
Path space and free loop space

Adrian P. C. Lim

Abstract

Riemannian geometry on the space of (continuous) paths in a manifold
M has been studied by Cruzeiro and Malliavin. I will use concepts in path
space analysis to define a Levi-Civita connection on free loop space, using
the G0 metric. A tangent vector X at a loop γ is a vector field along γ such
that X(s) ∈ Tγ(s)M. Following closely the calculations done by Fang, the Rie-

mannian curvature RLM is given by RLM(X, Y)Z(·) = RM(X(·), Y(·))Z(·).

1 Introduction

Let (Md, g) be a Riemannian manifold. Fix a point o ∈ M. Let W(M, ν) be the
probability space of continuous paths in M, starting from o and ν is Wiener mea-
sure on this space. ν is defined in terms of the heat kernel on M, which is the
solution to the heat equation using the Laplace Beltrami operator. I will not give
further details, referring the reader to other resources for more information.

Analysis on W(M, ν) is an active area of research, which began with [Dri92].
The Riemannian geometry of path space is described in detail in [CM02], whereby
the Levi-Civita connection is given explicitly.

The authors in [CM02] further introduced a Markovian connection. In [Fan01],
Fang computed the curvature of the Markovian connection. In [CM02] or [Fan01],
they considered the space of continuous but nowhere differentiable paths sup-
ported by Wiener measure, while this article only consider smooth paths or loops.

Although path space analysis uses stochastic calculus, the calculations can
be easily adapted to PoM, the space of C∞ based paths. This article contains
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2 parts. The first part, is a very quick survey on the essential concepts in path
space analysis, without the stochastic analysis.

The second part of this article, applies the analysis in path space to the free
loop space LM, the space of smooth loops in M. Given γ ∈ LM, γ : S1 → M. LM
is an infinite dimensional, paracompact manifold, modeled on the topological
vector space LR

d, with the topology of uniform convergence of the functions and
all their derivatives. (See Chapter 3 in [PS86].) A major difficulty is that there is
no canonical frame along a loop, unlike the case of based paths, whereby given
a fixed frame at o ∈ M, there is a horizontal lift of the path in M to a path in the
principal O(M) bundle, hence defining a frame along the path.

Define a G0 metric on LM, in Definition 3.15. The Levi-Civita connection on
LM is defined by Definition 3.10 and the curvature is computed following the
calculations in [Fan01]. See Theorem 3.20.

2 Analysis on Path Space

I will begin by giving a quick review of the analysis on path space in preparation
for the loop space case.

2.1 Principal O(M) Bundle

Let (Md,∇M ≡ ∇, g, o, u0) be a smooth compact d-dimensional Riemannian man-
ifold with the Levi-Civita covariant derivative ∇, a Riemannian metric g, a fixed
base point o ∈ M and a fixed orthogonal frame u0 : R

d → ToM. In R
d, o will be

the origin. Consider the principal O(M) bundle, π : O(M)→ M.
Given a covariant derivative on TM, I now describe how to lift this covari-

ant derivative on the principal O(M)-bundle. Write E ≡ Hom(Rd, TM), where
Hom means linear transformations. E is a vector bundle over M with fiber Em ≡
Hom(Rd, TmM) for each m. If u is a differential curve in O(M), define ∇u/ds ∈
Γm(E), by

∇u

ds
(s) · ξ =

∇(u(s)ξ)

ds
(2.1)

for all ξ ∈ R
d. u(s)−1∇u

ds maps R
d onto itself, i.e. it is a linear transformation on

R
d. Because the connection is Riemannian, u−1∇u/ds is in so(d), the Lie algebra

of the Lie group SO(d).

Definition 2.1. (connection 1-form ω) Define the connection 1-form ω = ω∇ on O(M)
with values in so(d) by

ω(u′(s)) = u(s)−1∇u

ds
(s)

where u(s) is any smooth path in O(M).

Definition 2.2. (canonical 1-form ϑ) The canonical 1-form on O(M) is the 1-form ϑ :
TuO(M)→ R

d given by

ϑ(ξ) = u−1π∗ξ

for all ξ ∈ TuO(M) and u ∈ O(M).
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Definition 2.3. (Horizontal vector fields) The standard horizontal vector fields B(a) ∈
Γ(TO(M)) for a ∈ R

d, that is, for each a ∈ R
d, define a section of vector fields in

TO(M) by the following: For each u ∈ O(M), B(a)(u) is the horizontal lift of ua ∈ TM
to TuO(M), i.e.

B(a) : O(M)→ TuO(M)

u→ lift of ua ∈ TM to TuO(M).

Note that B has 2 arguments, a ∈ R
d and u ∈ O(M). Usually the u argument will be

suppressed. Alternatively, B(a)(u) is the unique element in TuO(M) such that

1. π∗B(a)(u) = ua or ϑ(B(a)(u)) = a.

2. ω(B(a)(u)) = 0.

Denote the horizontal tangent space to u byHu.

Let me now describe the vertical vector fields.

Definition 2.4. (Vertical vector fields) For each V ∈ so(d), define some kind of lift of
this vector to a vector Ṽ in TuO(M) by

Ṽu =
d

dt
(u · exp(tV))|t=0. (2.2)

This map, V → Ṽ gives an isomorphism

so(d) ≡ Vu

where Vu is the vertical tangent space to u. Note that π∗Ṽ = 0 by definition.

Given a tangent vector ξu ∈ TuO(M), I can decompose the vector into hori-
zontal and vertical components, i.e.

ξu = ω̃(ξu) + B(ϑ(ξu)).

Recall that given V ∈ so(d), Ṽ ∈ TuO(M) is given by Equation (2.2).

Notation 2.5. Given X ∈ TO(M), denote the horizontal component by HX, i.e. HX =

B(ϑ(Xu)) and the vertical component by VX, i.e. VX = ω̃(Xu) .

The following formulas are stated without proof.

Proposition 2.6. 1. ϑ(B(a)) = a (By definition).

2. ω(Ṽ) = V.

3. ([Ṽ, B(a)]) = B(Va).

4. ϑ(Ṽ) = 0. (By definition of Ṽ, u is fixed for all t. Hence the projection is always
πu for all t.)

5. ω([Ṽ, W̃]) = [V, W].
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Since π∗ is an isomorphism betweenHu and TπuM, I can identify

(u, B(a)) ∈ Hu ←→ ua ∈ TπuM.

Under this identification, I will write ω(ua) := ω(B(a)(u)). (I am abusing the
notation here, since ω is a 1-form in TO(M). Here, ua ∈ TπuM. )

Proposition 2.7. IdentifyHu with TπuM. Alternatively, one can replace ω by ω(π−1
∗ ).

Then
u−1R(ua, ub)uc = (dω + ω ∧ω)(ua, ub)c.

The proof is omitted.

2.2 Structure Equations

Definition 2.8. (i) The curvature tensor of ∇ is defined by

R(X, Y)Z = ∇X∇YZ−∇Y∇XZ−∇[X,Y]Z,

where X, Y, Z ∈ Γ(TM).

(ii) The torsion tensor of ∇ is defined by

T(X, Y) = ∇XY−∇YX − [X, Y],

where X, Y ∈ Γ(TM).

