Property (gw) and perturbations

M. H. M. Rashid

Abstract

The property (gw) is a variant of generalized Weyls theorem, for a bounded operator T acting on a Banach space. In this note we consider the preservation of property (gw) under a finite rank perturbation commuting with T, whenever T is isoloid, polaroid, or T has analytical core $K\left(\lambda_{0} I-T\right)=\{0\}$ for some $\lambda_{0} \in \mathbb{C}$. The preservation of property (gw) is also studied under commuting nilpotent or under algebraic perturbations. The theory is exemplified in the case of some special classes of operators.

1 Introduction

Throughout this paper let $\mathbf{B}(\mathcal{X})$, denote, the algebra of bounded linear operators acting on an infinite dimensional Banach space \mathcal{X}. If $T \in \mathbf{B}(\mathcal{X})$ we shall write $\operatorname{ker}(T)$ and $\mathcal{R}(T)$ (or $\operatorname{ran}(T)$) for the null space and range of T, respectively. Also, let $\alpha(T):=\operatorname{dim} \operatorname{ker}(T), \beta(T):=\operatorname{dim} \mathcal{R}(T)$, and let $\sigma(T), \sigma_{a}(T), \sigma_{p}(T)$ denote the spectrum, approximate point spectrum and point spectrum of T, respectively. An operator $T \in \mathbf{B}(\mathcal{X})$ is called Fredholm if it has closed range, finite dimensional null space, and its range has finite codimension. The index of a Fredholm operator is given by

$$
\operatorname{ind}(T):=\alpha(T)-\beta(T)
$$

An operator T is called a Weyl if it is a Fredholm of index 0 , and Browder if it is Fredholm "of finite ascent and descent"; equivalently, [33, Theorem 7.9.3] if T is Fredholm and $T-\lambda I$ (Abbreviate $T-\lambda$) is invertible for sufficiently small $\boldsymbol{\lambda} \neq 0$

[^0]in C.
Recall that the ascent, $a(T)$, of an operator T is the smallest non-negative integer p such that $\operatorname{ker}\left(T^{p}\right)=\operatorname{ker}\left(T^{p+1}\right)$. If such integer does not exist we put $a(T)=\infty$. Analogously, the descent, $d(T)$, of an operator T is the smallest nonnegative integer q such that $\mathcal{R}\left(T^{q}\right)=\mathcal{R}\left(T^{q+1}\right)$, and if such integer does not exist we put $d(T)=\infty$. The essential spectrum $\sigma_{F}(T)$, the Weyl spectrum $\sigma_{W}(T)$ and the Browder spectrum $\sigma_{b}(T)$ of T are defined by
\[

$$
\begin{gathered}
\sigma_{F}(T):=\{\lambda \in \mathbb{C}: T-\lambda \text { is not Fredholm }\} \\
\sigma_{W}(T):=\{\lambda \in \mathbb{C}: T-\lambda \text { is not Weyl }\}
\end{gathered}
$$
\]

and

$$
\sigma_{b}(T):=\{\lambda \in \mathbb{C}: T-\lambda \text { is not Browder }\}
$$

respectively. Evidently

$$
\sigma_{F}(T) \subseteq \sigma_{W}(T) \subseteq \sigma_{b}(T) \subseteq \sigma_{F}(T) \cup \operatorname{acco}(T)
$$

where we write $a c c K$ for the accumulation points of $K \subseteq \mathbb{C}$.
For a bounded operator T and nonnegative integer n, define $T_{[n]}$ to be the restriction of T to $\mathcal{R}\left(T^{n}\right)$ viewed as a map from $\mathcal{R}\left(T^{n}\right)$ into $\mathcal{R}\left(T^{n}\right)$ (in particular $T_{[0]}=T$). If for some n the range $\mathcal{R}\left(T^{n}\right)$ is closed and $T_{[n]}$ is an upper (resp. a lower) semi-Fredholm operator, then T is called an upper (resp. a lower) semi-BFredholm operator. In this case the index of T is defined as the index of the semiFredholm operator $T_{[n]}$, see $[18,19]$. Moreover, if $T_{[n]}$ is a Fredholm operator, then T is called a B-Fredholm operator. A semi- B-Fredholm operator is an upper or a lower semi-Fredholm operator. An operator $T \in \mathbf{B}(\mathcal{X})$ is said to be a B Weyl operator if it is a B-Fredholm operator of index zero. the semi-B-Fredholm spectrum $\sigma_{S B F}(T)$ and the B-Weyl spectrum $\sigma_{B W}$ of T are defined by

$$
\begin{aligned}
\sigma_{S B F}(T) & :=\{\lambda \in \mathbb{C}: T-\lambda I \quad \text { is not a semi-B-Fredholm operator }\} \\
\sigma_{B W} & :=\{\lambda \in \mathbb{C}: T-\lambda I \quad \text { is not a } B \text {-Weyl operator }\}
\end{aligned}
$$

If we write $i s o K=K \backslash \operatorname{acc} K$, then we let

$$
E_{0}(T):=\{\boldsymbol{\lambda} \in \operatorname{iso} \sigma(T): 0<\alpha(T-\lambda)<\infty\}
$$

and

$$
\pi_{0}(T):=\sigma(T) \backslash \sigma_{b}(T) .
$$

Given $T \in \mathbf{B}(\mathcal{X})$, we say that Weyl's theorem holds for T (or that T satisfies Weyl's theorem, in symbol, $T \in \mathcal{W}$), see [26] if

$$
\boldsymbol{\sigma}(T) \backslash \boldsymbol{\sigma}_{W}(T)=E_{0}(T)
$$

and that Browder's theorem holds for T (in symbol, $T \in \mathcal{B}$) if

$$
\boldsymbol{\sigma}(T) \backslash \boldsymbol{\sigma}_{W}(T)=\pi_{0}(T) .
$$

Recall that an operator $T \in \mathbf{B}(\mathcal{X})$ is a Drazin invertible if and only if it has a finite ascent and descent, which is also equivalent to the fact that $T=T_{0} \oplus T_{1}$,
where T_{0} is nilpotent operator and T_{1} is invertible operator, see [36, Proposition A]. The Drazin spectrum is given by

$$
\sigma_{D}(T):=\{\lambda \in \mathbb{C}: T-\lambda I \quad \text { is not Drazin invertible }\} .
$$

We observe that $\sigma_{D}(T)=\sigma(T) \backslash \pi(T)$, where $\pi(T)$ is the set of all poles. Define

$$
E(T):=\{\boldsymbol{\lambda} \in \operatorname{iso\sigma }(T): 0<\alpha(T-\lambda)\},
$$

we also say that the generalized Weyl's theorem holds for T (in symbol, $T \in g \mathcal{W}$) if

$$
\boldsymbol{\sigma}(T) \backslash \boldsymbol{\sigma}_{B W}(T)=E(T),
$$

and that the generalized Browder's theorem holds for T (in symbol, $T \in g \mathcal{B}$) if

$$
\boldsymbol{\sigma}(T) \backslash \boldsymbol{\sigma}_{B W}(T)=\pi(T) .
$$

It is Known [21, 22, 23] that

$$
g \mathcal{W} \subseteq g \mathcal{B} \cup \mathcal{W} \quad \text { and that } \quad g \mathcal{B} \cup \mathcal{W} \subseteq \mathcal{B}
$$

Moreover, given $T \in g \mathcal{B}$, then it is clear $T \in g \mathcal{W}$ if and only if $E(T)=\pi(T)$, see [21, 23].

Let $S F_{+}(\mathcal{X})$ be the class of all upper semi-Fredholm operators, $S F_{+}^{-}(\mathcal{X})$ be the class of all $T \in S F_{+}(\mathcal{X})$ with $\operatorname{ind}(T) \leq 0$, and for any $T \in \mathbf{B}(\mathcal{X})$ let

$$
\sigma_{S F_{+}^{-}}(T):=\left\{\lambda \in \mathbb{C}: T-\lambda I \notin S F_{+}^{-}(\mathcal{X})\right\} .
$$

Let E_{0}^{a} be the set of all eigenvalues of T of finite multiplicity which are isolated in $\sigma_{a}(T)$. According to [42], we say that T satisfies a-Weyl's theorem(and we write $T \in a \mathcal{W})$ if

$$
\sigma_{S F_{+}^{-}}(T)=\sigma_{a}(T) \backslash E_{0}^{a}(T),
$$

and that a-Browder's theorem holds for T (in symbol, $T \in a \mathcal{B}$) if

$$
\sigma_{a}(T) \backslash \sigma_{S F_{+}^{-}}(T)=\pi_{0}^{a}(T),
$$

where $\pi_{0}^{a}(T)$ is the set of all left poles of finite rank.
Let $S B F_{+}(\mathcal{X})$ be the class of all upper semi-B-Fredholm operators, and $S B F_{+}^{-}(\mathcal{X})$ the class of all $T \in S B F_{+}(\mathcal{X})$ such that $\operatorname{ind}(T) \leq 0$, and

$$
\sigma_{S B F_{+}^{-}}(T):=\left\{\lambda \in \mathbb{C}: T-\lambda \notin S B F_{+}^{-}(\mathcal{X})\right\} .
$$

Recall that an operator $T \in \mathbf{B}(\mathcal{X})$ satisfies the generalized a-Weyl's theorem (in symbol, $T \in g a \mathcal{W}$) if

$$
\sigma_{S B F_{+}^{-}}(T)=\sigma_{a}(T) \backslash E^{a}(T),
$$

where $E^{a}(T)$ is the set of all eigenvalues of T which are isolated in $\sigma_{a}(T)$.
Define a set $L D(\mathcal{X})$ by

$$
L D(\mathcal{X}):=\left\{T \in \mathbf{B}(\mathcal{X}): a(T)<\infty \quad \text { and } \quad \mathcal{R}\left(T^{a(T)+1}\right) \quad \text { is closed }\right\}
$$

