An entropy solution for some degenerate or
singular obstacle parabolic problems with
L' —data via a sequence of penalized equations

E. Azroul H. Redwane M. Rhoudaf

Abstract
We give an existence result of the obstacle parabolic degenerate or sin-

gular problem associated to the equation, g—? + A(u) = f in Qr, where A
is a classical Leray-Lions operator acting from the weighted Sobolev space
LP(0,T, Wg’p(ﬂ, w)) into its dual LP (0, T, W=7 (Q, w*)), while the datum f
is assumed to lie in L' (Qr). The proof is based on the penalization methods.

1 Introduction

In this paper, we investigate the problem of existence of solutions of the obstacle
problems associated to the following initial-boundary value problem:

3—;‘ _ div(a(x, b, Vi) = f in Qr = QO x (0,T)
(Pe)§ o = on £ =0 x (0,T)
u(0) = ug in Q,

where () is an open bounded subset of RN, N >1, T > 0, and we have set Qr
the cylinder Q) x (0, T) and X its lateral surface.
We assume that —div(a(x,t,u, Vu)) is a Leray-Lions operator defined from the

weighted Sobolev space L? (0, T, W&’p((), w)) into its dual LY (0, T, W~ 1#'(Q, w*))
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where w = {w;, 0 < i < N} is collection of weight functions on 2, 1 < p <
0o, w* = {wil_r’/, 0 < i < N}, and where a(x,t,5,&) : Qr x R x RN — RN is
a Carathodory function satisfy some suitable hypotheses (see assumption (H,)).
The data f € L'(Qr), uo € L'(Q) and uy > 0.

More precisely, this paper deals with the existence of a solution to the obsta-
cle degenerate or singular parabolic problem associated to (P.) in the sense of
entropy solution:

(4> ae in Qr
Ti(u) € LP(0, T, W,” (Q,w)), u € C([0, T], L}(Q2))
0
/Q Si(u— @) (1) dx + /Qr a—(ka(u — @) dx dt
(Pu) -1—/ a(x,t,u, Vu)VTi(u— ¢) dx dt

T

S/Q fTi(u— @) dxdt—l—/QSk(uo—q)(x,O))dx VTt e[0,T], Vk>0

¢ € Ky N L®(Qr) N C([0,T], L (Q)) such that %—‘f e LY (W= (Q,w")).

t
where S;(t) = / Tils) ds, Ky = {u € L7(0, T, Wy (Q,w)), u > p ae.in Qr}.
0

and ¥ € L*(Q) N WP (Q, w).

The aim of our work is to investigate the relationship between the obstacle
problem (P,) and some penalized sequence of approximate equations. More pre-
cisely letting { fe} and uf be a standard approximation of f and u (thatis fe — f
in L'(Q) and u§ — up in L}(Q)), and considering the following penalized se-
quence of approximate equations:

ou ) 1 _ .
a—e - le(a(X, t, ue, vue)) - _Te(ue - 1P) = fe III QT
(Pe) t_ €
e ue =0 on %
ue(0) = ug in Q.

We study the possibility to find a solution of (P, ) as a limit of a subsequence {u,}
of solutions of (P¢).

The penalized term 2Tc(ue — 9)~ introduced in (P¢) play a crucial role in the
proof of our main result, in particular this term allows to prove that the solution
u of (P,) belongs in the convex set Ky (that is u > ).

A priori estimates of Ti(uc) are obtained in the general settings L? (0, T, W&’p (Q,
w)). For the passage to the limit, we prove the strong converge of the truncation
of ue and the almost everywhere convergence of Vu.. The model example is an
equation,

ou

oF Ap,wu = f ’
where A, is the so-called degenerate or singular p—Laplacian operator, that is
Apw(u) = —div(w(x)|Vu|P~2Vu), where w(x) is some weight function defined

on () (see section 3 for more details).
In this context of degenerate or singular parabolic problems, existence results for
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(P,) have been proved in [2] when the data f belongs to L? (0, T, W~*' (1)) and
ug is in L2(Q)), while the strongly nonlinear variational case is investigated in [3].
For the nondegenerated cases, we refer the reader to ([14], [25], [26]).

Let us mention that our paper can be seen as a continuation of the works ([2], [3])
and as a generalization of the works ([14], [25], [26]).

2 Abstract framework

Let (2 be a bounded open subset of RN, p be a real number such that 1 < p <
oo and w = {w;(x), 1 < i < N} be a vector of weight functions, i.e., every
component w;(x) is a measurable function which is strictly positive a.e. in Q.
Further, we suppose in all this section that, there exists

]

ro > max(N, p) such that w.°"" € L}, (Q)) (2.1)

loc

and :

w!™ e Ll (Q) (2.2)

1
forany 0 <i < N.
We denote by W#(Q, w) the space of all real-valued functions u € LF(Q, wp)
such that the derivatives in the sense of distributions fulfill
ou

a—xi € LP(Q,w;) forall i=1,..,N.

