
are Riesz operators. A bounded operator T ∈ B(H) is said to be finite-isoloid if
every isolated spectral point is an eigenvalue having finite multiplicity.

Theorem 2.17. Suppose that T ∈ B(X ) and Q is a quasi-nilpotent operator that com-
mutes with T. Then

σSBF−
+
(T + Q) = σSBF−

+
(T).
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Proof. It is well known that if T ∈ SBF+(X ) and K is a Riesz operator commuting
with T, then T + λK ∈ SBF+(X ) for all λ ∈ C. Suppose that λ /∈ σSBF−

+
(T). There

is no harm if we suppose that λ = 0. Then T ∈ SBF−
+ (X ) and hence T + µQ ∈

SBF+(X ) for all µ ∈ C. Clearly, T and T + Q belong to the same component of the
open set SBF+(X ), so ind(T) = ind(T + Q) ≤ 0, and hence 0 /∈ σSBF−

+
(T + Q).

This shows σSBF−
+
(T + Q) ⊆ σSBF−

+
(T). By symmetry then

σSBF−
+
(T) = σSBF−

+
(T + Q − Q) ⊆ σSBF−

+
(T + Q),

so the equality σSBF−
+
(T + Q) = σSBF−

+
(T) is proved.

Theorem 2.18. Suppose that T ∈ B(X ) and Q an injective quasi-nilpotent operator
that commutes with T. If T satisfies property (gw), then T + Q satisfies property (gw).

Proof. Since T satisfies property (gw) from Theorem 2.17 we have

σa(T + Q) \ σSBF−
+
(T + Q) = σa(T) \ σSBF−

+
(T) = E(T). (2.3)

To show property (gw) for T + Q it suffices to prove that

E(T) = E(T + Q) = ∅.

Suppose that E(T) 6= ∅ and let λ ∈ E(T). From Equation 2.3 we know that
T − λI ∈ SBF−

+ (X ), and hence by Lemma 2.11 of [7] it then follows that α(T −
λI) = 0, a contradiction.

To show that E(T + Q) = ∅. Suppose that E(T + Q) 6= ∅ and let λ ∈ E(T +
Q). Then α(T + Q − λI) > 0 so there exists x 6= 0 such that (T + Q − λI)x = 0.
Since Q commutes with T + Q − λI then by Lemma 2.11 of [7] it follows that
α(T + Q − λI) = 0, a contradiction.

Theorem 2.19. Suppose that T ∈ B(X ) is polaroid, N ∈ B(X ) a nilpotent operator
commuting with T.
(i) If T has SVEP then T∗ + N∗ satisfies property (gw), or equivalently generalized a-
Weyls theorem holds for T∗ + N∗.
(ii) If T∗ has SVEP then T + N satisfies property (gw), or equivalently generalized
a-Weyls theorem holds for T + N.

Proof. (i) If T has SVEP then T + N has SVEP, see Corollary 2.12 of [3]. Moreover,
by Theorem 2.10 of [9] T + N is polaroid. By Theorem 2.10 of [16] it then follows
that property (gw) holds for T∗ + N∗, or equivalently, since T + N has SVEP,
generalized a-Weyls theorem holds for T∗ + N∗.
(ii) If T is polaroid then by Theorem 2.5 of [9] T∗ is polaroid. Clearly, N∗ is
nilpotent, since (N∗)n = (Nn)∗ for some n ∈ N. Therefore, T∗ + N∗ is polaroid,
by Theorem 2.10 of [9]. Since T∗ + N∗ has SVEP, by Corollary 2.12 of [3], it
then follows, by Theorem 2.10 of [16], that T + N satisfies property (gw), or
equivalently generalized a-Weyls theorem holds for T + N.