An operator $T \in \mathbf{B}(\mathcal{H})$ is called left Drazin invertible if $a(T)<\infty$ and $\mathcal{R}\left(T^{a(T)+1}\right)$ is closed (see [23, Definition 2.4]). The left Drazin spectrum is given by

$$
\sigma_{L D}(T):=\{\lambda \in \mathbb{C}: T-\lambda I \quad \text { is not left Drazin invertible }\}
$$

Recall [23, Definition 2.5] that $\lambda \in \sigma_{a}(T)$ is a left pole of T if $T-\lambda I$ is left Drazin invertible operator and $\lambda \in \sigma_{a}(T)$ is a left pole of finite rank if λ is a left pole of T and $\alpha(T-\lambda)<\infty$. We will denote $\pi^{a}(T)$ the set of all left pole of T. We have $\sigma_{L D}(T)=\sigma_{a}(T) \backslash \pi^{a}(T)$. Note that if $\lambda \in \pi^{a}(T)$, then it is easily seen that $T-\lambda$ is an operator of topological uniform descent. Therefore, it follows from ([21, Theorem 2.5]) that λ is isolated in $\sigma_{a}(T)$. Following [23] if $T \in \mathbf{B}(\mathcal{H})$ and $\lambda \in \mathbb{C}$ is an isolated in $\sigma_{a}(T)$, then $\lambda \in \pi^{a}(T)$ if and only if $\lambda \notin \sigma_{S B F_{+}^{-}}(T)$ and $\lambda \in \pi_{0}^{a}(T)$ if and only if $\lambda \notin \sigma_{S F_{+}^{-}}(T)$.

We will say that generalized a-Browder's theorem holds for T (in symbol $T \in$ $g a \mathcal{B})$ if

$$
\sigma_{S B F_{+}^{-}}(T)=\sigma_{a}(T) \backslash \pi^{a}(T)
$$

It is Known [23, 21, 42]that

$$
g \mathcal{W} \cup g \mathcal{B} \cup a \mathcal{W} \cup g a \mathcal{B} \subseteq g a \mathcal{W} \quad \text { and that } \quad a \mathcal{B} \cup \mathcal{W} \subseteq a \mathcal{W} \quad \text { and that } \mathcal{B} \subseteq a \mathcal{B}
$$

This article also deals with the single valued extension property. This property has a basic role in the local spectral theory, see the recent monograph of Laursen and Neumann [39] or Aiena [3]. In this article consider a localized version of this property, recently studied by several authors [1, 4, 11, ?], and previously by Finch [31].

Let $\operatorname{Hol}(\sigma(T))$ be the space of all functions that analytic in an open neighborhoods of $\sigma(T)$. Following [31] we say that $T \in \mathbf{B}(\mathcal{X})$ has the single-valued extension property (SVEP) at point $\lambda \in \mathbb{C}$ if for every open neighborhood U_{λ} of λ, the only analytic function $f: U_{\lambda} \longrightarrow \mathcal{H}$ which satisfies the equation $(T-\mu) f(\mu)=0$ is the constant function $f \equiv 0$. An operator $T \in \mathbf{B}(\mathcal{H})$ is said to have the SVEP if T has the SVEP at every point $\lambda \in \mathbb{C}$.

An operator $T \in \mathbf{B}(\mathcal{X})$ has the SVEP at every point of the resolvent $\rho(T):=$ $\mathbb{C} \backslash \sigma(T)$. The identity theorem for analytic functions ensures that for every $T \in \mathbf{B}(\mathcal{X})$, both T and T^{*} have the SVEP at the points of the boundary $\partial \sigma(T)$ of the spectrum $\sigma(T)$. In particular, that both T and T^{*} have the SVEP at every isolated point of $\sigma(T)=\sigma\left(T^{*}\right)$. The SVEP is inherited by the restrictions to closed invariant subspaces, i.e., if $T \in \mathbf{B}(\mathcal{X})$ has the SVEP at λ_{0} and M is closed T-invariant subspace then $\left.T\right|_{M}$ has SVEP at λ_{0}.

The quasinilpotent part $H_{0}(T-\lambda I)$ and the analytic core $K(T-\lambda I)$ of $T-\lambda I$ are defined by

$$
H_{0}(T-\lambda I):=\left\{x \in \mathcal{X}: \lim _{n \longrightarrow \infty}\left\|(T-\lambda I)^{n} x\right\|^{\frac{1}{n}}=0\right\}
$$

and

$$
\begin{aligned}
& K(T-\lambda I)=\left\{x \in \mathcal{X}: \text { there exists a sequence }\left\{x_{n}\right\} \subset \mathcal{X} \text { and } \delta>0\right. \text { for which } \\
& \left.x=x_{0},(T-\lambda I) x_{n+1}=x_{n} \text { and } \quad\left\|x_{n}\right\| \leq \delta^{n}\|x\| \text { for all } n=1,2, \cdots\right\} .
\end{aligned}
$$

We note that $H_{0}(T-\lambda I)$ and $K(T-\lambda I)$ are generally non-closed hyper-invariant subspaces of $T-\lambda I$ such that $(T-\lambda I)^{-p}(0) \subseteq H_{0}(T-\lambda I)$ for all $p=$ $0,1, \cdots$ and $(T-\lambda I) K(T-\lambda I)=K(T-\lambda I)$. Recall that if $\lambda \in \operatorname{iso}(\sigma(T))$, then $H_{0}(T-\lambda I)=\chi_{T}(\{\lambda\})$, where $\chi_{T}(\{\lambda\})$ is the glocal spectral subspace consisting of all $x \in \mathcal{H}$ for which there exists an analytic function $f: \mathbb{C} \backslash\{\lambda\} \longrightarrow \mathcal{X}$ that satisfies $(T-\mu I) f(\mu)=x$ for all $\mu \in \mathbb{C} \backslash\{\lambda\}$ (see [29]). From [2], the following implication holds for every $T \in \mathbf{B}(\mathcal{X})$,

$$
H_{0}(T-\lambda I) \text { is closed } \Longrightarrow T \text { has SVEP at } \lambda
$$

Definition 1.1. ([42]) An operator $T \in \mathbf{B}(\mathcal{X})$ is said to satisfy property (w) if

$$
\Delta_{a}(T)=\sigma_{a}(T) \backslash \sigma_{S F_{+}^{-}}(T)=E_{0}(T)
$$

In [6], it is shown that the property (w) implies Weyls theorem. For $T \in \mathbf{B}(\mathcal{H})$, let $\Delta^{g}(T)=\sigma(T) \backslash \sigma_{B W}(T)$ and $\Delta_{a}^{g}(T)=\sigma(T) \backslash \sigma_{S B F_{+}^{-}}(T)$. If T^{*} has the SVEP, then it is known from [39] that $\sigma(T)=\sigma_{a}(T)$ and from [12] we have $\sigma_{B W}(T)=\sigma_{S B F_{+}^{-}}(T)$. Thus $E(T)=E^{a}(T)$ and $\Delta^{g}(T)=\Delta_{a}^{g}(T)$.

Definition 1.2. ([16]) An operator $T \in \mathbf{B}(\mathcal{X})$ is said to satisfy property (gw) if

$$
\Delta_{a}^{g}(T)=E(T)
$$

The following diagram resume the relationships between generalized a-Weyls theorem, generalized Weyl's theorem, a-Weyls theorem, generalized a-Browders theorem, a-Browders theorem, property (gw) and property (w), see $[5,7,8,10$, 16, 28].

2 Results

We begin this section by some results about the structural of $g a \mathcal{B}$ and $g a \mathcal{W}$.
Theorem 2.1. Let $T \in \mathbf{B}(\mathcal{X})$. Then the following statements are equivalent:
(i) $T \in g a \mathcal{B}$;
(ii) $\sigma_{S B F_{+}^{-}}(T)=\sigma_{l D}(T)$;
(iii) $\sigma_{a}(T)=\sigma_{S B F_{+}^{-}}(T) \cup E^{a}(T)$;
(iv) $\operatorname{acc}\left(\sigma_{a}(T)\right) \subseteq \sigma_{S B F_{+}^{-}}(T)$;
(v) $\sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T) \subseteq E^{a}(T)$.