Which is a Banach space under the norm,

1

alatfff) |Paw; (x) dx] y (23)

N
_ Py d /
o [/Q|u<x>| max+ ) [

The condition (2.1) implies that C3’(Q)) is a subset of WY (Q), w) and conse-
quently, we can introduce the subspace W&’p (Q, w) of W'P(Q, w) as the closure
of C§°(Q)) with respect to the norm (2.3). Moreover, the condition (2.2) implies
that WP (Q), w) as well as Wg P(Q), w) are reflexive Banach spaces.

We recall that the dual space of weighted Sobolev spaces WS P(Q, w) is equiv-
alent to W=1#'(Q), w*), where w* = {w; = w}_pl, i=0,.., N} and where p’ is
the conjugate of p, i.e., p' = %. For more details about the weighted Sobolev

spaces, we refer the reader to [18].
Now we turn out to give some fundamental results which allow to study the
parabolic problems in a general settings of weighted Sobolev spaces.

In order to deal with time derivative, we introduce a time mollification of a
function u belonging in some weighted Lebesgue space. Thus we define for all

t
p>0andall (x,t) € Qr: uy = ;4/ i(x,s)exp(u(s —t)) ds where ii(x,s) =
u(x,s)X(O,T).
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Proposition 2.1. (cf. [3])

d
1) Ifu € LP(Qr, w;), then, uy is measurable in Qr, % = pu(u —uy) and

(/Q o dt); = (/Q |u|Pw;(x) dx dt) ' )

e, [upllrorw) < ullrQpw):-
2) Ifuc Wg’p(QT,w), then u, — u in Wé’p(QT,w) as y — oo,

3) Ifu, > uin W&’p(QT,w), then (un)y — uy in W&’p(QT,w).

Now, we give some imbedding and compactness results in weighted Sobolev
Spaces which allow in particular to extend in the settings of weighted Sobolev
spaces, some trace results and the Aubin’s and Simon’s results [27].

LetV = WS’P(Q, w), H = L*(Q), o) (where ¢ is a weight function on Q such
that o € L}(Q)) and ¢! € L}(Q))) and let V* = WL/ (Q, w*), with 2 < p < o0).
Let X = LP(0, T, V). The dual space of X is X* = LP' (0, T, V*) where % -+ % =1

and denoting the space W; (0,T,V,H) = {v € X: v € X*} endowed with the
norm
loelly = Iluallx + [l x-, (2.4)

which is a Banach space. Here 1’ stands for the generalized derivative of u, i.e.,

T / T / [e]
/0 W () o(t) df = —/0 u(t)g! (t) dt forall ¢ € C(0,T).

Lemma 2.2. The Banach space H is an Hilbert space and its dual H' can be identified
with him self, i.e., H ~ H.

Proof. Indeed, let
F:HxH—R

(f,8) — /Qfgff dx.

Remark that F is a symmetric bilinear form, which is also continuous and defined
positively, since

/Qfgadx:/afa%ga% dx < (/Q|f]2(7dx)%</0]g|zadx>%.

Then, the Banach space H is an Hilbert space. Finally by a standard argument,
we can identified H with its dual H' i.e., H ~ H. [ ]

Lemma 2.3. (cf. [3])
The evolution triple V. C H C V* is verified.
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Lemma 2.4. (cf. [3])
Assume that, Ot = hy +k, in D'(Q), where hy, and k,, are bounded respectively

8t
in LP'(0, T, WYV (), w*) and in L*(Qr).

If uy, is bounded in L¥ (0, T, W&’p(ﬂ,w)), then u, — u in L] (Qr,0).

Lemma 2.5. (cf. [3])

Let g € L"(Qr,y) and let g» € L"(Qr,7), with |[gnllLr(qpq) < 61 <7 < oo If
gn(x) = g(x) a.ein Qr, then g, — gin L"(Qr,y), where — denotes weak convergence
and vy is a weight function on Qr.

Lemma 2.6. (cf. [29]) Let V C H C V* be an evolution triple. Then the imbedding
W, (0,T,V,H) < C([0, T], H)

is continuous.

3 Basic assumptions and Main results

We suppose in all our considerations that, there exists

0 -1

ro > max(N, p) such that w*" € L] .(Q) and w!™' € L} .(Q),

for any 0 <i < N. Now we state our basic assumptions:
Assumption (Hj). For 2 < p < oo, we suppose that the expression:

Il = (2/ el )i 1)

is anorm on W& P(0), w) which is equivalent to (2.3) and that there exists a weight
function ¢ on ) such that,

ceLY(Q) and o~ ! e L}(Q). (3.2)

and for which the Hardy inequality,

(/ lu(x |Padx) <c<2/ |8x1| wilx )é, (3.3)

holds for every u € Wg’p (Q), w) with a constant ¢ > 0 independent of 1. More-
over, the imbedding