Theorem 2.20. Suppose that T ∈ B(X ) is polaroid, N ∈ B(X ) a nilpotent operator
commuting with T. If T∗ has SVEP and f ∈ Hol(σ(T)) then property (gw) holds for
f (T) + N, or equivalently generalized a-Weyls theorem holds for f (T) + N.
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Proof. By Theorem 2.10 of [16], T satisfies property (gw), or equivalently, by
Theorem 2.7 of [16] generalized a-Weyls theorem holds for T. The SVEP for
T∗ implies that σ(T) = σa(T), so every isolated point of σa(T) is a pole of the
resolvent of T. It follows from [16, Theorem 2.11] that property (gw) holds for
f (T). Finally, by Theorem 2.16 f (T) + N satisfies property (gw). Since f (T∗) =
f (T)∗ has the SVEP, see [3, Theorem 2.40], by Theorem 2.7 of [16] it then follows
that property (gw) and generalized a-Weyls theorem are equivalent.

Remark A. It is somewhat meaningful to ask what we can say about the operators
f (T + N), always under the assumptions of Theorem 2.20. Now, if T is polaroid
then T + N is polaroid, by Theorem 2.10 of [9]. Moreover, by T∗+ N∗ = (T + N)∗

has SVEP by Corollary 2.12 of [3]. Hence by [16, Thoeorem 2.11] f (T + N)
satisfies property (gw) for every f ∈ Hol(σ(T)).

Theorem 2.21. Suppose that isoσa(T) = ∅. If T satisfies property (gw) and F is a
finite rank operator commuting with T, then T + F satisfies property (gw).

Proof. By Theorem 2.3 T satisfies generalized a-Browder’s theorem, it follows
from [37, Theorem 2.1] that T + F satisfies generalized a-Browder’s theorem. By
Lemma 2.6 of [8], σa(T + F) = σa(T), by Lemma 2.13 we have πa(T + F) ⊆
E(T + F).
It is easily seen that E(T + F) is empty. Indeed, suppose that E(T + F) 6= ∅. Let
λ ∈ E(T + F). By assumption λ ∈ isoσ(T + F) and α(T + F − λI) > 0. Clearly,
λ is an isolated of σa(T + F) = σa(T), and this is impossible since isoσa(T) = ∅.
Therefore, E(T + F) = πa(T + F) = ∅, so by Theorem 2.3 T + F satisfies property
(gw).

Theorem 2.22. Suppose that T ∈ B(X ) is isoloid and F is a finite rank operator com-
muting with T.
(i)If T∗ has SVEP and T satisfies property (gw), then T + F satisfies property (gw).
(ii) If T has SVEP and T∗ satisfies property (gw), then T∗ + F∗ satisfies property (gw).

Proof. (i) The SVEP of T∗ implies that σ(T) = σa(T). Since T satisfies property
(gw) then T satisfies generalized Weyl’s theorem, so it follows from Lemma 3.2 of
[23] that T is polaroid. By Lemma 2.9 of [23], T + F is polaroid. Since T∗ + F∗ =
(T + F)∗ has SVEP by Theorem 2.14 of [9]. Therefore, property (gw) holds for
T + F by Theorem 2.10 of [16].
(ii)The argument is analogous to that of part (i). The SVEP of T implies that
σ(T∗) = σa(T∗). Since T∗ satisfies property (gw) then T∗ satisfies generalized
Weyl’s theorem, so it follows from Lemma 3.2 of [23] that T∗ is polaroid. By
Lemma 2.9 of [23], T∗ + F∗ is polaroid. Since (T + F) has SVEP by Theorem 2.14
of [9]. Therefore, property (gw) holds for = (T + F)∗ = T∗ + F∗ by Theorem
2.10 of [16].