Proof. (i) \Rightarrow (ii). Suppose that $T \in g a \mathcal{B}$. Then $\sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)=\pi^{a}(T)$. Let $\lambda \in \sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)$. Then $\lambda \in \pi^{a}(T)$, and so $T-\lambda I$ is left Drazin invertible. Therefore, $\lambda \in \sigma_{a}(T) \backslash \sigma_{l D}(T)$, and hence $\sigma_{l D}(T) \subseteq \sigma_{S B F_{+}^{-}}(T)$. On the other hand, since $\sigma_{S B F_{+}^{-}}(T) \subseteq \sigma_{l D}(T)$ is always verified for any operator T [21, Lemma 2.12.].
(ii) \Rightarrow (i). We assume that $\sigma_{S B F_{+}^{-}}(T)=\sigma_{l D}(T)$ and we will establish that $\sigma_{a}(T) \backslash$ $\sigma_{S B F_{+}^{-}}(T)=\pi^{a}(T)$. Suppose first that $\lambda \in \sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)$. Then $\lambda \in \sigma_{a}(T) \backslash$ $\sigma_{l D}(T)$, and so $T-\lambda I$ is left Drazin invertible. Therefore, $d=a(T)<\infty$ and $\operatorname{ran}\left(T^{d+1}\right)$ is closed. Since $\lambda \in \sigma_{a}(T)$, we have $\lambda \in \pi^{a}(T)$. Thus $\sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T) \subseteq$ $\pi^{a}(T)$.
Conversely, suppose that $\lambda \in \pi^{a}(T)$. Then $T-\lambda I$ is left Drazin invertible but not bounded below. Since λ is an isolated point of $\sigma_{a}(T)$, then $T-\lambda \in S B F_{+}^{-}(\mathcal{X})$. Therefore, $\lambda \in \sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)$. Thus $\pi^{a}(T) \supseteq \sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)$.
(ii) \Rightarrow (iii). Let $\lambda \in \sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)$. Then $\lambda \in \sigma_{a}(T) \backslash \sigma_{l D}(T)$, and so $T-\lambda I$ is left Drazin invertible but not bounded below. Therefore, $\lambda \in E^{a}(T)$. Thus $\sigma_{a}(T) \subseteq \sigma_{S B F_{+}^{-}}(T) \cup E^{a}(T)$. Since the other inclusion is always true, we must have $\sigma_{a}(T)=\sigma_{S B F_{+}^{-}}(T) \cup E^{a}(T)$.
(iii) \Rightarrow (ii). Suppose $\sigma_{a}(T)=\sigma_{S B F_{+}^{-}}(T) \cup E^{a}(T)$. To show that $\sigma_{S B F_{+}^{-}}(T)=\sigma_{l D}(T)$. it suffices to show that $\sigma_{S B F_{+}^{-}}(T) \subseteq \sigma_{l D}(T)$. Suppose that $\lambda \in \sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)$. Then $T-\lambda I \in S B F_{+}^{-}(\mathcal{X})$ but not invertible. Since $\sigma_{a}(T)=\sigma_{S B F_{+}^{-}}(T) \cup E^{a}(T)$, we see that $\lambda \in E^{a}(T)$. In particular, λ is an isolated point of $\sigma_{a}(T)$. Hence $T-\lambda I$ is left Drazin invertible, and so $\sigma_{S B F_{+}^{-}}(T)=\sigma_{l D}(T)$.
(i) \Leftrightarrow (iv). Suppose $T \in g a \mathcal{B}$. Then $\sigma_{S B F_{+}^{-}}(T)=\sigma_{a}(T) \backslash \pi^{a}(T)$. Let $\lambda \in \sigma_{a}(T) \backslash$ $\sigma_{S B F_{+}^{-}}(T)$. Then $\lambda \in \pi^{a}(T)$, and so λ is an isolated point of $\sigma_{a}(T)$. Therefore, $\lambda \in \sigma_{a}(T) \backslash \operatorname{acc}\left(\sigma_{a}(T)\right)$, and hence $\operatorname{acc}\left(\sigma_{a}(T)\right) \subseteq \sigma_{S B F_{+}^{-}}(T)$.
Conversely, let $\lambda \in \sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)$. Since $\operatorname{acc}\left(\sigma_{a}(T)\right) \subseteq \sigma_{S B F_{+}^{-}}(T)$, it follows that $\lambda \in \operatorname{iso}\left(\sigma_{a}(T)\right)$ and $T-\lambda I \in S B F_{+}^{-}(\mathcal{X})$. It follows from [21, Theorem 2.8.] that $\lambda \in \pi^{a}(T)$. Therefore, $\sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T) \subseteq \pi^{a}(T)$. For the converse, suppose $\lambda \in \pi^{a}(T)$. Then λ is a left pole of the resolvent of T, and so λ is an isolated point of $\sigma_{a}(T)$. Therefore, $\lambda \in \sigma_{a}(T) \backslash \operatorname{acc}\left(\sigma_{a}(T)\right)$. It follows from [21, Theorem 2.11.] that $\lambda \in \sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)$. Thus $\pi^{a}(T) \subseteq \sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)$, and so $T \in g a \mathcal{B}$.
(iv) $\Leftrightarrow(\mathrm{v})$. Suppose that $\operatorname{acc}\left(\sigma_{a}(T)\right) \subseteq \sigma_{S B F_{+}^{-}}(T)$, and let $\lambda \in \sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)$. Then $T-\lambda \in S B F_{+}^{-}(\mathcal{X})$ but not bounded below. Since $\operatorname{acc}\left(\sigma_{a}(T)\right) \subseteq \sigma_{S B F_{+}^{-}}(T)$, λ is an isolated point of $\sigma_{a}(T)$. It follows from [21, Theorem 2.8.] that λ is a left pole of of the resolvent of T. Therefore, $\lambda \in \pi^{a}(T)$, and hence $\sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T) \subseteq$ $E^{a}(T)$.
Conversely, suppose that $\sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T) \subseteq E^{a}(T)$ and let $\lambda \in \sigma_{a}(T) \backslash$ $\sigma_{S B F_{+}^{-}}(T) \subseteq E^{a}(T)$. Then $\lambda \in E^{a}(T)$, and so λ is an isolated point of $\sigma_{a}(T)$. Therefore, $\lambda \in \sigma_{a}(T) \backslash \operatorname{acc}\left(\sigma_{a}(T)\right)$, which implies that $\operatorname{acc}\left(\sigma_{a}(T)\right) \subseteq \sigma_{S B F_{+}^{-}}(T)$.

The next result gives simple necessary and sufficient conditions for an operator $T \in g a \mathcal{B}$ to belong to the smaller class $g a \mathcal{W}$.

Theorem 2.2. Let $T \in g a \mathcal{B}$. The following statements are equivalent:
(i) $T \in g a \mathcal{W}$.
(ii) $\sigma_{S B F_{+}^{-}}(T) \cap E^{a}(T)=\varnothing$.
(iii) $\pi^{a}(T)=E^{a}(T)$.

Proof. (i) \Rightarrow (ii). Assume $T \in g a \mathcal{W}$, that is, $\sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)=E^{a}(T)$. It then easily that $\sigma_{S B F_{+}^{-}}(T) \cap E^{a}(T)=\varnothing$, as required for (ii).
(ii) \Rightarrow (iii). Let $\lambda \in E^{a}(T)$. The condition in (ii) implies that $\lambda \in \sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)$, and since $T \in g a \mathcal{B}$, we must have $\lambda \in \pi^{a}(T)$. It follows that $E^{a}(T) \subseteq \pi^{a}(T)$, and since the reverse inclusion always holds, we obtain (iii).
(iii) \Rightarrow (i). Since $T \in g a \mathcal{B}$, we know that $\sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)=\pi^{a}(T)$, and since we are assuming $E^{a}(T)=\pi^{a}(T)$, it follows that $\sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)=E^{a}(T)$, that is, $T \in g a \mathcal{W}$.

Theorem 2.3. ([16]) Let $T \in \mathbf{B}(\mathcal{X})$. The following statements are equivalent:
i) T satisfies property (gw);
ii) generalized a-Browders theorem holds for T and $\pi^{a}(T)=E(T)$.

The following example show that property (gw) is not intermediate between generalized Weyl's theorem and generalized a-Weyl's theorem.

Example 2.4. Let T be the hyponormal operator given by the direct sum of the 1-dimensional zero operator and the unilateral right shift R on $\ell^{2}(\mathbb{N})$. Then $\sigma(T)=\mathbf{D}, \mathbf{D}$ the closed unit disc in \mathbf{C}. Moreover, 0 is an isolated point of $\sigma_{a}(T)=$ $C(0,1) \cup\{0\}, C(0,1)$ the unit circle of $\mathbb{C}, 0 \in E^{a}(T)$ and $\sigma_{S B F_{+}^{-}}(T)=C(0,1)$ while $0 \notin \pi^{a}(T)=\varnothing$ since $a(T)=a(R)=\infty$. Hence, T does not satisfy generalized a-Weyls theorem. On the other hand $E(T)=\varnothing$, since $\sigma(T)$ has no isolated points, so $\pi^{a}(T)=E(T)$. Since every hyponormal operator has SVEP we also know that generalized a-Browders theorem holds for T, so from Theorem 2.3 we see that property (gw) holds for T.

The following example shows that generalized a-Weyls theorem and generalized Weyls theorem does not imply property (gw).

Example 2.5. Let $R \in \ell^{2}(\mathbb{N})$ be the unilateral right shift and let U defined by $U\left(x_{1}, x_{2}, \cdots\right)=\left(0, x_{2}, x_{3}, \ldots\right),\left(x_{n}\right) \in \ell^{2}(\mathbb{N})$. If $T=R \oplus U$, then $\sigma(T)=D(0,1)$ the closed unit disc in \mathbb{C}, $\operatorname{iso} \sigma(T)=\varnothing$ and $\sigma_{a}(T)=C(0,1) \cup\{0\}$, where $C(0,1)$ is unit circle of \mathbb{C}. It follows from [6, Example 2.14] that $\sigma_{S F_{+}^{-}}(T)=C(0,1)$. This implies that

$$
\sigma_{S B F_{+}^{-}}(T)=C(0,1) \quad \text { and } \quad \sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)=\{0\}
$$

Moreover, we have $E(T)=\varnothing$ and $E^{a}(T)=\{0\}$. Hence T satisfies generalized a - Weyls theorem and so T satisfies generalized Weyls theorem. But T does not satisfy property (gw).

The class of operators $T \in \mathbf{B}(\mathcal{X})$ for which $K(T)=\{0\}$ was introduced and studied by M. Mbekhta in [40]. It was shown that for such operators, the spectrum is connected and the SVEP holds.