WP (Q,w) = LP(Q,0) (3.4)

expressed by the inequality (3.3) is assumed compact.
Now we give some examples in which the abstract hypothesis (H;) is satisfied:
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Remark 3.1. Assume that wo(x) = 1 and there exists v € | ¥, 400 [N [ﬁ, —1—00[

such that
N

w¥ T, w ' e LY(Q) forall i=1,..,N. (3.5)

1

Then, it’s easily seen that the assumptions (3.5) imply that,

]| = (Z JREEHE ) (3.6)

is a norm defined on Wg’p (), w) and it’s equivalent to (2.3) and that, the imbed-
ding

WP (Q,w) << LP(Q) (3.7)
is compact [see [18], pp 46].
Thus the hypotheses (H) is satisfied for o = 1.
Remark 3.2. If we use the special weight functions w and ¢ expressed in terms

of the distance to the boundary dQ). Denote d(x) = dist(x,9Q)) and set w(x) =
o(x) = d*(x). In this case, the Hardy inequality reads

</Q e dt); = </Q [VulPw(x) dx dt);

(N-1)

N
The condition (3.8) is sufficient for the compact imbedding (3.4) holds (see for
example [17],[18]).

Assumption (Hy). Let a = (4;)1<i<n be a family of Carathodory functions de-
fined on Q x R x RN such that for a.e. (x,t) € Qand alls € R, & € RN

for

A<(p-1) (3.8)

=

4, t,5,8)| < o] (x) lea(x, 1) + 07|57 + Zw x)|gilP1, (3.9)
j=

for1 <i<N

[a(x,t,5,&) —a(x,t,5,7)](E—n) >0 for all £#ncRN (3.10)

N
a(x/ t,S,(:).g > “Zwi|§i|pl (3.11)

i=1

where ¢1(x,t) is a positive function in L (Q), and &, B are strictly positive con-
stants.

Assumption (H3). Let Ky = {u € W&’P(Q,w); u>1 ae in Q}. whereyp: Q) —
R is a measurable function on Q) such that

Ky NL®(Q) # @. (3.12)
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We suppose that
fell(), (3.13)

and
up € LY(Q) and ug > 0 a.e. in Q. (3.14)

We recall that, for k > 1 and s in IR, the truncation is defined as

B s if |s] <k
Tel$) = kg if s > k.

Now, we recall the following lemmas:

Lemma 3.3. Assume that (Hy) holds. Let F : R — R be uniformly Lipschitzian, with

F(0) = 0. Letu € WS’P(Q,w). Then F(u) € W&’p((),w). Moreover, if the set D of
discontinuity points of F' is finite, then

d(Fou) F’(u)g—; ae. in {xeQ:u(x)¢D}
ox; 0 ae. in {xeQ:u(x)eD}.

Proof. See [13] (see also [5]). [
From the previous lemma, we deduce the following.

Lemma 3.4. Assume that (Hy) holds. Let u € W&’p (Q, w), and let Ty.(u) be the usual
truncation (k € RT), then Ty(u) € WS’P(Q,w). Moreover, we have

Ti(u) — u strongly in WS’P(Q,w).
Proof. See [13] (see also [5]). [ |

The following lemma generalizes to the weighted case the analogous Lemma
5in [12]. For that, we use the method of [12] and [23] which gives the strong
convergence of uy,.

Lemma 3.5. Assume that (Hy) and (Hy) are satisfied and let (u,) be a sequence in
LP(0, T, W&’p((), w)) such that u, — u weakly in L¥(0, T, W&’p(Q, w)) and

/ la(x,t,uy, Vuy) —a(x, t,u,, Vu)|[Vu, — Vu] dxdt — 0. (3.15)
Q

Then, u, — win LP(0, T, Wg’p(ﬂ,w)).

Proof. See [3]. [ |
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4 Existence result

This section is devoted to establish the existence theorem.

Theorem 4.1. Let ug € L'(Q) such that ug > 0. Assume that (Hy), (H,) and (H3)
hold true. Then there exists at last one solution u € C([0, T]; L*(Q)) such that
u(x,0) = ug a.e. and for all T €]0, T],

[ Ti(u) € LP(0, T, WlP(Q w)),u > ae. in Q,
/st(u(’l,') — (7)) dx + <?9f Ti(u — ¢))o, -1-/ (x,t,u, Vu)VTi(u — @) dx dt
< /QTka(u—(p) dx dt—l—/QSk up — ¢(x,0)) dx

| Vk>0and Vg eKyn L*(Q) such that %—(f e LV (0, T, W' (Q, w*))

where Qr = Ox]0, T|.

Proof. The proof is divided into 3 steps.

Step 1: A priori estimates

Consider the approximate problem
d 1
e div(a(x, b e, Vite)) — =T (e — )~ = fe

(Pe) ot 1 € ¢

ue € LP(0, T, Wy (Qw)), ue(x,0) = u§

where fo — f strongly L}(Q), u§ — up strongly L(Q).