(iii) The curvature form Ω of ω is the so(d)-valued 2-form on O(M) defined by

Ω(X, Y) = dω(HX, HY) ≡ (dω)H(X, Y),

where X, Y ∈ TO(M) and HX and HY are the horizontal components of X and
Y.

(iii′) For all u ∈ O(M) and a, b ∈ R
d, set

Ωu(a, b) = Ω(B(a)(u), B(b)(u)) ∈ so(d).

(iv) The torsion form Θ of ω is the R
d-valued 2-form on O(M) defined by

Θ(X, Y) = dθH(X, Y) ≡ dθ(HX, HY)

for all X, Y ∈ TuO(M) and u ∈ O(M).

(iv′) For all u ∈ O(M) and a, b ∈ R
d, set

Θu(a, b) = Θ(B(a)(u), B(b)(u)) ∈ R
d.

Lemma 2.9. (Structure Equations)

i Θ = dϑ + ω ∧ ϑ. (first structure equation);

ii Ω = dω + ω ∧ω. (second structure equation);

iii Ωu(a, b) = u−1R(ua, ub)u for all u ∈ O(M) and a, b ∈ R
d.

iv Θu(a, b) = u−1T(ua, ub) for all u ∈ O(M) and a, b ∈ R
d.

The proof is omitted and can be easily found in texts. For example see Section
III, Theorem 2.4 and Section III.5 in [KN96].
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2.3 Horizontal Lift

First, I will set the following convention. Derivatives with prime will denote
differentiation with respect to s and dot will denote differentiation with respect
to t. Note that s will be reserved for the argument of a path, i.e. σ(s). Most of the
time, I will omit the argument s. In summary,

d

ds
X(s, t) = X′(s, t)

d

dt
X(s, t) = Ẋ(s, t).

Definition 2.10. An absolutely continuous path σ has finite energy if

G1(σ′, σ′) :=
∫ 1

0
g
(
σ′, σ′

)
ds < ∞.

The following notations are put together for convenience.

Notation 2.11. 1. Let H(M) be the space of absolutely continuous paths in M with
finite energy, starting from o. I will reserve σ for a path in M.

2. Let H(O(M)) be the space of absolutely continuous paths in O(M) with finite
energy, with initial frame u0. I will reserve u for a path in O(M).

3. Let H(Rd) be the space of absolutely continuous paths in R
d with finite energy,

starting from the origin. I will reserve w and h for a path in R
d. h will denote a

vector field in H(ToM) which I will of course identify with H(Rd) using u0.

Some more definitions.

Definition 2.12. 1. A path u in H(O(M)) is said to be horizontal if∇u(s)/ds = 0
or equivalently, ω(u′(s)) = 0. Denote the space of absolutely continuous horizon-
tal paths in O(M) by Hor(O(M)).

2. For a path σ ∈ H(M), define H(σ), called the horizontal lift of σ ∈ H(M) to
Hor(O(M)) by

H : σ −→ H(σ) = u ∈ Hor(O(M))

such that

πu = σ.

Definition 2.13. Define a map Φ : H(Rd) → Hor(O(M)) as follows: Given a path
w ∈ H(Rd), define Φ(w) = u ∈ Hor(O(M)) as the unique solution to the differential
equation

u′(s) = B(w′(s))(u(s)), u(0) = u0. (2.3)

The following theorem, taken from pages 281 and 282, Theorem 2.1 in [Dri92],
will be stated without proof.
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Theorem 2.14. The sets Hor(O(M)), H(M) and H(Rd) are in one to one correspon-
dence. In particular, the map

Φ : H(Rd)→ Hor(O(M))

and the projection

π : Hor(O(M)) → H(M)

are bijections. Furthermore, the inverse of π is the horizontal lift map H and w =
Φ−1(u) is given by

w(s) =
∫ s

0
ϑ(u′(r))dr.

Definition 2.15. (Cartan’s Development map) The map I = π ◦ Φ is known as the
Cartan’s Development map.

Now onto the geometry of the spaces. Pick a path h ∈ H(Rd). Note that one
should also think of h as a vector field in H(Rd). For σ ∈ H(M), define a vector
field along σ, labelled Xh(σ) by

Xh(σ)(s) = H(σ)(s) · h(s), s ∈ [0, 1]. (2.4)

Now define a flow of this vector field Xh(·) along σ. So this flow will have 2
variables s and t. I will reserve s for the path and t for the flow. Define the flow
along Xh, starting at σ to be the solution α : R → H(M) by

α̇(t) = Xh(α(t)) = H(α(t)) · h, α(0) = σ. (2.5)

Again, I suppress the variable s, which is the variable reserved for a path in
H(M). The second condition says that α(s, 0) = σ(s).

Remark 2.16. Such a solution α to the functional differential Equation (2.5) exists and
is unique. See Remark 2.2 on page 282 in [Dri92].

The next theorem is very important, because it says how to differentiate a
horizontal lift u by Xh. Before I begin, here is another definition.

Notation 2.17. For a in H(Rd), define a functional on H(M) by

qa(s) =
∫ s

0
Ωu(r)(a(r), w′(r))dr.

The frame u in question here is u = uw = Φ(w) and I use the 1-1 correspondence,
σ = π ◦Φ(w).

Theorem 2.18. Assume all the notation as above and let α(t) be a solution to the flow
equation (2.5). Let u(t) = H(α(t)) ∈ Hor(O(M)) be a horizontal lift of α(t) to the
space of horizontal paths in H(O(M)). Also define

w(t) = Φ−1(u(t)) ∈ H(Rd).
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Then u(t) and w(t) both satisfy

˙u(t) = −q̃h(t) + B(h)(u(t)) (2.6)

and
ẇ′ = qhw′ + Θu(h, w′) + h′. (2.7)

In terms of all the parameters, Equation (2.6) is written as

∂u

∂t
(s, t) = −u(s, t)

∫ s

0

(
Ωut(h, w′t)

)
(r)dr + B(h)(ut)(s)

and Equation (2.7) can be written as

ẇ′(s, t) =
∫ s

0

(
Ωut(h, w′t)

)
(r)dr · w′(s, t) +

(
Θut(h, w′t)

)
(s) + h′(s).

Here, ut = u(·, t) and wt = w(·, t).

Remark 2.19. Only h is independent of t. u, qh, w are all dependent on t.

Proof. Note that u̇ is a tangent vector in H(O(M)). So recall I can split a vector
into horizontal and vertical components as follows,

u̇(t) = ω̃(u̇(t)) + B(ϑ(u̇(t))).

So the proof is just computing ω̃(u̇(t)) and ϑ(u̇(t)). Let me first compute ϑ(u̇(t)).
By definition, the horizontal lift of u(t) is given by u(t) = H(α(t)). By definition,
π(u(t)) = α(t) and thus

ϑ(u̇(t)) = u(t)−1π∗(u̇(t)) = u(t)−1α̇(t)

= u(t)−1 H(α(t)) · h = h.

The second equality follows because the push forward of u̇(t) by π is just α̇(t).
Now lets compute ω(u̇(t)). Pick any fixed vector a ∈ R

d, independent of s. Then
by definition of ω,

ω(u̇(t))a = u(t)−1∇

dt
u(t)a,

or

u(t)ω(u̇(t))a =
∇

dt
u(t)a.