Theorem 2.6. Let $T \in \mathbf{B}(\mathcal{X})$. If there exists $\boldsymbol{\lambda}$ such that $K(T-\boldsymbol{\lambda})=\{0\}$, then $f(T) \in g a \mathcal{B}$, for every $f \in \operatorname{Hol}(\boldsymbol{\sigma}(T))$. Moreover, if in addition $\operatorname{ker}(T-\boldsymbol{\lambda})=0$, then property (gw) holds for $f(T)$

Proof. Since T has the SVEP, then by Theorem 3.2 of [14] , generalized a- Browder's theorem holds for $f(T)$. Let $\gamma \in \sigma(f(T))$, then

$$
f(z)-\gamma I=P(z) g(z)
$$

where g is complex-valued analytic function on a neighborhood of $\sigma(T)$ without any zeros in $\sigma(T)$ while P is a complex polynomial of the form $P(z)=\prod_{j=1}^{n}(z-$ $\left.\lambda_{j} I\right)^{k_{j}}$ with distinct roots $\lambda_{1}, \cdots, \lambda_{n} \in \sigma(T)$. Since $g(T)$ is invertible, then we deduce that

$$
\operatorname{ker}(f(T)-\gamma I)=\operatorname{ker}(P(T))=\bigoplus_{j=1}^{n} \operatorname{ker}\left(T-\lambda_{j} I\right)^{k_{j}} .
$$

On the other hand, it follows from [40, Proposition 2.1] that $\sigma_{p}(T) \subseteq\{\lambda\}$. If we assume that $\operatorname{ker}(T-\lambda I)=0$, then $T-\lambda I$ is an injective and consequently $\sigma_{p}(T)=\varnothing$. Hence $\operatorname{ker}(f(T)-\lambda I)=0$. Therefore, $\sigma_{p}(f(T))=\varnothing$. To prove that property (gw) holds for $f(T)$, by Theorem 2.3 it then suffices to prove that

$$
\pi^{a}(f(T))=E(f(T))
$$

Obviously, the condition $\sigma_{p}(f(T))=\varnothing$ entails that

$$
E(f(T))=E^{a}(f(T))=\varnothing .
$$

On the other hand, the inclusion $\pi^{a}(f(T)) \subseteq E^{a}(f(T))$ holds for every operator $T \in \mathbf{B}(\mathcal{X})$. So also $\pi^{a}(f(T))=\varnothing$. By Theorem 2.6 of [16] it then follows that property (gw) holds for $f(T)$.

Theorem 2.7. Let T be a bounded linear operator on \mathcal{X} satisfying the SVEP. If $T-\lambda I$ has finite descent at every $\lambda \in E^{a}(T)$, then property (gw) holds for $f\left(T^{*}\right)$, for every $f \in \operatorname{Hol}(\sigma(T))$.

Proof. Let $\lambda \in E^{a}(T)$, then $p=d(T-\lambda I)<\infty$ and since T has the SVEP it follows that $a(T-\lambda I)=d(T-\lambda I)=p$ and hence $\boldsymbol{\lambda}$ is a pole of the resolvent of T of order p, consequently $\boldsymbol{\lambda}$ is an isolated point in $\sigma_{a}(T)$. Then $\mathcal{X}=K(T-$ $\boldsymbol{\lambda} I) \oplus H_{0}(T-\boldsymbol{\lambda} I)$, with $K(T-\boldsymbol{\lambda} I)=\mathcal{R}(T-\boldsymbol{\lambda} I)^{p}$ is closed, Therefore, $\boldsymbol{\lambda} \in \pi^{a}(T)$. Hence, T is a-polaroid. Now the result follows now from Theorem 2.11 of [16].

A bounded operator $T \in \mathbf{B}(\mathcal{X})$ is said to be polaroid (respectively, a-polaroid) if $\operatorname{iso\sigma }(T)=\varnothing$ or every isolated point of $\sigma(T)$ is a pole of the resolvent of T (respectively, if $\operatorname{iso} \sigma_{a}(T)=\varnothing$ or every isolated point of $\sigma_{a}(T)$ is a pole of the resolvent of T).
In [41] Oudghiri introduced the class $H(p)$ of operators on Banach spaces for which there exists $p:=p(\lambda) \in \mathbb{N}$ such that

$$
H_{0}(\lambda I-T)=\operatorname{ker}(T-\lambda I)^{p} \quad \text { for all } \lambda \in \mathbb{C} .
$$

Let $P(\mathcal{X})$ be the class of all operators $T \in \mathbf{B}(\mathcal{X})$ having the property $H(p)$. The class $P(\mathcal{X})$ contains the classes of subscalar, algebraically totally paranormal and transaloid operators on a Banach space, *-totally paranormal, M-hyponormal,
p-hyponormal ($0<p<1$) and log-hyponormal operators on a Hilbert space (see [25, 26, 27, 32, 35]).

It is known that if $H_{0}(T-\lambda I)$ is closed for every complex number $\boldsymbol{\lambda}$, then T has the SVEP (see $[3,38]$). So that, the SVEP is shared by all the operators of $P(\mathcal{X})$. Moreover, T is polaroid, see [5, Lemma 3.3].

Theorem 2.8. Suppose that $T \in \mathbf{B}(\mathcal{X})$ is generalized scalar. Then T satisfies property (gw) if and only if T satisfies generalized Weyl's theorem

Proof. If T is generalized scalar then both T and T^{*} has SVEP. Moreover, T is polaroid since every generalized scalar has the property $H(p)$. Then T satisfies property (gw) by Theorem 2.10 of [16]. The equivalence then follows from [16, Theorem 2.7].

Theorem 2.9. Let $T \in P(\mathcal{X})$ be such that $\sigma(T)=\sigma_{a}(T)$ then property (gw) holds for $f(T)$, for every $f \in \operatorname{Hol}(\boldsymbol{\sigma}(T))$.

Proof. Since $\sigma(T)=\sigma_{a}(T)$, it follows that

$$
E^{a}(T)=\sigma_{p}(T) \cap i s o\left(\sigma_{a}(T)\right)=\sigma_{p}(T) \cap i s o(\sigma(T))=E(T)
$$

Let $\lambda \in E^{a}(T)=E(T)$, Since $T \in \mathcal{P}(\mathcal{X})$, then there exists $d_{\lambda} \in \mathbb{N}$ such that $H_{0}(T-\lambda I)=\operatorname{ker}(T-\lambda I)^{d_{\lambda}}$. Since $\boldsymbol{\lambda}$ is isolated in $\sigma(T)$ then, by [3, Theorem 3.74],

$$
\mathcal{X}=H_{0}(T-\lambda I) \oplus K(T-\lambda I)=\operatorname{ker}(T-\lambda I)^{d_{\lambda}} \oplus K(T-\lambda I),
$$

from which we obtain

$$
\mathcal{R}\left((T-\lambda I)^{d_{\lambda}}\right)=(T-\lambda I)^{d_{\lambda}}(K(T-\lambda I))=K(T-\lambda I),
$$

so

$$
\mathcal{X}=\operatorname{ker}(T-\lambda I)^{d_{\lambda}} \oplus \mathcal{R}\left((T-\lambda I)^{d_{\lambda}}\right),
$$

which implies, by $\left[3\right.$, Theorem 3.6], that $a(T-\lambda I)=d(T-\lambda I) \leq d_{\lambda}$, hence λ is a pole of the resolvent, so that T is polaroid. As T^{*} has the SVEP and T is polaroid, then $f(T)$ satisfies property (gw) for every $f \in \operatorname{Hol}(\sigma(T))$ by Theorem 2.11 of [16].

Theorem 2.10. Let T a bounded operator on \mathcal{X}. If there exists a function $g \in \operatorname{Hol}(\boldsymbol{\sigma}(T))$ non constant in any connected component of its domain, and such that $g\left(T^{*}\right) \in P\left(\mathcal{X}^{*}\right)$, then property (gw) holds for $f(T)$, for every $f \in \operatorname{Hol}(\sigma(T))$.

Proof. Suppose that $g\left(T^{*}\right) \in P\left(\mathcal{X}^{*}\right)$, then by [41, Theorem 3.4], we have $T^{*} \in$ $P\left(\mathcal{X}^{*}\right)$. Since T^{*} has the SVEP, then as it had been already mentioned, we have

$$
\sigma_{a}(T)=\sigma(T), \quad \sigma_{S B F_{+}^{-}}(T)=\sigma_{B W}(T), \quad E^{a}(T)=E(T) \quad \text { and } \quad \Delta_{a}^{g}(T)=\Delta_{a}(T)
$$

it suffices to show that $\pi^{a}(T)=E^{a}(T)$. For this let $\boldsymbol{\lambda} \in E^{a}(T)$, then $\boldsymbol{\lambda}$ is isolated eigenvalue of $\sigma_{a}(T)$. So $\mathcal{X}^{*}=H_{0}\left(T^{*}-\bar{\lambda}\right) \oplus K\left(T^{*}-\bar{\lambda}\right)$, where the direct sum is topological. Since $T^{*} \in P\left(\mathcal{X}^{*}\right)$, then there exists $d_{\lambda} \in \mathbb{N}$ such that $H_{0}\left(T^{*}-\bar{\lambda} I\right)=$ $\operatorname{ker}\left(T^{*}-\bar{\lambda} I\right)^{d_{\lambda}}$, and hence $\mathcal{X}^{*}=\operatorname{ker}\left(T^{*}-\bar{\lambda}\right)^{d_{\lambda}} \oplus K\left(T^{*}-\bar{\lambda}\right)$. Since

$$
\mathcal{R}\left((T-\bar{\lambda} I)^{d_{\lambda}}\right)=(T-\bar{\lambda})^{d_{\lambda}}(K(T-\bar{\lambda} I))=K(T-\bar{\lambda} I),
$$

so

$$
\mathcal{X}=\operatorname{ker}(T-\bar{\lambda} I)^{d_{\lambda}} \oplus \mathcal{R}\left((T-\bar{\lambda} I)^{d_{\lambda}}\right),
$$

which implies, by [3, Theorem 3.6], that $a\left(T^{*}-\bar{\lambda} I\right)=d(T-\bar{\lambda} I) \leq d_{\lambda}$, hence $\bar{\lambda}$ is a pole of the resolvent of T^{*}, so that T^{*} is polaroid. Hence we have $\mathcal{X}^{*}=$ $\operatorname{ker}\left(\left(T^{*}-\bar{\lambda} I\right)^{d_{\lambda}} \oplus \mathcal{R}\left(T^{*}-\bar{\lambda} I\right)^{d_{\lambda}}\right)$ and $\left.\mathcal{R}\left(T^{*}-\bar{\lambda} I\right)^{d_{\lambda}}\right)$ is closed. Therefore, $\mathcal{R}(T-$ $\left.\lambda I)^{n_{0}}\right)$ is closed and $\left.\mathcal{X}=\operatorname{ker}\left(\left(T^{*}-\bar{\lambda} I\right)^{d_{\lambda}}\right)^{\perp} \oplus \mathcal{R}\left(T^{*}-\bar{\lambda} I\right)^{d_{\lambda}}\right)^{\perp}=\operatorname{ker}((T-$ $\left.\left.\lambda I)^{d_{\lambda}}\right) \oplus \mathcal{R}(T-\lambda I)^{d_{\lambda}}\right)$. So $\lambda \in \pi^{a}(T)$. As T^{*} has the SVEP and T is polaroid, then $f(T)$ satisfies property (gw) for every $f \in \operatorname{Hol}(\sigma(T))$ by Theorem 2.11 of [16].