Thanks to [3], there exists at least one solution of the problem (P).
By choosing T (ue — Tg(ue)), B = [l as test function in (Pe), we get

ou
( ate Tv(uel Tg(ue))) + /{,Bfue|fﬁ+'7} a(x,t,ue, Vue)Vue dx dt
- /Q T (tte — )Ty (e — Tp(ue)) dx dt = /Qfen(ue — Ta(ue)) dx dt
(4.1)
On the one hand, we have
ou
<a—te,T (1te — Tg(uie)) / S (ue(T)) dx — /ng(ug) dx (4.2)

where S° y(s) = / T, (t — Tg(t)) dt. Since a satisfies (3.11) and by using the fact
0
that /QSP,(ue(T)) dx > 0and | / S/3 0 dx| < y||ul||, we getVe > 0:

Oute |
E)xi

g
{B<|uel<p+v} i3
— = | Ti(ue — ) Ty(ue — Tg(ue)) dx dt < cvy, (4.3)
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where c is a constant which varies from line to line and which depends only the
data. It follows that

N /Q 1Tl (ue =)~ Tl _'yTﬁ(ME)) dxdt <c

€ €

T. —T
since —/ %Tl(ue — )~ e S pliie)) dx dt > 0, for every B > [|iP|lc, We
Q €

deduce by Fatou’s lemma as y — 0 that

1
~Ti(ue —v)~ <c. 4.4
/Q (e — )~ < ¢ (4.4)

€ €

Using in (P¢) the test function T¢(ue)y .., We get for every T € (0,T),

(o1)”

/st(ue(r)) dx—t—/QTa(x, b T (ue), VT (ue)) VT (e) dx dt

__/ T3 (( ) Ti(ue) dx dt < ck,
which gives thanks to (4.4):
/ Se(ue (7)) dx + / a(x,t, Ty (ue), VTi(ue)) dx dt < ck. 4.5)
Q Qr
Then,
/ OTe(ue) " () dxdt < ck, Wk > 1. 4.6)
Qz 1 axl

Hence, Ty (1) is bounded in LF (0, T, Wé’p(ﬂ, w)).
Let k > 0 large enough and By be a ball of (), we have,

k meas({|uc| >k} NBg x [0,T]) =

T T
// |Tk(ue)|dxdt§/ / Ty (ue)| dox dt
0 {|u6\>k}ﬁBR 0 Br
1
p T 1— P
< /]Tk(ue)]pwodxdt X / w, " dxdt
Q 0 JBg

then, thanks to (Hj), we deduce that,

1
o

1
p

k meas({|ue| > k} NBg x [0, T]) ( aTque (x)dxdt| < kP
1
(4.7)
which implies that, meas({|ue| > k} NBg x [0, T]) < 1C -, Vk > 1.So, we have,
kK r
lim (meas({(x,t) € Q: |ue|] >k} NBgr x[0,T]) =0 (4.8)

k— 400
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uniformly with respect to €.
Consider now a function nondecreasing & € C?(RR) such that

(s) = for |s| < &
Ck(s) =k for |s| > k.
Multiplying the approximate equation by & (ue), we get

(Ck(ue)) —div(a(x, t, ue, V”E)‘:llc(”e)) +a(x, t, ue, v”E)‘:Ilcl(”e)

‘%Tﬂ(”e — )7 )G(ue) = felp(ue),

in the sense of distribution.

This implies, thanks to (4.6) and the fact that §; has compact support, that {j (uc) is
bounded in LP(0, T, Wg’P (Q), w)), while it’s time derivative % (Cx (ue)) is bounded
in LY (0, T, W=7 (Q, w*)) + L}(Qr), hence lemma 3.3 allows us to conclude that
Cx(ue) is compact in LfOC(QT, o).

Thus, for a subsequence, it also converges in measure and almost every where in

Qr since we have, for every A > 0

9
ot

meas({|ue — ty| > A} N Bg x [0, T]) < meas({|ue| > 5} N Br x [0,T])

+ meas({|u,| > g} N Br x [0, T]) + meas({ |k (ue) — C(uy)| > A} N Br x [0, T]).
4.9)
Let 0 > 0, then, by (4.8) and the fact that ¢y (1) is compact in Lf ».(Q1,0), there
exists k(c) > 0 such that, meas({|ue — uy| > A} NBg x [0,T]) < o forall €, <
€o(k(c), A, R). This proves that (u¢) is a Cauchy sequence in measure in Bg X
[0, T], thus converges almost everywhere to some measurable function u. Then
for a subsequence denoted again 1., we can deduce from (4.6) that,

Ti(ite) — Tie(#) weaklyin LP(0, T, W, (Q, w)). (4.10)
and then, the compact imbedding (3.4) gives,
Ti(ue) — Ty(u) stronglyin LF(Qr,0) and a.e.in Qr. (4.11)

Step 2: About the gradient of approximate solutions.
In the sequel and throughout the paper, we will denote a(e, y,s) all quantities
(possibly different) such that, lim lim lim «(e, p,s) = 0. Taking now T} (ue —

5—00 h—00 e— 40
(Tie(u))u), 1 > 0 as test function in (Pe), we get

<%IT17(”6 - (Tk(”))y)> + /Qa(x, t,ue, Ve )VTy (e — (Tr(u)) )

1
-2 /QT T (1t = )7 ) Ty (e — (Te(w)),) dx dt < e,
which implies that,
Jile
<%,T77(ue — (Tie(u))p)) + QTa(x, tyute, Vie)VTy (e — (Ti(u))y) dx dt

17 -
<_ —_
¢ Jo, 1%((% )" ) dx dt +cy
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and by (4.4)
Oile
<a_”t, Ty (e — Te(u),)) + o a(x, t, e, Vite) VT (e — (Ti (1)) (412)
< cy.