Take covariant derivatives on both sides and since ∇u(s, t)/ds = 0,

∇

ds
[u(t)ω(u̇(t))a] =

∇

ds

∇

dt
u(t)a,

=⇒
∇u(t)

ds
ω(u̇(t))a + u(t)

d

ds
ω(u̇(t))a =

∇

dt

∇

ds
u(t)a +

[
∇

ds
,
∇

dt

]
u(t)a

=⇒u(t)
d

ds
ω(u̇(t))a = R(σ′, σ̇)u(t)a

=⇒
d

ds
ω(u̇(t))a = u(t)−1R(σ′, σ̇)u(t)a.
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But α̇ = uh and by Definition 2.13 and Theorem 2.14, since u′ = B(w′)(u) and by
taking π∗, I have α′ = π∗u

′ = π∗B(w′)(u) = uw′. Hence

d

ds
ω(u̇)a = u−1R(uw′ , uh)ua = Ωu(w

′, h)a

by Lemma 2.9. Integrate with respect to s,

ω(u̇)a =
∫ ·

0
Ωu(w

′(r), h(r))adr = −qha

or

ω(u̇)(s) =
∫ s

0
Ωu(w

′(r), h(r))dr = −qh(s).

This completes the proof of Equation (2.6). To prove Equation (2.7), note that by
definition of the map Φ, u′ = B(w′)(u) and hence w′ = ϑ(u′). Thus to compute ẇ′

is the same as computing dϑ(u′(t))/dt. First note that u(s) is horizontal for each s
and hence ω(u′) = 0. Secondly, u(t) = H(α(t)) and thus π∗u̇(t) = α̇(t) = u(t)h.
Therefore, ϑ(u̇) = h. Finally, since u′ = B(w′)(u) and hence ϑ(u′) = w′. Using
structure equations, I have

d

dt
ϑ(u′) = dϑ(u̇, u′) +

d

ds
ϑ(u̇)

= Θ(u̇, u′)− ω ∧ ϑ(ω̃(u̇), u′) + h′

= Θ(B(h), B(w′))−ω(ω̃(u̇))ϑ(u′) + h′

= Θ(B(h), B(w′))−ω(u̇)ϑ(u′) + h′

= Θu(h, w′) + qhw′ + h′.

3 Geometry of Loop space

To begin with, I first specialize to the based loop space and fix a frame u0 at some
point o ∈ M, i.e. consider only {γ : [0, 1] → M, γ(0) = γ(1) = o}. Denote
this space of based loops by Lo M. Furthermore, I will only consider oriented
manifolds M. Since the calculus on based path space is so well understood, I will
capitalize on it and view the space of based loops as a submanifold in based path
space. The advantage of this point of view is obvious. Some of the results in
based path space carry over with minor modifications. Last but not least, all the
loops are considered to be smooth.

Unfortunately, there is a price to pay. When I consider based loops at o, Lo M,
I am in fact fixing a parametrization of the loop, identifying a ’starting’ point and
frame, denoted by u0. To be more precise, a parametrized loop γ maps {e2πis :
s ∈ [0, 1]} to M. As such, I can label the argument in γ as s and s = 0 will be
the starting point. At the end of the day I have to make sure that any definition
made, is independent of the parametrization used.

I will now show how to locally trivialize TLM. Note that here, I am consider-
ing free loop space LM, not based loop space. Fix a loop γ0 ∈ LM and pick any
point on it, call it o := γ0(0), hence parametrizing the loop. I will abuse notation
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and write {γ(s) : 0 ≤ s ≤ 1, γ(0) = γ(1)} to mean a parametrized loop. Assign
a local frame u0 in an open neighborhood B in M containing γ0(0) = o. Specif-
ically, choose a local orthonormal frame field { f1, . . . , fd} in the neighborhood B
with the identification fi(x) = u0(x)ei, x ∈ B. Here, {e1, . . . , ed} is the canonical
orthonormal basis in R

d.
For any parametrized loop {γ(s) : 0 ≤ s ≤ 1, γ(0) = γ(1) ∈ B} ∈

⋃
x∈B Lx M,

there is a unique horizontal lift of γ in H(SO(M)), that traverse along γ once.
Call this lift uγ(·) ≡ {uγ(s) : 0 ≤ s ≤ 1}, with uγ(0) = u0. Another description
of the horizontal lift is that it is the parallel translation operator along γ. As the
path traverse one round, uγ(1) : R

d → ToM may not be equal to u0.

Definition 3.1. For each {γ(s) : 0 ≤ s ≤ 1, γ(0) = γ(1) ∈ B} ∈
⋃

x∈B Lx M, define
the holonomy operator hγ ∈ SO(d) such that uγ(1) = uγ(0)hγ, where uγ is the unique

horizontal lift of γ, with an initial frame u0 ≡ uγ(0) : R
d → ToM.

Remark 3.2. This definition is dependent on the initial frame u0 used, up to conjugacy
by SO(d).

Now this holonomy operator h :
⋃

x∈B Lx M → SO(d) defines a continuous
smooth map on the compact-open topology. Set g0 := hγ0 and note that γ0 ∈
Lo M. As SO(d) is a compact connected Lie group, there is a ξ0 ∈ so(d) such that
exp(ξ0) = g0.

Now the exponential map may not be a local diffeomorphism at ξ0. However,
it is a local diffeomorphism at the origin. Choose an open set U containing 0 in
the Lie algebra so(d) such that the exponential map is a diffeomorphism onto an
open set V = exp(U) containing the identity e of SO(d).

Consider the path α : s ∈ [0, 1] 7→ exp(sξ0), a path joining e to g0. Let Lg

denote left multiplication by g. For each ξ ∈ U ⊆ so(d), define a left invariant
vector field Lg,∗ξ on SO(d). Solve the flow equation for βs(ξ, ·) ≡ βs(·),

β̇s(t) = sLβs(t),∗ξ, βs(0) = αs. (3.1)

The solution is given by

βs(ξ, t) = exp(sξ0) exp(stξ), s, t ∈ [0, 1]. (3.2)

Each ξ ∈ U ⊆ so(d) defines a path 0 ≤ s ≤ 1 7→ βs(ξ, 1) which joins the
identity e in SO(d) to each g ∈ g0V ⊆ SO(d). Here, ξ ∈ U ⊆ so(d) such that
g = g0 exp(ξ). h is a continuous map from

⋃
x∈B Lx M to SO(d), O containing γ0.

Without loss of generality, assume that O ⊆ h−1(g0V).

Notation 3.3. Define for each loop γ ∈ O, a skew symmetric matrix ξ(γ) ∈ U ⊆ so(d)
such that

γ ∈ O ⊆
⋃

x∈B

Lx M→ {βs(ξ(γ), 1) ∈ SO(d) : s ≥ 0},

where β1(ξ(γ), 1) = hγ = g0 exp(ξ(γ)) for γ ∈ O and g0 = hγ0 . β solves Equation
(3.1) and is given explicitly by (3.2). This choice of β is not canonical.

Write for each γ in a neighborhood O ⊆
⋃

x∈B Lx M,

ηξ(γ)(s) := βs(ξ(γ), 1)−1 , s ≥ 0.
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In future, I will drop the variable γ and the s variable. It should be understood that ηξ is
a path.