As an easy consequence of the previous theorem, we have the following corollary

Corollary 2.11. If $T^{*} \in P\left(\mathcal{X}^{*}\right)$, then property (gw) holds for for $f(T)$, for every $f \in$ $\operatorname{Hol}(\boldsymbol{\sigma}(T))$.

Example 2.12. Property (gw), as well as generalized Weyl's theorem, is not transmitted from T to its dual T^{*}. To see this, consider the weighted right shift $\left.T \in \underline{\ell}^{2}(\mathbb{N})\right)$, defined by

$$
T\left(x_{1}, x_{2}, \cdots\right):=\left(0, \frac{x_{1}}{2}, \frac{x_{2}}{3}, \cdots\right) \quad \text { for all }\left(x_{n}\right) \in \ell^{2}(\mathbb{N}) .
$$

Then

$$
T^{*}\left(x_{1}, x_{2}, \cdots\right):=\left(\frac{x_{2}}{2}, \frac{x_{3}}{3}, \cdots\right) \quad \text { for all }\left(x_{n}\right) \in \ell^{2}(\mathbb{N})
$$

Both T and T^{*} are quasi-nilpotent, and hence are decomposable, T satisfies generalized Weyls theorem since $\sigma(T)=\sigma_{B W}(T)=\{0\}$ and $E(T)=\pi(T)=\varnothing$ and hence T has property $(g w)$. On the other hand, we have $\sigma\left(T^{*}\right)=\sigma_{a}\left(T^{*}\right)=$ $\sigma_{S B F_{+}^{-}}\left(T^{*}\right)=E^{a}\left(T^{*}\right)=\sigma_{B W}\left(T^{*}\right)=E\left(T^{*}\right)=\{0\}$ and $\pi^{a}\left(T^{*}\right)=\varnothing$, so T^{*} does not satisfy generalized Weyl's theorem (and nor generalized a-Weyl's theorem). Since T^{*} has SVEP, then T^{*} does not satisfy property ($\left.g w\right)$.

Lemma 2.13. Suppose that $T \in \mathbf{B}(\mathcal{X})$ satisfying property (gw) and F is a finite operator commuting with T such that $\sigma_{a}(T+F)=\sigma_{a}(T)$. Then $\pi^{a}(T+F) \subseteq E(T+F)$.

Proof. Let $\lambda \in \pi^{a}(T+F)$ be arbitrary given. Then $\lambda \in \operatorname{iso~}_{a}(T+F)$ and $\lambda \notin$ $\sigma_{L D}(T+F)$ and so $T+F-\lambda I$ is left Drazin invertible. Hence $m=a(T+F-$ $\lambda I)<\infty$ and $\mathcal{R}\left((T+F-\lambda)^{m+1}\right)$ is closed. Since $(T+F-\lambda)^{m+1}$ has closed range, the condition $\lambda \in \sigma_{a}(T+F)$ entails that $\alpha\left((T+F-\lambda)^{m+1}\right)>0$. Therefore,, in order to show that $\lambda \in E(T+F)$, we need only to prove that λ is an isolated of $\boldsymbol{\sigma}(T+F)$.

We know that $\boldsymbol{\lambda} \in \operatorname{iso} \sigma_{a}(T)$. We also have $\boldsymbol{\lambda I}-(T+F)-F=\lambda I-T \in g a \mathcal{B}$ so that $\lambda \in \sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)=\pi^{a}(T)$.

Now, by assumption T satisfies property (gw), so, by Theorem 2.3, $\pi^{a}(T)=$ $E(T)$. Moreover, T satisfies generalized Weyl's theorem and hence, by [20, Corollary 2.6],

$$
E(T)=\pi(T)=\sigma(T) \backslash \sigma_{B W}(T) .
$$

Therefore, $T-\lambda I \in g \mathcal{B}$ and hence also $T+F-\lambda I \in g \mathcal{B}$, so

$$
0<a(T+F-\lambda I)=d(T+F-\lambda I)<\infty
$$

and hence $\boldsymbol{\lambda}$ is a pole of the resolvent of $T+F$. Consequently, $\boldsymbol{\lambda}$ an isolated point of $\sigma(T+F)$, as desired.

Recall that a bounded operator $T \in \mathbf{B}(\mathcal{X})$ is said to be isoloid (respectively, a isoloid) if every isolated point of $\sigma(T)$ (respectively, every isolated point of $\sigma_{a}(T)$) is an eigenvalue of T. Every a-isoloid operator is isoloid. This is easily seen: if T is a-isoloid and $\boldsymbol{\lambda} \in \operatorname{iso} \boldsymbol{\sigma}(T)$ then $\boldsymbol{\lambda} \in \sigma_{a}(T)$ or $\boldsymbol{\lambda} \notin \sigma_{a}(T)$. In the first case $T-\lambda I$ is bounded below, in particular upper semi-Fredholm. The SVEP of both T and T^{*} at $\boldsymbol{\lambda}$ then implies that $a(T-\lambda I)=d(T-\lambda I)<\infty$, so $\boldsymbol{\lambda}$ is a pole. Obviously, also in the second case $\boldsymbol{\lambda}$ is a pole, since by assumption T is a-isoloid. However, the converse is not true. Consider the following example: Let $U \oplus Q$, where U is the unilateral forward shift on ℓ^{2} and Q is an injective quasinilpotent on ℓ^{2}, respectively. Then $\sigma(T)=\{\lambda \in \mathbb{C}:|\lambda| \leq 1\}$ and $\sigma_{a}(T)=\{\lambda \in \mathbb{C}:|\lambda|=1\} \cup$ $\{0\}$. Therefore, T is isoloid but not a-isoloid.

Theorem 2.14. Suppose that $T \in \mathbf{B}(\mathcal{X})$ is a-isoloid and F is a finite rank operator commuting with T such that $\sigma_{a}(T+F)=\sigma_{a}(T)$. If T satisfies property (gw), then $T+F$ satisfies property (gw).

Proof. Suppose that T satisfies property (gw). Then, by Theorem 2.3, $T \in g a \mathcal{B}$, and hence also $T+K \in g a \mathcal{B}$.

By Theorem 2.3, in order to show that $T+K$ satisfies property (gw) it suffices only to prove the equality $\pi^{a}(T+F)=E(T+F)$. The inclusion $\pi^{a}(T+F) \subseteq$ $E(T+F)$ follows from Lemma 2.13, so we need only to show the opposite inclusion $\pi^{a}(T+F) \supseteq E(T+F)$.

We first show the inclusion

$$
\begin{equation*}
E(T+F) \subseteq \pi(T) . \tag{2.1}
\end{equation*}
$$

Let $\boldsymbol{\lambda} \in E(T+F)$. By assumption $\boldsymbol{\lambda} \in \operatorname{iso\sigma }(T+F)$ and $\alpha(T+F-\lambda I)>0$ so $\lambda \in i \operatorname{so} \sigma_{a}(T+F)$, and hence $\lambda \in i s o \sigma_{a}(T)$. Since T satisfies property (gw) we then conclude that λ is an isolated point of $\sigma(T)$. Furthermore, Since T is $a-$ isoloid, we have also $0<\alpha(T-\lambda I)$. Therefore, the inclusion $E(T+F) \subseteq \pi(T)$ is proved. Now, since property (gw) entails that T satisfies generalized Weyl's theorem, by [20, Corollary 2.6], we then have $E(T+F) \subseteq \pi(T+F)=\pi(T)$ and hence the inclusion 2.1 is established. Consequently, if $\lambda \in E(T+F)$, then $T-\lambda I \in g \mathcal{B}$. By Theorem 2.1 of [37] it then follows that $T+F-\lambda I \in g \mathcal{B}$, hence

$$
\lambda \in \sigma(T+F) \backslash \sigma_{B W}(T+F)=\pi(T+F) \subseteq \pi^{a}(T+F),
$$

so the proof is achieved.
In the sequel we shall consider nilpotent perturbations of operators satisfying property (gw). It easy to check that if N is a nilpotent operator commuting with T, then $\boldsymbol{\sigma}(T)=\boldsymbol{\sigma}(T+N)$ and $\sigma_{a}(T)=\sigma_{a}(T+N)$.

Lemma 2.15. Suppose that $T \in \mathbf{B}(\mathcal{X})$ satisfying property (gw) and N is a nilpotent operator commuting with T. Then $\pi^{a}(T+N) \subseteq E(T+N)$.

Proof. Suppose that $\lambda \in \pi^{a}(T+N)$. Then

$$
\lambda \in \sigma_{a}(T+N) \backslash \sigma_{S B F_{+}^{-}}(T+N)=\sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)=\pi^{a}(T)
$$

Since T satisfies property (gw) we then have, by Theorem 2.3, $\pi^{a}(T)=E(T)$. Hence $\boldsymbol{\lambda}$ is an isolated point of $\sigma(T)=\sigma\left(T^{*}\right)$ and Therefore, both T and T^{*} have SVEP at λ. Since $T-\lambda I \in g a \mathcal{B}$ it then follows that $0<m=a(T-\lambda I)=$ $d(T-\lambda I)<\infty$. Furthermore, since $\lambda \in E(T)$ we also have $\alpha(T-\lambda I)>0$, thus $T-\lambda I \in g a \mathcal{B}$ and hence also $T+N-\lambda I \in g a \mathcal{B}$, by Theorem 2.1 of [37]. Hence $\boldsymbol{\lambda}$ is an isolated point of $\boldsymbol{\sigma}(T+N)$ and $\alpha(T+N-\boldsymbol{\lambda})>0$.