The first term of the left-hand side of the last inequality reads as,

ou oue  0Tk(u)
(a—:,TW(ue—Tk(u)y» = ate T VITW(”e_Tk(”)ﬂ» (4.13)
OTy(u)u '
+( 5 , Ty (e = Tie(u)y)).
The second term of the last equality can be written as,
ou T (u)y
(5 — o Tiltte = Te(w)y) (414)

= [ 83(0e(T) = Tu(w) (1)) dx = [ 8,(u5) dx > =y [ Juf] dx > —pe.
The third term can be written as,

A 1 e~ Tefu),) = g  (T(u) = Tew)) (T (e = Tiw))) - (415)

thus by letting € — 0 and by using Lebesgue theorem,

hm [ (Tie(u) = Tie(u) ) (T (e = Te(u)p)) = / (Tie (1) = Toe ()2 (Tyy (4 = Tie () 0 ))-

e=0JQr Qr

Consequently,
Jue

(5 Ty (tte = Te(w))) = ale, p) —1pc (4.16)

on the other hand,
a(x,t,ue, Vie)VTy(ue — T(u),) dx dt

T
/ a(x, t, e, Vite) (Vite — VTi(u),) dx dt
Hue=Ti(u)p)|<n}

o

/ a(x,t, Te(ue), VT (1)) (VT (11e) — VTi(u),) dx dt
{|Tk Ue) Tk ;4 |<77}

a(x,t,ue, V) (Ve — VTi(u),) dx dt
{Jute| >k} ue—Ty (1) )| <17} ( € e)(Vue i ( )y)

which implies, by using the fact that
/ a(x,t,ue, Vue)Vue dx dt > 0,
{[uel >k} N {{ue—Ti(u)u)|<n}

that
/ a(x,t, Ti(e), VTi(11e)) (VT (te) — VTi(u),,) dox dt
{Tie)~Te(w)) <}

=t a(x,t,ue, Vue)|VTi(u),| dx dt.
! {luel >k} {|ue—Ti(u)u)|<n} ( € )| VT ()

(4.17)
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N
Since a(x,t, Tgyy (e ), VTieyy (1e)) is bounded [ [L? (Qr, w]), there exists some
i=1

N

hiery € [ TLY (Qr, w}) such that, a(x, t, Teiy (ue), VTiyy () = hieyy weakly in
=1

N l

[ TL” (Qr, wf). Consequently,

i=1

a(x,t,ue, Vuue)|VTi ()| dx dt
/{ue|>k}ﬂ{|u€—Tk(u)y)<,7} ( )| k( )y|

= hi oy | VT (1), dx dt + a(e)
(ul>Kn{u-Tw) <y :

thanks to proposition 2.1, one easily has,
Mo |V T (1) | dx dt = a(p).
A|u|>k}m{|u—Tk<u>y>|<n} ! " '
Hence,

/ a(x,t, Ty (1e), V(1)) (VT (tte) — VTi(u),) dx dt (4.18)
T (ue) = T(u)p)|<n}

<cn+ae u).

On the other hand, note that
/ a(x,t, Ty (ue), VT (1)) (VT (1te) — VTi(u),) dx dt
{I Tk (ue) = Ti(u) ) [<n}

= a(x,t, Ty (ue), VT (ue)) (VT (ue) — VT (u)) dx dt
{ITi(ue) = Tie(w) )| <}

a(x,t, Tr(ue), VTi(ue) ) (VT (1) — VTi(u),) dx dt
{ITie(ute) =T () )| <7}
(4.19)

the last integral tends to 0 as € — 0 and y — 0. Indeed, we have that
/ a(x,t, T (ue), VTi(11e)) (VT (1) — VTi(u),) dx dt
{1 (ue) = Ti(u) ) | <7}
— he(VTi(u) — VTi(u),) dx dt as € — 0.
(1T ~Ti(wyl <} "

It is obviously that, / e (VTi(u) — VTi(u),) dx dt — Oaspy —
{17 () = Tie(w) ) [ <}
co. We deduce then that,
a(x,t, Ti(ue), VTi(ue)) (VT (ue) — VTi(u)) dx dt < cn+a(e, u).
(4.20)
Let Ac = ([a(x, b Ty (tte), VTi(11e)) — a(x, t, Ty(ue), VT (1)) [V T (1e) — VTk(u)]>,
then for any 0 < 6 < 1, we write