Definition 3.4. Refer to Notation 3.3. Choose a small neighborhood B ⊆ M such that
an orthonormal frame field u0 can be defined over B. Fix a loop γ0 such that γ0(0) ∈ B.
Now define a local frame r for some neighborhood O ⊆

⋃
x∈B Lx M, for 0 ≤ s ≤ 1,

γ ∈ O 7→ r(γ, s) ≡ rξ(γ, s) := uγ(s)ηξ(γ)(s). (3.3)

Note that ξ depends on γ and the initial local frame u0 over a neighborhood B ⊆ M. uγ

is the unique horizontal lift of γ, with an initial frame u0 ≡ uγ(0) : R
d → Tπ(u0)M,

π : SO(M) → M. Thus, I have a local trivialization of T
⋃

x∈B Lx M using

(γ, v) ∈ O× LR
d → {(γ, rξv)(s) : 0 ≤ s ≤ 1, γ(0) = γ(1) ∈ B} ∈ Tγ

⋃

x∈B

Lx M.

This local frame rξ is defined only in a neighborhood O containing some cho-
sen and fixed loop γ0. It depends on the choice of ξ0 ∈ so(d), which as a reminder,
is defined by hγ0 = exp(ξ0).

Definition 3.5. In future, drop ξ from rξ and write it as r = uηξ . Define Ψ(γ) =
(Hηξ)(γ). Recall H(γ) is the horizontal lift of γ, with starting frame u0. Thus, Ψ maps
a loop in Lo M to a loop in Luo SO(M) using a local trivialization. Of course, this map
depends on the choice of ξ.

Definition 3.6. Let ρ(·, t) be a family of loops in the free loop space LM such that
ρ(·, 0) = γ(·) and ∂ρ(·, t)/∂t|t=0 = ν(·), ν(·) ∈ TγLM. Define for a smooth function
F : LM → S, S a manifold,

DνF(γ) :=
∂F(ρ(·, t))

∂t

∣∣∣
t=0
∈ TF(γ)S.

Now suppose I fix a point o ∈ M and a frame uo at o. Given a based loop
γ ∈ Lo M and a tangent field ν ∈ TγLo M, I want to compute Dνr ∈ TLSO(M), and
for each 0 ≤ s ≤ 1, Dνr(s) ∈ TSO(M) has horizontal and vertical components.

Definition 3.7. Let v be a loop in H(Rd) and ν = rv, r as defined in Definition 3.4.
Define a skew symmetric matrix path A, as

A(v)(·) ≡ Av(·) = β(ξ(γ), 1)Dν β−1(ξ(γ), 1).

Do note that Av(·) ≡ Av(γ, ·) is dependent on γ for γ ∈ O ⊆ LM, since ξ is dependent
on γ.

The vertical vector field is given by r−1∇M
ν r(·) (See Equation (2.1).) and using

Equation (2.6), is

η−1
ξ u−1(∇νu)ηξ + η−1

ξ Dνηξ = Av − η−1
ξ qηξ vηξ .

The horizontal vector field, however is the unique vector field such that

rϑ(Dνr) = π∗Dνr = rv,

and thus ϑ(Dνr) = v. Let me summarize it as an analog of Theorem 2.18.
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Corollary 3.8. Fix a point o ∈ M and a frame u0 at o and consider the based loop space
Lo M. Let γ ∈ Lo M and ν(γ, ·) ∈ TγLo M with ν(γ, ·) = (rv)(γ, ·) = (uηξ v)(γ, ·),

v(γ, s) ∈ LR
d for 0 ≤ s ≤ 1 with v(0) = 0. Refer to Definition 3.4 for the definition of

r. Then

ϑ(Dνr)(γ, ·) = v(γ, ·),

ω(Dνr)(γ, ·) = Av(γ, ·)− η−1
ξ(γ)

(·)
∫ ·

0
u−1

γ (r)R(ν(γ, r), γ′(r))uγ(r)dr · ηξ(γ)(·).

3.1 Covariant Derivative on Free Loop Space

I am now ready to do some analysis on free loop space. The obvious difference
from the analysis on based loop space is that the starting point γ(0) is allowed to
vary. Although not stated explicitly, in the case of based paths (loops), the vector
fields along the path (loop) X are such that X(0) = 0. When considering free path
(loop) space, there is no such restriction.

In the case of based paths (loops), the starting frame u0 at γ(0) is fixed. On free
paths (loops), the starting frame u0 is allowed to vary. This does not change much
of the analysis done earlier on, except that now I have to include the derivative
of u0 using the Levi-Civita connection in the earlier computations.

Fix a γ0 ∈ LM. Recall I fix a point o = γ0(0) and choose a local frame u0 over
some open neighborhood o ∈ U ⊆ M. Then, there exists an open neighborhood
γ0 ∈ O ⊆

⋃
x∈M Lx M, such that there is a local trivialization of T

⋃
x∈U Lx M using

(γ, v) ∈ O× LR
d → (γ, rv) ∈ Tγ

⋃

x∈U

Lx M, r = uηξ .

u(·) ≡ uγ(·) is the unique horizontal lift of γ, with initial frame u0(γ(0)) = uγ(0)
and γ(0) ∈ U. Refer to Equation (3.3) in Definition 3.4.

Definition 3.9. Let γ0 ∈ O for some open neighborhood O ⊆
⋃

x∈U Lx M and suppose
{r(s) = u(s)ηξ(s) : 0 ≤ s ≤ 1} is a local trivialization frame over O with u0 a local

orthonormal frame field over U ⊆ M. Let {z(s) : 0 ≤ s ≤ 1, z(0) = z(1)} ∈ LR
d and

Z(·) := (rz)(·). Define a connection 1-form ω for 0 ≤ s ≤ 1 and γ ∈ O,

ωz(s) ≡ωz(γ, s)

:=η−1
ξ(γ)

(s)λzηξ(γ)(s) + Az(γ, s)

− η−1
ξ(γ)

(s)
∫ s

0
u−1

γ (r)R(Z(γ, r), γ′(r))uγ(r)dr · ηξ(γ)(s), (3.4)

whereby λz := u−1
0 ∇

M
u0z(0)

u0.

Note that λz = u−1
0 ∇

M
u0z(0)

u0 is the connection 1-form in the direction u0z(0).

Simply put, it is the connection 1-form for the base point, at time 0. Some results
done earlier transfer over to free paths (loops) by adding this additional term λ.

For example, η−1
ξ λvηξ should be added to the vertical component of the tangent

field in Corollary 3.8, i.e.

ω(DZr) = η−1
ξ λzηξ + Az − η−1

ξ

∫ ·

0
u−1(r)R(Z(r), γ′ (r))u(r)dr · ηξ .
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As a result, the connection 1-form ωz(s) = r−1(s)∇M
Z(s)

r(s), the vertical com-

ponent of (DZr)(s), for 0 ≤ s ≤ 1. Here, ∇M
Z(s)

r(s) is given by Equation (2.1).

Continue the above set up, define a covariant derivative on free loop space as
follows.

Definition 3.10. (Covariant derivative ∇LM on free loop space) Let Zi, i = 1, 2 be
smooth sections of TLM. Define a local trivialization over O ⊆

⋃
x∈U Lx M, {r(γ, s) :

0 ≤ s ≤ 1} as in Definition 3.4. Thus the vector fields Zi can be written as {Zi(γ, s) =
r(γ, s)zi(γ, s) : 0 ≤ s ≤ 1} for γ ∈ O. Here, zi : (γ, s) ∈ O× [0, 1] 7→ zi(γ, s) ∈
Tγ(s)M is smooth and zi(γ, 0) = zi(γ, 1) for any γ ∈ O.