On the other hand, $(T+N-\lambda I)^{m+1}$ has closed range and since $\lambda \in \sigma_{a}(T+$ $N)$ it then follows that $\alpha(T+N-\lambda I)>0$. Thus $\lambda \in E(T+N)$.

Theorem 2.16. Suppose that $T \in \mathbf{B}(\mathcal{X})$ is a-isoloid and N is a nilpotent operator that commutes with T. If T satisfies property (gw), then $T+N$ satisfies property (gw).

Proof. Observe first that $a \mathcal{B} \Leftrightarrow g a \mathcal{B}$ by Theorem 2.2 of [15], $\mathcal{B} \Leftrightarrow g \mathcal{B}$ by Theorem 2.1 of [15]. Then it follows from Theorem 1.2 of [7] that $\sigma_{L D}(T+N)=\sigma_{L D}(T)$ and $\sigma_{S B F_{+}^{-}}(T+N)=\sigma_{S B F_{+}^{-}}(T)$. Since $T \in g a \mathcal{B}$, by Theorem 1.3 of [24], it then follows that $\sigma_{L D}(T+N)=\sigma_{S B F_{+}^{-}}(T+N)$, i.e. $T+N \in g a \mathcal{B}$. By Theorem 2.6 of [16] and Lemma 2.15 we have only prove the inclusion

$$
\begin{equation*}
E(T+N) \subseteq \pi^{a}(T+N) . \tag{2.2}
\end{equation*}
$$

Let $\lambda \in E(T+N)$ be arbitrary given. There is no harm if we assume $\lambda=0$. Clearly, $0 \in \operatorname{iso\sigma }(T+N)=\operatorname{iso\sigma }(T)$. Let $s \in \mathbb{N}$ be such that $N^{s}=0$. If $x \in$ $\operatorname{ker}(T+N)$, then

$$
T^{s} x=(-1)^{s} T^{s} x=0
$$

then $\operatorname{ker}(T+N) \subseteq \operatorname{ker}\left(T^{s}\right)$. Since by assumption $\alpha(T+N)>0$ it then follows that $\alpha\left(T^{s}\right)>0$ and this is obviously implies that $\alpha(T)>0$. Therefore, $0 \in E(T)$ and consequently $E(T+N) \subseteq E(T)$. Now, since $T \in g \mathcal{W}$ we have

$$
E(T)=\pi(T) \subseteq \pi^{a}(T)
$$

The inclusion 2.2 will be then proved if we show that $\pi^{a}(T+N)=\pi^{a}(T)$. But this is immediate, since $\sigma_{a}(T+N)=\sigma_{a}(T)$ and $\sigma_{L D}(T+N)=\sigma_{S B F_{+}^{-}}(T+N)$, so the proof is achieved.

Recall that $T \in \mathbf{B}(\mathcal{H})$ is said to be a Riesz operator if $T-\lambda I$ is a Fredholm operator for all $\lambda \neq 0$. Evidently, quasi-nilpotent operators and compact operators are Riesz operators. A bounded operator $T \in \mathbf{B}(\mathcal{H})$ is said to be finite-isoloid if every isolated spectral point is an eigenvalue having finite multiplicity.

Theorem 2.17. Suppose that $T \in \mathbf{B}(\mathcal{X})$ and Q is a quasi-nilpotent operator that commutes with T. Then

$$
\sigma_{S B F_{+}^{-}}(T+Q)=\sigma_{S B F_{+}^{-}}(T) .
$$

Proof. It is well known that if $T \in S B F_{+}(\mathcal{X})$ and K is a Riesz operator commuting with T, then $T+\lambda K \in S B F_{+}(\mathcal{X})$ for all $\lambda \in \mathbb{C}$. Suppose that $\lambda \notin \sigma_{S B F_{+}^{-}}(T)$. There is no harm if we suppose that $\lambda=0$. Then $T \in S B F_{+}^{-}(\mathcal{X})$ and hence $T+\mu Q \in$ $S B F_{+}(\mathcal{X})$ for all $\mu \in \mathbb{C}$. Clearly, T and $T+Q$ belong to the same component of the open set $S B F_{+}(\mathcal{X})$, so $\operatorname{ind}(T)=\operatorname{ind}(T+Q) \leq 0$, and hence $0 \notin \sigma_{S B F_{+}^{-}}(T+Q)$. This shows $\sigma_{S B F_{+}^{-}}(T+Q) \subseteq \sigma_{S B F_{+}^{-}}(T)$. By symmetry then

$$
\sigma_{S B F_{+}^{-}}(T)=\sigma_{S B F_{+}^{-}}(T+Q-Q) \subseteq \sigma_{S B F_{+}^{-}}(T+Q)
$$

so the equality $\sigma_{S B F_{+}^{-}}(T+Q)=\sigma_{S B F_{+}^{-}}(T)$ is proved.
Theorem 2.18. Suppose that $T \in \mathbf{B}(\mathcal{X})$ and Q an injective quasi-nilpotent operator that commutes with T. If T satisfies property (gw), then $T+Q$ satisfies property (gw).

Proof. Since T satisfies property (gw) from Theorem 2.17 we have

$$
\begin{equation*}
\sigma_{a}(T+Q) \backslash \sigma_{S B F_{+}^{-}}(T+Q)=\sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)=E(T) \tag{2.3}
\end{equation*}
$$

To show property (gw) for $T+Q$ it suffices to prove that

$$
E(T)=E(T+Q)=\varnothing .
$$

Suppose that $E(T) \neq \varnothing$ and let $\lambda \in E(T)$. From Equation 2.3 we know that $T-\lambda I \in S B F_{+}^{-}(\mathcal{X})$, and hence by Lemma 2.11 of [7] it then follows that $\alpha(T-$ $\lambda I)=0$, a contradiction.

To show that $E(T+Q)=\varnothing$. Suppose that $E(T+Q) \neq \varnothing$ and let $\lambda \in E(T+$ $Q)$. Then $\alpha(T+Q-\lambda I)>0$ so there exists $x \neq 0$ such that $(T+Q-\lambda I) x=0$. Since Q commutes with $T+Q-\lambda I$ then by Lemma 2.11 of [7] it follows that $\alpha(T+Q-\lambda I)=0$, a contradiction.

Theorem 2.19. Suppose that $T \in \mathbf{B}(\mathcal{X})$ is polaroid, $N \in \mathbf{B}(\mathcal{X})$ a nilpotent operator commuting with T.
(i) If T has SVEP then $T^{*}+N^{*}$ satisfies property (gw), or equivalently generalized aWeyls theorem holds for $T^{*}+N^{*}$.
(ii) If T^{*} has SVEP then $T+N$ satisfies property (gw), or equivalently generalized a-Weyls theorem holds for $T+N$.

Proof. (i) If T has SVEP then $T+N$ has SVEP, see Corollary 2.12 of [3]. Moreover, by Theorem 2.10 of [9] $T+N$ is polaroid. By Theorem 2.10 of [16] it then follows that property (gw) holds for $T^{*}+N^{*}$, or equivalently, since $T+N$ has SVEP, generalized a-Weyls theorem holds for $T^{*}+N^{*}$.
(ii) If T is polaroid then by Theorem 2.5 of [9] T^{*} is polaroid. Clearly, N^{*} is nilpotent, since $\left(N^{*}\right)^{n}=\left(N^{n}\right)^{*}$ for some $n \in \mathbb{N}$. Therefore, $T^{*}+N^{*}$ is polaroid, by Theorem 2.10 of [9]. Since $T^{*}+N^{*}$ has SVEP, by Corollary 2.12 of [3], it then follows, by Theorem 2.10 of [16], that $T+N$ satisfies property (gw), or equivalently generalized a-Weyls theorem holds for $T+N$.

Theorem 2.20. Suppose that $T \in \mathbf{B}(\mathcal{X})$ is polaroid, $N \in \mathbf{B}(\mathcal{X})$ a nilpotent operator commuting with T. If T^{*} has SVEP and $f \in \operatorname{Hol}(\boldsymbol{\sigma}(T))$ then property (gw) holds for $f(T)+N$, or equivalently generalized a-Weyls theorem holds for $f(T)+N$.

Proof. By Theorem 2.10 of [16], T satisfies property (gw), or equivalently, by Theorem 2.7 of [16] generalized a-Weyls theorem holds for T. The SVEP for T^{*} implies that $\sigma(T)=\sigma_{a}(T)$, so every isolated point of $\sigma_{a}(T)$ is a pole of the resolvent of T. It follows from [16, Theorem 2.11] that property (gw) holds for $f(T)$. Finally, by Theorem $2.16 f(T)+N$ satisfies property (gw). Since $f\left(T^{*}\right)=$ $f(T)^{*}$ has the SVEP, see [3, Theorem 2.40], by Theorem 2.7 of [16] it then follows that property (gw) and generalized a-Weyls theorem are equivalent.

Remark A. It is somewhat meaningful to ask what we can say about the operators $f(T+N)$, always under the assumptions of Theorem 2.20. Now, if T is polaroid then $T+N$ is polaroid, by Theorem 2.10 of [9]. Moreover, by $T^{*}+N^{*}=(T+N)^{*}$ has SVEP by Corollary 2.12 of [3]. Hence by [16, Thoeorem 2.11] $f(T+N)$ satisfies property (gw) for every $f \in \operatorname{Hol}(\sigma(T))$.

Theorem 2.21. Suppose that $\operatorname{iso} \sigma_{a}(T)=\varnothing$. If T satisfies property (gw) and F is a finite rank operator commuting with T, then $T+F$ satisfies property (gw).