/{Tk(”e)—Tk(”)y)<’7}

I = AY dx dt + AY dx dt

[{Tk(ue)—Tk(u)y)éﬂ} {ITie(ue) =Tie(u)p) [>11}
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N /
since, a(x, Ty (ue), VTi(ue)) is bounded in [ JL¥ (Qr, w}_p ), while VT (1) is
i=1

N
bounded in [ [ L?(Qr, w;), then by applying the Holder’s inequality, we obtain,
i=1

0
L <c ( / A dx dt) (4.21)
{1 Ti(aee) ~T(w),) [ <1}

+ co meas{(x,t) € Qr: |Ti(ue) — Ti(u),)| > 17}1_9

on the other hand, we have,
/ A dx dt
T (ue) =T (u) ) |<n}

= a(x,t, Te(ue), VTi(ue))(VTi(ue) — VTi(u)) dx dt
(1mtue)- T gy 0 T VTt (Ve ) = Vi) (422)

— a(x,t, Ty (ue), VT (1)) (VT (ue) — VTi(u)) dx dt
{1 (ue) = Ti(u) ) | <7}
= Il + 12
using (4.20), we have,
I} <cp+alen). (4.23)
Concerning I? the second term of the right hand side of the (4.22), it is easy to see
that
I = a(e) (4.24)
because foralli =1, .., N, wehave, a;(x, t, Ty (ue), VT (1)) — a;(x,t, Te(u), VTi(u))
strongly in LY (Qr, w}—p ), while BTSECL,-IE) - agggiu) weakly in LP(Qr, w;).
Combining (4.21), (4.22), (4.23) and (4.24) we get,

le < ¢ meas{|Tic(ue) — Tie(u)| < 1} +clale, p,m) ~°
and by passing to the limit sup over ¢, u and 7

lim ([a(x,t,Tk(ue),VTk(ue))—a(x,t,Tk(ue),VTk(u))]

€—=0JQr
0
[VTi(e) = VTi(w)]) =0

by Theorem 3.3 of [15] (see also [8], [9]), there exist a subsequence also denoted
by u, such that,
Vue — Vu ae. in Q. (4.25)

Step 3: Passage to the limit

Let ¢ € Ky N L®(Q), choosing Ty (e — @)y o as test function in (Pe), we get,

o

Jule
(%, Ti(ue — @))o, + /Q a(x, t,ue, Vi) VT (ue — @) dx dt
—% / Ti(ue —¢) Tr(ue — @) dx dt (4.26)

= /Q feTx (e — @) dx dt
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) 1 _ aue a ago
_ — - > 7 = 3. \He — o
since, - /T T%(ue ) Ti(ue — @) dx dt > 0 and 5 at(ue ?)+ 5 we
get

[ Siiee(0) = p(1)) dx + (5L, i — @),
-|—/Q (x,t,ue, Ve )VTi(ue — @) dx dt
< [, fTelue — gy dxat+ | 5(ue(0) ~ 9(0)) dx.
(4.27)

Lemma 4.2. Assume that the assumptions of Theorem 4.1 hold true. Let u® be a se-
quence of solutions of (Pe) converges to u a.e. in Q. Then the sequence u is a Cauchy
sequence in C([0, T], L}(Q)), moreover, u € C([0, T], L'(Q)) and u, converges to u in
C([o, T], LY(0)).

Proof. See Appendix. n

Because of ue — u in C([0,T], L' (Q)), then V T < T, uc(t) — u(t) in L}(Q),
thus

/Q Se(ute () — (7)) dx — /Q Sl — @) dx (4.28)

and

/st(ue(()) — 9(0)) dx — /st(uo — 9(0)) dx.

Let M = k + || ¢|| 0, then, we can write,

/ a(x,t,up, Vi)V T (u, — @) dx dt
Qr

= 0 a(x,t, Tng(un), VT (un)) VT (uy — @) dx dt,
T

by Fatou’s lemma and the convergence of a(x,t, Ta(un), VTp(un)) to
a(x,t, Tp(u), VT (u)) weakly in ] | LY (Q, wg_Pl), it possible to conclude that

i=1

/Q a(x, t, Tag (1), VT (1)) V T (1t — ) (4.29)

<liminf | a(x,t, Tp(ue), VTp(te))VTy(ue — @) dx dt.
e—0 Q

Moreover, since %—f e LY(0, T, W 7' (Q,w*)) and VTi(1e — @) — VTi(u — @)

weakly in H LP(Qr, w;), we get,

i=

/ — ) dx dt / ¢Tk (u— ) dx dt (4.30)
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/ FoTi(ue — @) dx db — / FT(u — @) dx dt. 4.31)

Finally, by (4.27)-(4.31) we get,

[ Silue() = 9() dx+ (52, Telu — g, + , ale b Vu) VT g) d
< [, fTilu—g)drat+ [ 5(u(0) ~ 9(0)) dx.