Define the covariant derivative∇LM as, for each 0 ≤ s ≤ 1,

(∇LM
Z1

Z2)(γ, s) = r(γ, s) · [DZ1
z2(γ, s) + ωz1

(γ, s)z2(γ, s)] ,

whereby ωz1
(·) ≡ ωz1

(γ, ·) is given by Equation (3.4). To clarify,

DZ1
z2(γ, s) :=

∂

∂t
z2(α(t, s))

∣∣∣
t=0

such that {α(t, ·) : −ǫ ≤ t ≤ ǫ, ǫ > 0} is any family of loops in O with ∂α(t, s)/∂t|t=0 =
Z1(γ, s) for 0 ≤ s ≤ 1.

The covariant derivative is defined, based on the choice of r, which fixes a
starting point γ(0) for γ, hence parametrizing the field Zi, i = 1, 2. The next
lemma says that the covariant derivative is well-defined.

Lemma 3.11. ∇LM is well-defined, independent of the frame r used.

Proof. Let O be open in
⋃

x∈U Lx M and {r(γ, s) = uγ(s)ηξ(γ)(s) : 0 ≤ s ≤ 1}

be a frame over any γ ∈ O, with a starting frame uγ(0) at π(uγ(0)) ∈ M, π :
SO(M) → M. Let 0 ≤ τ ≤ 1 and suppose a new frame r̂(γ, s) = ûγ(s)η̂ξ(γ)(s)

over γ ∈ Ô ⊆
⋃

x∈U Lx M is chosen, such that at s = 0, I begin with a frame ûγ(0)
at π(ûγ(0)) ∈ M. Without loss of generality, by taking the intersection of O and

Ô if necessary, I will assume O = Ô. The frame r̂ can be written for γ ∈ O and
0 ≤ s ≤ 1,

r̂(γ, s) = uγ(s + τ)ηξ(γ)(s + τ)ρ(γ, s) = r(γ, s + τ)ρ(γ, s), ρ(γ, s) ∈ SO(d).

Let Zi, i = 1, 2 be 2 smooth sections in TLM. For 0 ≤ s ≤ 1, in terms of the
frame r, Zi(γ, s) = r(γ, s)zi(γ, s) for γ ∈ O, but in terms of r̂,

Ẑi(γ, s) = (r̂ρ−1)(γ, s)zi(γ, s + τ) = r(γ, s + τ)zi(s + τ) = Zi(γ, s + τ).

Write zi,τ(γ, s) = zi(γ, s + τ), rτ(γ, s) = r(γ, s + τ) for 0 ≤ s ≤ 1. According to
Definition 3.10, for 0 ≤ s ≤ 1,

(∇LM
Ẑ1

Ẑ2)(γ, s) =r̂(γ, s)[ρ−1(s)DẐ1
z2,τ(s) + (DẐ1

ρ−1)(s) · z2,τ(s)

+ (r̂−1∇M
Ẑ1

r̂)(s) · ρ−1(s)z2,τ(s)](γ)

=rτ(γ, s)[DẐ1
z2,τ(s) + (r−1

τ ∇
M
Ẑ1

rτ)(s) · z2,τ(s)](γ)

=(∇LM
Z1

Z2)(γ, s + τ).
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This quantity Ax − η−1
ξ qηξ xηξ appears often in the analysis such that it de-

serves a separate symbol. This quantity appears because of the derivative of the
holonomy operator, which happens only for loop space.

Notation 3.12. Let O ⊆
⋃

x∈U Lx M as in Definition 3.4. Recall r = uηξ and write
Γu := Ωu(ηξ ·, ηξ ·). I will write the vertical component as

Λz = Az − η−1
ξ

∫ ·

0
Γu(z(r), b′(r))dr · ηξ .

Here, rb′ = uηξ b′ = γ′, γ = πr ∈ O. Hence, ωz = η−1
ξ λzηξ + Λz in Equation (3.4).

3.2 Lie Bracket

To compute the Lie Bracket amounts to compute the Lie Bracket over
⋃

x∈U Lx M,
U ⊆ M. Let X, Y ∈ TLM.

The reference is taken from Pages 148 to 150 in [CM02]. Throughout this sub-
section, fix a γ0 and a starting point o = γ0(0). Choose an open neighborhood
o ∈ U ⊆ M, fix an orthonormal frame u0 over U ⊆ M and hence define a neigh-
borhood O ⊆

⋃
x∈U Lx M and a frame r = uηξ for γ ∈ O, as in Definition 3.4.

Suppose X = rx and Y = ry. Assume that x and y, tangent fields in H(Rd),
are independent of γ. Since I have a choice of the starting frame u0, assume that
λx = λy = 0.

Definition 3.13. (Cylinder functions) A function f is a cylinder function on H(M) if
f (σ) = f̃ (σ(s1), σ(s2), . . . , σ(sk)), where f̃ : M× · · · ×M → R. Now by projection
π, consider f as a cylinder function on H(O(M))

f (u) = f̃ (πu(s1), πu(s2), . . . πu(sk)).

Thus f (u·) is a function from H(Rd)→ H(O(M)). Therefore, only consider in general,
cylinder functions f on H(O(M)).

For a cylinder function on
⋃

x∈U Lx M, f (γ) = F(γ(s1), . . . , γ(sn)), lift it to a
function on

⋃
x∈U Lu0(x)SO(M) using π : Lu0(x)SO(M) → Lx M if x = πu0(x), i.e.

( f ◦ π)(rγ) = (F ◦ π)(rγ(s1), . . . , rγ(sn)) := F̃(rγ(s1), . . . , rγ(sn)).

Note that F̃ is a function on
⋃

x∈U Lu0(x)SO(M). Since cylinder functions are
dense, it suffices to compute the Lie bracket on cylinder functions.

Recall Ψ = Hηξ , H is horizontal lift. Since F = F ◦ π ◦ Ψ = F̃ ◦ Ψ, using
Corollary 3.8,

DX(F̃ ◦Ψ)(γ) = xα(sk)(∂
k
Bα

F̃)(rγ(s1), . . . , rγ(sn)),

where I adapt Einstein’s summation notation and Bk
α = B(eα)(r(sk)) is the canon-

ical horizontal vector field at r(sk) = uηξ(sk). Note that there is no deriva-
tion by a vertical tangent vector since the function is an honest cylinder func-
tion on H(M). However, note that the derivation ∂k

Bα
F̃ is a cylinder function on⋃

x∈U Lu0(x)SO(M).
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Now differentiate a second time, using DY, again using Corollary 3.8. Note
that I have to differentiate using the vertical tangent vector,

DYDX(F̃ ◦Ψ)(γ) =yβ(sj)x
α(sk)∂

k
Bβ

∂i
Bα

F̃(rγ(s1), . . . , rγ(sn))

+ xα(sk)∂
k

Ãy−
˜η−1

ξ qηξ yηξ

∂i
Bα

F̃(rγ(s1), . . . , rγ(sn)).