Proof. By Theorem 2.3 T satisfies generalized a-Browder's theorem, it follows from [37, Theorem 2.1] that $T+F$ satisfies generalized a-Browder's theorem. By Lemma 2.6 of [8], $\sigma_{a}(T+F)=\sigma_{a}(T)$, by Lemma 2.13 we have $\pi^{a}(T+F) \subseteq$ $E(T+F)$.
It is easily seen that $E(T+F)$ is empty. Indeed, suppose that $E(T+F) \neq \varnothing$. Let $\lambda \in E(T+F)$. By assumption $\lambda \in \operatorname{iso} \sigma(T+F)$ and $\alpha(T+F-\lambda I)>0$. Clearly, λ is an isolated of $\sigma_{a}(T+F)=\sigma_{a}(T)$, and this is impossible since iso $\sigma_{a}(T)=\varnothing$. Therefore, $E(T+F)=\pi^{a}(T+F)=\varnothing$, so by Theorem $2.3 T+F$ satisfies property (gw).

Theorem 2.22. Suppose that $T \in \mathbf{B}(\mathcal{X})$ is isoloid and F is a finite rank operator commuting with T.
(i)If T* has SVEP and T satisfies property (gw), then $T+F$ satisfies property (gw).
(ii) If T has SVEP and T^{*} satisfies property (gw), then $T^{*}+F^{*}$ satisfies property (gw).

Proof. (i) The SVEP of T^{*} implies that $\sigma(T)=\sigma_{a}(T)$. Since T satisfies property (gw) then T satisfies generalized Weyl's theorem, so it follows from Lemma 3.2 of [23] that T is polaroid. By Lemma 2.9 of [23], $T+F$ is polaroid. Since $T^{*}+F^{*}=$ $(T+F)^{*}$ has SVEP by Theorem 2.14 of [9]. Therefore, property (gw) holds for $T+F$ by Theorem 2.10 of [16].
(ii)The argument is analogous to that of part (i). The SVEP of T implies that $\sigma\left(T^{*}\right)=\sigma_{a}\left(T^{*}\right)$. Since T^{*} satisfies property (gw) then T^{*} satisfies generalized Weyl's theorem, so it follows from Lemma 3.2 of [23] that T^{*} is polaroid. By Lemma 2.9 of [23], $T^{*}+F^{*}$ is polaroid. Since $(T+F)$ has SVEP by Theorem 2.14 of [9]. Therefore, property (gw) holds for $=(T+F)^{*}=T^{*}+F^{*}$ by Theorem 2.10 of [16].

Theorem 2.23. Suppose that $T \in \mathbf{B}(\mathcal{X})$ is polaroid and K is a finite rank operator commuting with T.
(i) If T^{*} has SVEP then $f(T)+K$ satisfies property (gw) for every $f \in \operatorname{Hol}(\sigma(T))$.
(ii) If T has SVEP then $f\left(T^{*}\right)+K^{*}$ satisfies property (gw) for every $f \in \operatorname{Hol}(\boldsymbol{\sigma}(T))$.

Proof. (i) By [3, Corollary 2.45] the SVEP of T^{*} implies $\sigma(T)=\sigma_{a}(T)$. Since T is polaroid, by Theorem 2.11 of [16] it then follows that $f(T)$ has property (gw) for every $f \in \operatorname{Hol}(\sigma(T))$. Now, by Theorem 2.40 of [3] $f\left(T^{*}\right)=f(T)^{*}$ has SVEP, so that, by Theorem 2.7 of [16] generalized a-Weyl's theorem holds for $f(T)$. Since $f(T)$ and K commutes, T is a-polaroid, by Theorem 3.2 of [10] and Corollary 3.10 of [23] we then obtain $f(T)+K$ satisfies generalized a-Weyl's theorem. By Lemma 2.8 of [8] $f\left(T^{*}\right)+K^{*}=(f(T)+K)^{*}$ has SVEP. This implies that property (gw) and generalized a-Weyl's theorem for $f(T)+K$ are equivalent, again by Theorem 2.7 of [16], so the proof is achieved.
(ii) The argument is analogous to that of part (i). Just observe that $\sigma\left(T^{*}\right)=\sigma_{a}\left(T^{*}\right)$ by [3, Corollary 2.45], so that T^{*} is a-polaroid. Moreover, by Theorem 2.11 of [16] it then follows that $f\left(T^{*}\right)$ has property (gw) for every $f \in \operatorname{Hol}(\sigma(T))$. By Theorem 2.40 of [3] $f(T)$ has SVEP, so that, by Theorem 2.7 of [16] generalized a-Weyl's theorem holds for $f\left(T^{*}\right)$. Since $f\left(T^{*}\right)$ and K^{*} commutes, by Theorem 3.2 of [10] and Corollary 3.10 of [23] we then obtain $f(T)+K$ satisfies generalized a-Weyl's theorem. By Lemma 2.8 of [8] $f(T)+K$ has SVEP, so that property (gw) and generalized a-Weyl's theorem for $f\left(T^{*}\right)+K^{*}$ are equivalent, by Theorem 2.7 of [16].

A bounded linear operator T on a Hilbert space \mathcal{H} is said to be quasi-class A if

$$
T^{*}\left|T^{2}\right| T \geq T^{*}|T|^{2} T
$$

The quasi-class A operators were introduced, and their properties were studied in [34]. (see also [30, 43, 44]). In particular, it was shown in [34] that the class of quasi-class A operators contains properly classes of class A and p quasihyponormal operators. Quasi-class A operators were independently introduced by Jeon and Kim [34]. They gave an example of a quasi-class A operator which is not paranormal nor normaloid. Jeon and Kim example show that neither the class paranormal operators nor the class of quasi-class A contains the other. A bounded operator $T \in \mathbf{B}(\mathcal{X})$ is said to be algebraically quasi-class A if there exists a non-trivial polynomial h such that $h(T)$ is quasi-class A, see [17]. It is shown in [17] operators of algebraically quasi-class A are polaroid and has SVEP.

Corollary 2.24. Suppose that $T \in \mathbf{B}(\mathcal{H}), \mathcal{H}$ is a Hilbert space and K is a finite rank operator commuting with T.
(i) If T^{*} is an algebraically quasi-class A then $f(T)+K$ satisfies property (gw) for every $f \in \operatorname{Hol}(\boldsymbol{\sigma}(T))$.
(ii) If T is an algebraically quasi-class A then $f\left(T^{*}\right)+K^{*}$ satisfies property (gw) for every $f \in \operatorname{Hol}(\boldsymbol{\sigma}(T))$.

In general, property (gw) is not transmitted under commuting finite rank perturbation.

Example 2.25. Let $S: \ell^{2} \longrightarrow \ell^{2}$ be an injective quasinilpotent operator which is not nilpotent and let $U: \ell^{2} \longrightarrow \ell^{2}$ be defined by $U\left(x_{1}, x_{2}, \cdots\right):=\left(-x_{1}, 0, \cdots\right)$, $x_{n} \in \ell^{2}(\mathbb{N})$. Define on $\mathcal{X}:=\ell^{2} \oplus \ell^{2}$ the operators T and K by $T:=I \oplus S$ where I is the identity on ℓ^{2} and $K:=U \oplus 0$.
It is easily that $\sigma(T)=\{0,1\}, E(T)=\{1\}$ and $\sigma_{B w}(T)=\{0\}$. Hence T satisfies
generalized Weyl's theorem. Now K is finite rank operator and $T K=K T$, and since T^{*} has a finite spectrum then T^{*} has SVEP and consequently property (gw) holds for T. Moreover, $\sigma(T+K)=\{0,1\}$ and $E(T+K)=\{0,1\}$. As $\sigma_{B w}(T+$ $K)=\sigma_{B w}(T)=\{0\}$, Then $T+K$ does not satisfy generalized Weyl's theorem and hence $T+K$ does not has the property (gw) by Theorem 2.7 of [16].

Example 2.26. This example shows that the commutativity hypothesis in Theorem 2.18 is essential. Let $\mathcal{X}=\ell^{2}(\mathbb{N})$ and T and F be defined by

$$
T\left(x_{1}, x_{2}, \cdots\right):=\left(0, \frac{x_{1}}{2}, \frac{x_{2}}{3}, \cdots\right), \quad\left\{x_{n}\right\} \in \ell^{2}(\mathbb{N})
$$

and

$$
F\left(x_{1}, x_{2}, \cdots\right):=\left(0, \frac{-x_{1}}{2}, 0, \cdots\right), \quad\left\{x_{n}\right\} \in \ell^{2}(\mathbb{N})
$$

Clearly, F is a nilpotent operator and hence of finite rank operator, and T is a quasi-nilpotent satisfying generalized Weyl's theorem since $\sigma(T)=\sigma_{B w}(T)=$ $\{0\}$ and $E(T)=\varnothing$. Now T and F do not commute, $\sigma(T+F)=\sigma_{W}(T+F)=$ $E_{0}(T+F)=\{0\}$, and $T+F$ does not satisfy Weyl's theorem. So $T+F \notin g W$ and hence $T+F$ does not satisfy property $(g w)$.

The basic role of SVEP arises in local spectral theory since for all decomposable operators both T and T^{*} have SVEP. Every generalized scalar operator on a Banach space is decomposable (see [39] for relevant definitions and results). In particular, every spectral operators of finite type is decomposable.

Corollary 2.27. Suppose that $T \in \mathbf{B}(\mathcal{X})$ is generalized scalar and K is a finite rank operator commuting with T. Then property (gw) holds for both $f(T)+K$ and $f\left(T^{*}\right)+$ K^{*}. In particular, this is true for every spectral operator of finite type.

Proof. Both T and T^{*} have SVEP. Moreover, every generalized scalar operator is polaroid. The second statement is clear: every spectral operators of finite type is generalized scalar.