By Step 1, Step 2 and Step 3, the proof of Theorem 4.1 is complete. n

5 Appendix
In this appendix we give the proof of Lemma 4.2.

Proof. Note that Tj(u) € Ky, for every I > |[¢p|l«. Let 17; > 0 converges to ug
in L'(Q) and U;’,l = (Ty(u))y + e MTy(y;). Using the admissible test function
Ty (tte — U;,l) in (P.) leads to

d , ,
( alie k (te — 0Z1)>QT + /Q a(x,t,ue, Vi) VTi(ue — v;;l) dx dt
1 el . . (5.1)
2 /QT T%(ue — ) Ti(ue — v;;l) dx dt = /QTfeTk(ue - v;;l) dx dt
u d ; J , d : .
since a—te = E(ue - v;;l) -+ g(vlﬁl) = g(ue - v;;l) + u(Ty(u) — v;;l) we deduce,

- d , ,
(55 Tilue = o)), = (55 (e = o), Tilue = o)),
+H QT(TI(”) — o) Tie(ue — o)) dx dt.
Remark that, for every T € [0, T] and when e tends to 0
V/QT(TI(M) — 00 Ty (e — vl ) dx dt — V/QT(TI(M) — )Ty — ol dxdt > 0.
On the other hand, by using Lebesgue’s convergence theorem and the fact that,

— / %Tl(ue — ) Ti(ue — vi;l) dx dt > 0, we deduce by (5.1) that
Qr € ¢

P , . . .
<$(ue - v;;l), Tr(ue — UZI)>QT + /QT a(x,t, ue,Vv;;l)VTk(ue - v;;l) dx dt
w(e, m,i,l)

for every T € [0, T].
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Since for all j = 1, ..., N : we have aj(x, t, Toky1(ue), Vvﬁ;l) — aj(x, t, Treror (1),

VUZI) strongly in LY (Q, w}_p/) while aiijk(ue — U;;l) — a%},Tk(u — ”UZZ) weakly in

LP(Q, w;), we have,

0 ; ; .
(5; (e = o), Tic(ue — ), < ale, i 1), (5.2)

z
In view of the definition Si(z) = / Tx(s) ds and using Lebesgue’s convergence
0

theorem, we deduce that / Si(ue(t) — v;;l('r)) dx < (e, u,i,1). Which implies,
0

by writing,

J 85 e < 5 (] sutuele) = el dxr [ it (0) = o (2) ),

that

/Q S(“ ) dx < w(e, A). (5.3)

Finally, by Hoélder’s inequality, we have,

Ue — U dx=/ Ue — U dx—l—/ Ue — Uy | dx
Jo e {|ue—uA|s1}|f B oy e~

2
< (/ |1te — 1y |2 dx) meas(Q)%—l—/ \e —uy| dx
{lue—up|<1} ) {lue—up|>1}

p
< meas(Q)% (/ 251 (ue — uy) dx) -+ 251 (ue — uy) dx
{lue—u|<1}

{lue—up|>1}

. s ly| yl | lyl-1
sthee (T)X{\y\g} = 51(¥)x(ycry and (T)X{\ybl} < (7+ 2 Iy =

51(¥)x(yy»1, Due to (5.3) we deduce that, /Q lue(T) — up(7)] dx < a(e, A), not de-

pending on T, and thus (u¢) is a Cauchy sequence in C([0, T], L!(Q})), and since
ue — u, a.e. in Q, we deduce that u. — u, a.e. in C([0, T], L}(Q0)). ]

Acknowledgment
The authors would like to thank the anonymous referee for his/her valuable sug-
gestions and comments.

References

[1] R. ADAMS, Sobolev spaces, AC, Press, New York, (1975)

[2] L. AHAROUCH, E. AZROUL and M. RHOUDAF, Existence result for variational
degenerated parabolic problems via pseudo-monotonicity. EJDE, conf 14, ISSN:
1072-6691, pp. 9-20, (2006).

[3] L. AHAROUCH, E. AZROUL and M. RHOUDAF, Strongly nonlinear variational
parabolic problems in Weighted Sobolev spaces, AIMAA, vol 5, Issue 2, Art 13,
pp- 1-25, (2008).



An entropy solution for some degenerate or singular obstacle 469

[4] E. AZROUL, H. REDWANE and M. RHOUDAF, Existence of a renormalized solu-
tion for a class of nonlinear parabolic equations in Orlicz spaces. Port. Math. 66,
no. 1, 29-63, (2009)

[5] Y. AKDIM, E. AZROUL and A. BENKIRANE, Existence Results for Quasilinear
Degenerated Equations Via Strong Convergence of Truncations, Revista Matem-
atica Complutense 17, , N.2, (2004) pp 359-379.

[6] Y. AKDIM, E. AZROUL and A. BENKIRANE, Existence of Solution for quasilinear
degenerated Elliptic Unilateral Problems, Ann. Math. Blaise pascal vol 10 (2003)
pp 1-20.

[7] Y. AKDIM, E. AZROUL and A. BENKIRANE, Existence of solution for quasilinear
degenerated elliptic equation, Electronic J. Diff. Equ. Vol 2001 , N71, (2001) pp
1-19.