Write η−1
ξ qηξ yηξ = py. So I have

[DYDX − DXDY](F̃ ◦Ψ)

=yβ(sj)x
α(sk)

[
∂k

Bα
∂i

Bβ
− ∂k

Bβ
∂i

Bα

]
F̃(r(s1), . . . , r(sn))

+

[
xα(sk)∂

k
Ãy− p̃y

∂i
Bα
− yα(sk)∂

k
Ãx− p̃x

∂i
Bα

]
F̃(r(s1), . . . , r(sn)). (3.5)

If j 6= k, then ∂k
Bα

and ∂
j
Bβ

commute. So only consider k = j. Since Bα

and Bβ are horizontal vector fields, [Bα, Bβ] is vertical. To show this, compute
π∗[Bα, Bβ] = [π∗Bα, π∗Bβ]. This follows from the Torsion free of Levi-Civita co-

variant derivative on M, ∇M
X Y − ∇M

Y X = [X, Y]. As horizontal vector fields,

∇M
π∗Bα

π∗Bβ = ∇M
π∗Bβ

π∗Bα = 0. Hence [π∗Bα, π∗Bβ] = 0. But F̃ only depends on

π(u), hence this term vanishes.

The first sum in Equation (3.5) vanishes. For the last sum, same reasoning: if
j 6= k then the fields commute. So assume j = k. Use one of the useful formulas,
[Ṽ, B(a)] = B(Va) for a skew symmetric matrix V and a vector a ∈ R

d. Apply
this formula, then [

∂
j

Ãx− p̃x
, ∂

j
Bα

]
= ∂

j

(Ax−px)eα
.

But on F̃, ∂
j
Bα

∂
j
p̃x

F̃ = 0. Hence

∂
j
p̃x

∂
j
Bα

F̃ =
[
∂

j
p̃x

, ∂
j
Bα

]
F̃ = ∂

j

B((Ax−px)eα)
F̃.

Therefore, the second sum in Equation (3.5) becomes

[
xα(sk)∂

k
Ãy− p̃y

∂i
Bα
− yα(sk)∂

k
Ãx− p̃x

∂i
Bα

]
F̃

=
[

xα(sj)∂
j

B((Ay−py)eα)
− yα(sj)∂

j

B((Ax−px)eα)

]
F̃

=
[

∂
j

B((Ay−py)x)(sj)
− ∂

j

B((Ax−px)y)(sj)

]
F̃.

So if I plug into Equation (3.5),

[DY, DX] (F̃ ◦Ψ) =
n

∑
j=1

(
∂

j

B(Ayx−Axy)(sj)
− ∂

j

B(pyx−pxy)(sj)

)
(F̃ ◦Ψ).
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Since F is a cylinder function on H(M), I have

[DY, DX]F = [DY, DX](F̃ ◦Ψ)

=
([

∂i
π∗B(Ayx)(sj)

− ∂i
π∗B(Axy)(sj)

]
−

[
∂

j

π∗B(pyx)(sj)
− ∂

j

π∗B(pxy)(sj)

])
F

=
([

∂
j

rAyx(sj)
− ∂

j

rAxy(sj)

]
−

[
∂

j

rpyx(sj)
− ∂

j

rpxy(sj)

])
F.

Thus the following result.

Theorem 3.14. The Lie bracket of 2 tangent fields, X and Y, is given by

[X, Y] = uηξ

(
Axy− Ayx−

(
η−1

ξ qηξ xηξy− η−1
ξ qηξ yηξ x

))
.

More generally, the Lie bracket of X = rx and Y = ry is given by, under r,

[X, Y] = r
(

η−1
ξ λxηξy− η−1

ξ λyηξ x + Axy− Ayx− η−1
ξ [qηξ xηξy + qηξ yηξ x]

)

= r
(
ωxy− ωyx

)
.

Definition 3.15. (Metric on LM.) Define a G0 metric on TLM by G0(X, Y) =∫ 1
0 g(X(s), Y(s))ds.

With this definition of the metric, we have the following corollary.

Corollary 3.16. The connection∇LM is the Levi-Civita connection.

3.3 Curvature

Throughout this subsection, fix a γ0 ∈ LM and a starting point o = γ0(0). Choose
an open neighborhood o ∈ U ⊆ M, fix an orthonormal frame u0 over U ⊆ M and
hence define a neighborhood O ⊆

⋃
x∈U Lx M and a frame r = uηξ dependent on

each γ ∈ O, as in Definition 3.4. The goal in this subsection is to compute the
curvature at the loop γ0.

The calculations in this subsection follow those in Section 3 of [Fan01]. Now
γ′ is a tangent field along the loop γ, so I can write for each γ ∈ O ⊆

⋃
x∈U Lx M,

γ′ = r(γ)µ′ , for some loop vector field µ′ ∈ LR
d. Define a map b′ : γ ∈ O ⊆⋃

x∈U Lx M 7→ µ′ ∈ LR
d. To find Dνb′ requires going back to the development

map, where ν ∈ TLM.
The development map I maps H(Rd) to H(M) and is a diffeomorphism. So,

write I(w) = γ ∈ O ⊆
⋃

x∈U Lx M. Note that w may not be a loop. Their relation-
ship is

γ′(s) = uγ(s)w
′(s).

The anti-development map is given by

I−1(γ) =
∫ ·

0
u−1

γ γ′dr.

Differentiate,
(I−1)′(γ) = u−1

γ γ′ = ηξ(γ)µ
′,
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or by definition of b′,

(I−1)′ = ηξb′.

So, b′ = η−1
ξ (I−1)′.

Lemma 3.17. Continue with the notations as above. Assume the connection on M is
torsion free. Then

Dνb′ = v′ + η−1
ξ η′ξv−Λvb′, (3.6)

where ν = rv with v ∈ LR
d.

Proof. Torsion free implies that Θ ≡ 0. From Equation (2.7), let ψ′ = qhw′ + h′

and write Dq,h as the tangent vector associated to ψ, i.e.

Dq,hF :=
d

dt

∣∣∣
t=0

F

(∫ ·

0
etqh(s)w′(s)ds + th(·)

)

for any smooth function on H(Rd). Recall that I = π ◦ Φ. Hence by Theorem
2.18,

(Dνb′) ◦ I =Dq,ηξv(b
′ ◦ I) = Dq,ηξv(η

−1
ξ ◦ I · (I−1)′ ◦ I)

=(Dq,ηξv(η
−1
ξ ◦ I)) · (I−1)′ ◦ I + η−1

ξ ◦ I · Dq,ηξv((I−1)′ ◦ I)

=(Dνη−1
ξ ) ◦ I · (I−1)′ ◦ I + η−1

ξ ◦ I · Dq,ηξv((I−1)′ ◦ I)

=(−Avη−1
ξ (I−1)′) ◦ I + η−1

ξ ◦ I ·Dq,ηξv((I−1)′ ◦ I).

But

(I−1)′ ◦ I(w) = u−1
I(w)

I(w)′ = w′.

So (I−1)′ ◦ I : w→ w′. Therefore, by definition,

Dq,ηξv((I−1)′ ◦ I)(w) = Dq,ηξvw′ = (ηξv)′ + qηξ vw′.

Hence

η−1
ξ Dq,ηξ

(I−1)′ = v′ + η−1
ξ η′ξv + η−1

ξ qηξ vu−1γ′

= v′ + η−1
ξ η′ξv + η−1

ξ qηξ vηξb′.