Recall that a bounded operator T is said to be algebraic if there exists a nontrivial polynomial h such that $h(T)=0$. From the spectral mapping theorem it easily follows that the spectrum of an algebraic operator is a finite set. A nilpotent operator is a trivial example of an algebraic operator. Also finite rank operators K are algebraic; more generally, if K^{n} is a finite rank operator for some $n \in \mathbb{N}$ then K is algebraic. Clearly, if T is algebraic then its dual T^{*} is algebraic.

Theorem 2.28. Suppose that $T \in \mathbf{B}(\mathcal{X})$ and $K \in \mathbf{B}(\mathcal{X})$ is an algebraic operator commuting with T.
(i) If $T \in P(\mathcal{X})$ then property (gw) holds for $T^{*}+K^{*}$.
(ii) If $T^{*} \in P(\mathcal{X})$ then property (gw) holds for $T+K$.

Proof. (i) If $T \in P(\mathcal{X})$ then T has SVEP and hence $T+K$ has SVEP by Theorem 2.14 of [9]. Moreover, T is polaroid so also $T+K$ is polaroid by Theorem 2.14 of [9]. By Theorem 2.10 of [16], then property (gw) holds for $T^{*}+K^{*}$.
(ii) If $T^{*} \in P(\mathcal{X})$ then T^{*} has SVEP and hence $T^{*}+K^{*}$ has SVEP by Theorem 2.14 of [9]. Moreover, T^{*} is polaroid so also $T^{*}+K^{*}$ is polaroid by Theorem 2.14 of [9]. By Theorem 2.10 of [16], then property (gw) holds for $T+K$.

A bounded linear operator T on a Banach space \mathcal{X} is said to be paranormal if

$$
\|T x\|^{2} \leq\left\|T^{2} x\right\|\|x\| \quad \text { holds for all } x \in \mathcal{X}
$$

The class of paranormal operators properly contains a relevant number of Hilbert space operators, among them p-hyponormal operators, log-hyponormal operators, and the class A operators. Note that, in general, paranormal operators do not satisfy property $H(p)$, see [13] for a counter-example. A bounded operator $T \in \mathbf{B}(\mathcal{X})$ is said to be algebraically paranormal if there exists a non-trivial polynomial h such that $h(T)$ is paranormal. Note that every paranormal operator on a Hilbert space \mathcal{H} has SVEP, see [9, Page 1799]. Moreover, algebraically paranormal operators are polaroid.

Corollary 2.29. Suppose that $T \in \mathbf{B}(\mathcal{H}), \mathcal{H}$ is a Hilbert space and $K \in \mathbf{B}(\mathcal{X})$ is an algebraic operator commuting with T.
(i) If T is algebraically paranormal then property (gw) holds for $T^{*}+K^{*}$.
(ii) If T^{*} is algebraically paranormal then property (gw) holds for $T+K$.

Proof. Proceed as in the proof of Theorem 2.28.
Acknowledgement. The author thank the referee for useful comments and suggestions that will improve the quality of this paper.

References

[1] P. Aiena and O. Monsalve, The single valued extension property and the generalized Kato decomposition property, Acta Sci. Math. (Szeged), 67(2001), 461-477.
[2] P. Aiena, M.L. Colasante and M. Gonzealez, Operators which have a closed quasi-nilpotent part, Proc. Amer. Math. Soc., 130 (9)(2002), 2701-2710
[3] P. Aiena, Fredholm and local spectral theory with applications to multipliers, Kluwer, 2004.
[4] P. Aiena and C. Carpintero, Weyl's theorem, a-Weyl's theorem and singlevalued extension property, Extracta Math., 20(2005), 25-41.
[5] P. Aiena, Classes of operators satisfying a-Weyl's theorem,Studia Math., 169(2005), 105-122.
[6] Aiena, P. and Peña, P., Variations on Weyls theorem, J. Math. Anal. Appl., 324(1)(2006), 566-579.
[7] P. Aiena and M. T. Biondi, Property (w) and perturbations, J. Math. Anal. Appl., 336 (2007), 683-692
[8] P. Aiena, Property (w) and perturbations II, J. Math. Anal. Appl., 342 (2008), 830-837
[9] Aiena, P., Guillen, J. and Peña , P., Property (w) for perturbations of polaroid operators, Linear Alg. Appl., 428 (2008), 1791-1802
[10] P. Aiena , M. T. Biondi and F. Villafañe , Property (w) and perturbations III, J. Math. Anal. Appl., 353 (2009), 205-214
[11] P. Aiena and O. Monsalve, Operators which do not have the single valued extension property, J. Math. Anal. Appl., 250 (2001): 435-448.
[12] P. Aiena and T.L. Miller, On generalized a-Browder's theorem, Studia Math., 180 (3)(2007), 285-300.
[13] P. Aiena, J.R. Guillen, Weyls theorem for perturbations of paranormal operators, Proc. Amer. Math. Anal. Soc., 35 (2007), 2433-2442.
[14] M. Amouch, Generalized a-Weyls Theorem and the Single-Valued Extension Property, Extracta Math., 21(1)(2006), 51 -65
[15] M. Amouch, H. Zguitti, On the equivalence of Browder's and generalized Browder's theorem, Glasgow Math. J. ,48 (2006), 179-185.
[16] M. Amouch, M. Berkani, on the property (gw), Mediterr. J. Math., 5(2008), 371-378.
[17] I. J. An, Y. M. Han, Weyls theorem for algebraically quasi-class A Operators, Integral Equation Operator Theory, 62(2008), 1-10.
[18] M. Berkani, M. Sarih, An Atkinson-type theorem for B-Fredholm operators, Studia Math., 148 (3)(2001), 251-257.
[19] M. Berkani, Index of B-Fredholm operators and generalization of a Weyl theorem, Proc. Amer. Math. Soc., 130(2001), 1717-1723.
[20] M. Berkani, B-Weyl spectrum and poles of the resolvent, J. Math. Anal. Appl., 272(2002), 596-603.
[21] M. Berkani, J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged), 69 (1-2)(2003), 359-376.
[22] M. Berkani, A. Arroud, Generalized Weyl's theorem and hyponormal operators, J. Austral. Math. Soc. , 76(2004), 1-12.
[23] M. Berkani, On the equivalence of Weyl theorem and generalized Weyl theorem, Acta Math. Sinica, 272 (1)(2007), 103-110.
[24] X. H. Cao, a-Browder's theorem and generalized a-Weyl's theorem, Acta Math. Sinica, 23 (5)(2007), 951-960.
[25] L.Chen, R.Yingbin, Y.Zikun, p-hyponormal operators are subscalar, Proc. Amer. Math. Soc., 131(2003), 2753-2759.
[26] L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J., 13(1966), 285-288.
[27] R. E. Curto and Y. M. Han, Weyl's theorem, a-Weyl's theorem and local spectral theory, J. London Math. Soc., 67 (2) (2003), 499-509.
[28] D. S. Djordjević, Operators obeying a-Weyl's theorem, Publ. Math. Debrecen, 55 (3-4) (1999), 283-298.
[29] B. P. Duggal and S. V. Djordjevic, Generalized Weyl's theorem for a class of operators satisfying a norm condition II, Math. Proc. Royal Irish Acad., 104A (2006), 1-9.
[30] B. P. Duggal , I. H. Jeon and I. H. Kim , On Weyl's theorem for quasi-class A operators, J. Korean Math. Soc., 43 (4)(2006), 899-909.
[31] J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math., 58 (1975), 61-69.
[32] Y.M.Han, A.H.Kim, A note on *-paranormal operators, Integral Equation Operator Theory, 43(2004), 290-297.
[33] R. E. Harte, Invertibility and singularity for bounded linear operators, Marcel Dekker, New York, 1988.
[34] I. H. Jeon and I. H. Kim, On operators satisfying $T^{*}\left|T^{2}\right| T \geq T^{*}|T|^{2} T^{*}$, Linear Alg. Appl., 418 (2006), 854-862.
[35] J.C.Kim, On Weyl spectra of algebraically totally-paranormal operators, Bull. Korean Math. Soc., 39(2002), 571-575.
[36] J. J. Koliha, Isolated spectral points, Proc. Amer. Math. Soc., 124(1996), 34173424.
[37] M. Lahrouz, M. Zohry, Weyl type theorems and the approximate point spectrum, Irish Math. Soc. Bulletin, 55(2005), 41-51.
[38] K. B. Laursen, Operators with finite ascent, Pacific J. Math., 152(1992), 323336.
[39] K. B. Laursen and M. M. Neumann, An introduction to local spectral theory, Oxford, Clarendon, 2000.
[40] M. Mbekhta, Sur la théorie spectrale locale et limite de nilpotents, Proc. Amer. Math. Soc., 3(1990), 621-631.
[41] M. Oudghiri, Weyl's and Browder's theorem for operators satisfying the SVEP, Studia Math., 163(2004), 85-101.
[42] V. Rakoc̃evic, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl., 34 (10)(1989), 915-919.
[43] M. H. M. Rashid, M. S. M. Noorani, On relaxation normality in the fuglede-putnam theorem for a quasi-class A operators, Tamkang J. Math., 40 (3)(2009), 307-312.
[44] M.H.M. Rashid, M.S.M. Noorani and A.S. Saari, Weyl's Type Theorems for Quasi-Class A Operators, J. Math \& Stat., 4 (2) (2008), 70-74.

Dept. of Mathematics \& Statistics
Faculty of Science
P.O.Box(7)

Mu'tah University
Al-karak - Jordanemail:malik_okasha@yahoo.com

[^0]: Received by the editors October 2010 - In revised version in January 2011.
 Communicated by F. Bastin.
 2000 Mathematics Subject Classification : Primary 47A53, 47A55; Secondary 47A10, 47A11, 47A20.

 Key words and phrases : Generalized Weyl's theorem, Generalized a-Weyl's theorem, Property (gw), Polaroid operators, Perturbation Theory.