Theorem 2.23. Suppose that T ∈ B(X ) is polaroid and K is a finite rank operator
commuting with T.
(i) If T∗ has SVEP then f (T) + K satisfies property (gw) for every f ∈ Hol(σ(T)).
(ii) If T has SVEP then f (T∗) + K∗ satisfies property (gw) for every f ∈ Hol(σ(T)).
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Proof. (i) By [3, Corollary 2.45] the SVEP of T∗ implies σ(T) = σa(T). Since T is
polaroid, by Theorem 2.11 of [16] it then follows that f (T) has property (gw) for
every f ∈ Hol(σ(T)). Now, by Theorem 2.40 of [3] f (T∗) = f (T)∗ has SVEP, so
that, by Theorem 2.7 of [16] generalized a-Weyl’s theorem holds for f (T). Since
f (T) and K commutes, T is a-polaroid, by Theorem 3.2 of [10] and Corollary
3.10 of [23] we then obtain f (T) + K satisfies generalized a-Weyl’s theorem. By
Lemma 2.8 of [8] f (T∗) + K∗ = ( f (T) + K)∗ has SVEP. This implies that property
(gw) and generalized a-Weyl’s theorem for f (T) + K are equivalent, again by
Theorem 2.7 of [16], so the proof is achieved.
(ii) The argument is analogous to that of part (i). Just observe that σ(T∗) = σa(T∗)
by [3, Corollary 2.45], so that T∗ is a-polaroid. Moreover, by Theorem 2.11 of
[16] it then follows that f (T∗) has property (gw) for every f ∈ Hol(σ(T)). By
Theorem 2.40 of [3] f (T) has SVEP, so that, by Theorem 2.7 of [16] generalized
a-Weyl’s theorem holds for f (T∗). Since f (T∗) and K∗ commutes, by Theorem 3.2
of [10] and Corollary 3.10 of [23] we then obtain f (T) + K satisfies generalized
a-Weyl’s theorem. By Lemma 2.8 of [8] f (T) + K has SVEP, so that property (gw)
and generalized a-Weyl’s theorem for f (T∗) + K∗ are equivalent, by Theorem 2.7
of [16].

A bounded linear operator T on a Hilbert space H is said to be quasi-class A
if

T∗|T2|T ≥ T∗|T|2T.

The quasi-class A operators were introduced , and their properties were stud-
ied in [34]. (see also [30, 43, 44] ). In particular, it was shown in [34] that
the class of quasi-class A operators contains properly classes of class A and p-
quasihyponormal operators. Quasi-class A operators were independently intro-
duced by Jeon and Kim [34]. They gave an example of a quasi-class A operator
which is not paranormal nor normaloid. Jeon and Kim example show that neither
the class paranormal operators nor the class of quasi-class A contains the other. A
bounded operator T ∈ B(X ) is said to be algebraically quasi-class A if there exists
a non-trivial polynomial h such that h(T) is quasi-class A, see [17]. It is shown in
[17] operators of algebraically quasi-class A are polaroid and has SVEP.

Corollary 2.24. Suppose that T ∈ B(H), H is a Hilbert space and K is a finite rank
operator commuting with T.
(i) If T∗ is an algebraically quasi-class A then f (T) + K satisfies property (gw) for every
f ∈ Hol(σ(T)).
(ii) If T is an algebraically quasi-class A then f (T∗) + K∗ satisfies property (gw) for
every f ∈ Hol(σ(T)).

In general, property (gw) is not transmitted under commuting finite rank per-
turbation.

Example 2.25. Let S : ℓ2 −→ ℓ2 be an injective quasinilpotent operator which is
not nilpotent and let U : ℓ2 −→ ℓ2 be defined by U(x1, x2, · · · ) := (−x1, 0, · · · ),
xn ∈ ℓ2(N). Define on X := ℓ2 ⊕ ℓ2 the operators T and K by T := I ⊕ S where I
is the identity on ℓ2 and K := U ⊕ 0.
It is easily that σ(T) = {0, 1} , E(T) = {1} and σBw(T) = {0} . Hence T satisfies
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generalized Weyl’s theorem. Now K is finite rank operator and TK = KT, and
since T∗ has a finite spectrum then T∗ has SVEP and consequently property (gw)
holds for T. Moreover, σ(T + K) = {0, 1} and E(T + K) = {0, 1}. As σBw(T +
K) = σBw(T) = {0} , Then T + K does not satisfy generalized Weyl’s theorem
and hence T + K does not has the property (gw) by Theorem 2.7 of [16].