Therefore,

Dνb′ = v′ + η−1
ξ η′ξv− Avb′ + η−1

ξ qηξ vηξb′

or

Dνb′ = v′ + η−1
ξ η′ξv−Λvb′.

Recall I fix a loop γ0 ∈ O. Choose an orthonormal frame field {ea}a over
U ⊆ M such that at the base point γ0(0) = o ∈ M, ∇M

ea
eb = 0. Hence λh ≡ 0,

h ∈ LR
d in Definition 3.9, throughout this subsection.
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Lemma 3.18. Suppose for γ ∈ O, γ′ = (rb′)(γ), r = uηξ as in Definition 3.4. Write

ν = rv and µ = rw. Given v(·), w(·) ∈ L(Rd) independent of γ ∈ O,

Dν

(
Aw − η−1

ξ

∫ ·

0
Γu(w, b′)(τ)dτ · ηξ

)

=

[
Av, η−1

ξ

∫ ·

0
Γu(w, b′)(τ)dτ · ηξ

]
− η−1

ξ

∫ ·

0
[ηξ(∂B(v)Ωr)η

−1
ξ (w, b′)](τ)dτ · ηξ

− η−1
ξ

∫ ·

0

[
qηξ v, Γu(w, b′)

]
(τ)dτ · ηξ − η−1

ξ

∫ ·

0
Γu(Λvw, b′)(τ)dτ · ηξ

− η−1
ξ

∫ ·

0
Γu(w, v′)(τ)dτ · ηξ − η−1

ξ

∫ ·

0
Γu(w, η−1

ξ η′ξv)(τ)dτ · ηξ

− Av Aw + η−1
ξ DνDµηξ .

Proof.

Dν

(
η−1

ξ

∫ ·

0
Γu(w, b′)(τ)dτ · ηξ

)

=− Avη−1
ξ

∫ ·

0
Γu(w, b′)(τ)dτ · ηξ + η−1

ξ

∫ ·

0
Γu(w, b′)(τ)dτ · ηξ Av

+ η−1
ξ

∫ ·

0
(DνΓu)(w, b′)(τ)dτ · ηξ + η−1

ξ

∫ ·

0
Γu(w, Dνb′)(τ)dτ · ηξ .

Now write Γu = ηξΩrη−1
ξ , so Ωr = η−1

ξ Γuηξ . Then,

DνΓu = (Dνηξ)Ωrη−1
ξ + ηξ(DνΩr)η

−1
ξ + ηξΩrDνη−1

ξ

which gives

DνΓu = ηξ AvΩrη−1
ξ + ηξ(DνΩr)η

−1
ξ − ηξΩr Avη−1

ξ

or

DνΓu = ηξ [Av, Ωr]η
−1
ξ + ηξ(DνΩr)η

−1
ξ .

Now, I have to compute DνΩr. Now Ωr = r−1R(r, r)r and r is a frame in O(M).
Using the push forward of Ψ : LU M → LO(M), Ψ∗Dν is given by Dνr. Thus, by
Corollary 3.8,

DνΩr = ∂B(v)Ωr + ∂
Λ̃v

Ωr.

But

∂ẼΩr =
d

dt

∣∣∣
t=0

(retE)−1R(retE, retE)retE

= −EΩr + r−1R(rE, r) + r−1R(r, rE) + ΩrE = −[E, Ωr] + Ωr(E, ·) + Ωr(·, E).

Thus,

(DνΓu) = ηξ [Av, Ωr]η
−1
ξ − ηξ [Λv, Ωr]η

−1
ξ +Γu(Λv·, ·)+Γu(·, Λv·)+ ηξ(∂B(v)Ωr)η

−1
ξ
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Therefore, using Equation (3.6),

Dν

(
η−1

ξ

∫ ·

0
Γu(w, b′)(τ)dτ · ηξ

)

=−

[
Av, η−1

ξ

∫ ·

0
Γu(w, b′)(τ)dτ · ηξ

]
+ η−1

ξ

∫ ·

0
[ηξ(∂B(v)Ωr)η

−1
ξ (w, b′)](τ)dτ · ηξ

− η−1
ξ

∫ ·

0

[
ηξ [Λv, Ωr]η

−1
ξ (w, b′)

]
(τ)dτ · ηξ + η−1

ξ

∫ ·

0
Γu(Λvw, b′)(τ)dτ · ηξ

+ η−1
ξ

∫ ·

0
Γu(w, v′)(τ)dτ · ηξ + η−1

ξ

∫ ·

0
Γu(w, η−1

ξ η′ξv)(τ)dτ · ηξ

+ η−1
ξ

∫ ·

0

[
ηξ [Av, Ωr]η

−1
ξ (w, b′)

]
(τ)dτ · ηξ .

Also,

DνAw = Dν(η
−1
ξ Dµηξ) = (Dνη−1

ξ )Dµηξ + η−1
ξ (DνDµ)ηξ

= −η−1
ξ (Dνηξ)η

−1
ξ Dµηξ + η−1

ξ DνDµηξ

= −Av Aw + η−1
ξ DνDµηξ .

So

Dν

(
η−1

ξ

∫ ·

0
Γu(w, b′)(τ)dτ · ηξ − Aw

)

=−

[
Av, η−1

ξ

∫ ·

0
Γu(w, b′)(τ)dτ · ηξ

]
+ η−1

ξ

∫ ·

0
[ηξ(∂B(v)Ωr)η

−1
ξ (w, b′)](τ)dτ · ηξ

− η−1
ξ

∫ ·

0

[
ηξ [Λv, Ωr]η

−1
ξ (w, b′)

]
(τ)dτ · ηξ + η−1

ξ

∫ ·

0
Γu(Λvw, b′)(τ)dτ · ηξ

+ η−1
ξ

∫ ·

0
Γu(w, v′)(τ)dτ · ηξ + η−1

ξ

∫ ·

0
Γu(w, η−1

ξ η′ξv)(τ)dτ · ηξ

+ η−1
ξ

∫ ·

0

[
ηξ [Av, Ωr]η

−1
ξ (w, b′)

]
(τ)dτ · ηξ

+ Av Aw − η−1
ξ DνDµηξ .

But note that

[Λv, Ωr] = [Av, Ωr]− [η−1
ξ qηξ vηξ , η−1

ξ Γuηξ ] = [Av, Ωr]− η−1
ξ [qηξ v, Γu]ηξ .

This then simplify the above expression to

Dν

(
η−1

ξ

∫ ·

0
Γu(w, b′)(τ)dτ · ηξ − Aw

)

=−

[
Av, η−1

ξ

∫ ·

0
Γu(w, b′)(τ)dτ · ηξ

]
+ η−1

ξ

∫ ·

0
[ηξ(∂B(v)Ωr)η

−1
ξ (w, b′)](τ)dτ · ηξ

+ η−1
ξ

∫ ·

0
[qηξ v, Γu(w, b′)](τ)dτ · ηξ + η−1

ξ

∫ ·

0
Γu(Λvw, b′)(τ)dτ · ηξ

+ η−1
ξ

∫ ·

0
Γu(w, v′)(τ)dτ · ηξ + η−1

ξ

∫ ·

0
Γu(w, η−1

ξ η′ξv)(τ)dτ · ηξ + Av Aw

− η−1
ξ DνDµηξ .
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Recall the Lie bracket of Dµ and Dν is given by, in terms of r,

[rv, rw] = r
(

Avw− Awv− η−1
ξ [qηξ vηξw + qηξ wηξv]

)
= r(Λvw−Λwv).