[8] D. BLANCHARD and F. MURAT Renormalized solutions of nonlinear parabolic
problems with L! data, Existence and uniqueness, Proc. Roy. Soc. Edinburgh Sect.
Vol A127, (1997) pp 1137-1152.

[9] D. BLANCHARD, F. MURAT and H. REDWANE, Existence and Uniqueness of a
Renormalized Solution for a Fairly General Class of Nonlinear Parabolic Problems,
J. Differential Equations. Vol 177, (2001) pp 331-374.

[10] H. BREzIS and EE. BROWDER, Strongly nonlinear parabolic initial-boundary
value problems , Proc. Nat Acad. Sci. U. S. A. 76 (1976). pp. 38-40.

[11] J. BERKOVITS and V. MUSTONEN, Topological degree for perturbation of lin-

ear maximal monotone mappings and applications to a class of parabolic prob-
lems, Rend.Mat.Roma,Ser, VII, 12 (1992), pp. 597-621.

[12] L. BOCCARDO, E. MURAT and ]J.P. PUEL, Existence of bounded solutions for non-
linear elliptic unilateral problems, Ann. Mat. Pura Appl. (4) 152 (1988), 183-196.

[13] L. BOCCARDO and F. MURAT, Strongly nonlinear Cauchy problems with gradient
dependt lower order nonlinearity, Pitman Research Notes in Mathematics, 208

(1988), pp. 347-364.

[14] L. BOCCARDO and F. MURAT, Almost everywhere convergence of the gradients
of solutions to elliptic and parabolic equations, Nonlinear analysis, TM.A., 19
(1992), n 6, pp. 581-597.

[15] L. BOCCARDO, A. DALL'AGLIO, T. GALLOUET and L. ORSINA, Nonlinear
parabolic equations with measure data, Journal of Functional Analysis, 147
(1997),n 1, pp. 237-358.

[16] A. DALL’AGLIO and A. ORSINA, Non linear parabolic equations with natural
growth condition and L' data. Nolinear Anal., TM.A., 27 n1 (1996). pp. 59-73.

[17] P. DRABEK, A. KUFNER and L. MUSTONEN, Pseudo-monotonicity and degen-
erated or singular elliptic operators, Bull. Austral. Math. Soc. Vol. 58 (1998),
213-221.

[18] P. DRABEK, A. KUFNER and F. NICOLOSI, Non linear elliptic equations, singular
and degenerated cases, University of West Bohemia, (1996).



470 E. Azroul — H. Redwane — M. Rhoudaf

[19] A. KUFNER, Weighted Sobolev Spaces, John Wiley and Sons, (1985).

[20] R. LANDES, On the existence of weak solutions for quasilinear parabolic initial-
boundary value problems, Proc. Roy. Soc. Edinburgh sect. A. 89 (1981), 217-
137.

[21] R. LANDES and V. MUSTONEN, A strongly nonlinear parabolic initial-boundary
value problems, Ark. f. Math. 25. (1987).

[22] R. LANDES and V. MUSTONEN, On parabolic initial-boundary value problems
with critical growth for the gradient, Ann. Inst. H. Poincaréll (2) (1994) 135-
158.

[23] J. LERAY and J.L. LIONS, Quelques resultats de Visik sur les problemes ellip-
tiques nonlinéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France
93 (1995), 97-107.

[24] J.L. LIONS, quelques methodes de résolution des problemes aux limites non
linéaires, Dunod et Gauthiers-Villars, 1969.

[25] A.PORRETTA Existence results for nonlinear parabilc equations via strong conver-
gence of truncations, Ann. Mat. Pura. Appl. (1999), pp. 143-172.

[26] J. M. RAKOTOSON A Compactness lemma for quasilinear problems: application to
parabolic equations J. Funct. Anal. 106 (1992), pp. 358-374.

[27] J. SIMON Compact sets in the space LP(0,T,B), Ann. Mat. Pura. Appl. 146
(1987), pp. 65-96.

[28] M. Rhoudaf Existence results for Strongly nonlinear degenerated parabolic equa-
tions via strong convergence of truncations with L'-data these de Doctorat. Univ.
Sidi Mohamed Ben Abdella. Fes, Maroc (2006).

[29] E. ZEIDLER, nonlinear functional analysis and its applications, II A and II B,
Springer-Verlag. New York-Heidlberg, (1990).

Département de Mathématiques et Informatique,
Faculté des Sciences Dhar-Mahraz.

B.P. 1796 Atlas Fes, Morocco
email:azroul_elhoussine@yahoo.fr

Faculté des Sciences Juridiques, conomiques et Sociales, Université Hassan 1.
B.P. 784, Settat, Morocco
email:redwane_hicham@yahoo.fr

Département des Mathématiques, Faculté des Sciences et Techniques de Tanger.
B.P. 416, Tanger, Morocco
email:rhoudaf_mohamed@yahoo.fr