Example 2.26. This example shows that the commutativity hypothesis in Theo-
rem 2.18 is essential. Let X = ℓ2(N) and T and F be defined by

T(x1, x2, · · · ) := (0,
x1

2
,

x2

3
, · · · ), {xn} ∈ ℓ

2(N)

and

F(x1, x2, · · · ) := (0,
−x1

2
, 0, · · · ), {xn} ∈ ℓ

2(N)

Clearly, F is a nilpotent operator and hence of finite rank operator, and T is a
quasi-nilpotent satisfying generalized Weyl’s theorem since σ(T) = σBw(T) =
{0} and E(T) = ∅. Now T and F do not commute, σ(T + F) = σW(T + F) =
E0(T + F) = {0} , and T + F does not satisfy Weyl’s theorem. So T + F /∈ gW and
hence T + F does not satisfy property (gw).

The basic role of SVEP arises in local spectral theory since for all decompos-
able operators both T and T∗ have SVEP. Every generalized scalar operator on a
Banach space is decomposable (see [39] for relevant definitions and results). In
particular, every spectral operators of finite type is decomposable.

Corollary 2.27. Suppose that T ∈ B(X ) is generalized scalar and K is a finite rank
operator commuting with T. Then property (gw) holds for both f (T) + K and f (T∗) +
K∗. In particular, this is true for every spectral operator of finite type.

Proof. Both T and T∗ have SVEP. Moreover, every generalized scalar operator is
polaroid. The second statement is clear: every spectral operators of finite type is
generalized scalar.

Recall that a bounded operator T is said to be algebraic if there exists a non-
trivial polynomial h such that h(T) = 0. From the spectral mapping theorem it
easily follows that the spectrum of an algebraic operator is a finite set. A nilpotent
operator is a trivial example of an algebraic operator. Also finite rank operators K
are algebraic; more generally, if Kn is a finite rank operator for some n ∈ N then
K is algebraic. Clearly, if T is algebraic then its dual T∗ is algebraic.

Theorem 2.28. Suppose that T ∈ B(X ) and K ∈ B(X ) is an algebraic operator com-
muting with T .
(i) If T ∈ P(X ) then property (gw) holds for T∗ + K∗.
(ii) If T∗ ∈ P(X ) then property (gw) holds for T + K.

Proof. (i) If T ∈ P(X ) then T has SVEP and hence T + K has SVEP by Theorem
2.14 of [9]. Moreover, T is polaroid so also T + K is polaroid by Theorem 2.14 of
[9]. By Theorem 2.10 of [16], then property (gw) holds for T∗ + K∗.
(ii) If T∗ ∈ P(X ) then T∗ has SVEP and hence T∗ + K∗ has SVEP by Theorem 2.14
of [9]. Moreover, T∗ is polaroid so also T∗ + K∗ is polaroid by Theorem 2.14 of
[9]. By Theorem 2.10 of [16], then property (gw) holds for T + K.
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A bounded linear operator T on a Banach space X is said to be paranormal if

‖Tx‖2 ≤
∥

∥

∥
T2x

∥

∥

∥
‖x‖ holds for all x ∈ X .

The class of paranormal operators properly contains a relevant number of
Hilbert space operators, among them p-hyponormal operators, log-hyponormal
operators, and the class A operators. Note that, in general, paranormal operators
do not satisfy property H(p), see [13] for a counter-example. A bounded op-
erator T ∈ B(X ) is said to be algebraically paranormal if there exists a non-trivial
polynomial h such that h(T) is paranormal. Note that every paranormal opera-
tor on a Hilbert space H has SVEP, see [9, Page 1799]. Moreover, algebraically
paranormal operators are polaroid.

Corollary 2.29. Suppose that T ∈ B(H), H is a Hilbert space and K ∈ B(X ) is an
algebraic operator commuting with T .
(i) If T is algebraically paranormal then property (gw) holds for T∗ + K∗.
(ii) If T∗ is algebraically paranormal then property (gw) holds for T + K.

Proof. Proceed as in the proof of Theorem 2.28.

Acknowledgement. The author thank the referee for useful comments and
suggestions that will improve the quality of this paper.
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