Lemma 3.19.

Λv ∧Λw = [Av, Aw]− [Av, η−1
ξ qηξ wηξ ]− [η−1

ξ qηξ vηξ , Aw] + [qηξ vηξ , qηξ wηξ ].

Proof. Now Λv = Av − η−1
ξ qηξ vηξ , so

[Av − η−1
ξ qηξ vηξ , Aw − η−1

ξ qηξ wηξ ]

=[Av, Aw]− [Av, η−1
ξ qηξ wηξ ]− [η−1

ξ qηξ vηξ , Aw] + [η−1
ξ qηξ vηξ , η−1

ξ qηξ wηξ ]

=[Av, Aw]− [Av, η−1
ξ qηξ wηξ ]− [η−1

ξ qηξ vηξ , Aw] + η−1
ξ [qηξ v, qηξ w]ηξ .

Theorem 3.20. Let γ0 ∈ O ⊆
⋃

x∈U Lx M and define r = uηξ as in Definition 3.4. Let

v, w, z ∈ LR
d. The curvature RLM of ∇LM at γ0 is given by

RLM(rv, rw)rz = RM(rv(·), rw(·))rz(·),

whereby RM is the curvature of the underlying manifold M.

Proof.

DνΛw − DµΛv

=[Av, η−1
ξ qηξ wηξ ]− [Aw, η−1

ξ qηξ vηξ ]

−
∫ ·

0
[ηξ(∂B(v)Ωr)η

−1
ξ (w, b′)](τ)dτ + η−1

ξ

∫ ·

0
[ηξ(∂B(w)Ωr)η

−1
ξ (v, b′)](τ)dτ · ηξ

− η−1
ξ

∫ ·

0
[qηξ v, Γu(w, b′)](τ)dτ · ηξ + η−1

ξ

∫ ·

0
[qηξ w, Γu(v, b′)](τ)dτ · ηξ

− η−1
ξ

∫ ·

0
Γu(Λvw−Λwv, b′)(τ)dτ · ηξ − η−1

ξ

∫ ·

0
Γu(w, v′)(τ)dτ · ηξ

+ η−1
ξ

∫ ·

0
Γu(v, w′)(τ)dτ · ηξ − η−1

ξ

∫ ·

0
Γu(w, η−1

ξ η′ξv)(τ)dτ · ηξ

+ η−1
ξ

∫ ·

0
Γu(v, η−1

ξ η′ξw)(τ)dτ · ηξ − [Av, Aw] + η−1
ξ [Dν, Dµ]ηξ .

So

DνΛw − DµΛv + Λv ∧Λw

=−
∫ ·

0
[ηξ(∂B(v)Ωr)η

−1
ξ (w, b′)](τ)dτ + η−1

ξ

∫ ·

0
[ηξ(∂B(w)Ωr)η

−1
ξ (v, b′)](τ)dτ · ηξ

− η−1
ξ

∫ ·

0
[qηξ v, Γu](w, b′)(τ)dτ · ηξ + η−1

ξ

∫ ·

0
[qηξ w, Γu](v, b′)(τ)dτ · ηξ

− η−1
ξ

∫ ·

0
Γu(Λvw−Λwv, b′)(τ)dτ · ηξ − η−1

ξ

∫ ·

0
Γu(w, v′)(τ)dτ · ηξ

+ η−1
ξ

∫ ·

0
Γu(v, w′)(τ)dτ · ηξ − η−1

ξ

∫ ·

0
Γu(w, η−1

ξ η′ξv)(τ)dτ · ηξ

+ η−1
ξ

∫ ·

0
Γu(v, η−1

ξ η′ξw)(τ)dτ · ηξ + η−1
ξ [Dν, Dµ]ηξ + η−1

ξ [qηξ v, qηξ w]ηξ .
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But
d[qηξ v, qηξw]/ds = [Γu(v, b′), qηξ w] + [qηξ v, Γu(w, b′)].

Hence this simplifies to

DνΛw − DµΛv + Λv ∧Λw

=−
∫ ·

0
[ηξ(∂B(v)Ωr)η

−1
ξ (w, b′)](τ)dτ + η−1

ξ

∫ ·

0
[ηξ(∂B(w)Ωr)η

−1
ξ (v, b′)](τ)dτ · ηξ

− η−1
ξ

∫ ·

0
Γu(Λvw−Λwv, b′)(τ)dτ · ηξ − η−1

ξ

∫ ·

0
Γu(w, v′)(τ)dτ · ηξ

+ η−1
ξ

∫ ·

0
Γu(v, w′)(τ)dτ · ηξ − η−1

ξ

∫ ·

0
Γu(w, η−1

ξ η′ξv)(τ)dτ · ηξ

+ η−1
ξ

∫ ·

0
Γu(v, η−1

ξ η′ξw)(τ)dτ · ηξ + η−1
ξ [Dν, Dµ]ηξ

Now

Λr−1[ν,µ] = Ar−1[ν,µ] − η−1
ξ qr−1[ν,µ]ηξ

= η−1
ξ [Dν, Dµ]ηξ − η−1

ξ

∫ ·

0
Γu(Λvw−Λwv, b′)(τ)dτ · ηξ .

So

DνΛw − DµΛv −Λr−1[ν,µ] + Λv ∧Λw

=− η−1
ξ

∫ ·

0
[ηξ(∂B(v)Ωr)η

−1
ξ (w, b′)](τ)dτ + η−1

ξ

∫ ·

0
[ηξ(∂B(w)Ωr)η

−1
ξ (v, b′)](τ)dτ · ηξ

− η−1
ξ

∫ ·

0
Γu(w, v′)(τ)dτ · ηξ + η−1

ξ

∫ ·

0
Γu(v, w′)(τ)dτ · ηξ

− η−1
ξ

∫ ·

0
Γu(w, η−1

ξ η′ξv)(τ)dτ · ηξ + η−1
ξ

∫ ·

0
Γu(v, η−1

ξ η′ξw)(τ)dτ · ηξ .

By the second Bianchi identity,

∂B(v)Ωr(w, b′)− ∂B(w)Ωr(v, b′) = ∂B(b′)Ωr(w, v)

and by the symmetry of curvature tensor, at γ0 ∈ O,

[DνΛw − DµΛv −Λ[ηξv,ηξ w] + Λv ∧Λw + Dνλw − Dµλv](γ0)

=
[

η−1
ξ

∫ ·

0
[ηξ(∂B(b′)Ωr)η

−1
ξ (v, w)](τ)dτ · ηξ

+ η−1
ξ

∫ ·

0
Γu(v

′, w)(τ)dτ · ηξ + η−1
ξ

∫ ·

0
Γu(v, w′)(τ)dτ · ηξ

− η−1
ξ

∫ ·

0
Γu(w, η−1

ξ η′ξv)(τ)dτ · ηξ + η−1
ξ

∫ ·

0
Γu(v, η−1

ξ η′ξw)(τ)dτ · ηξ

+ η−1
ξ Ωr(0)(v(0), w(0))ηξ

]
(γ0).

Now I have to compute r′. Note that by definition, r = uηξ and π(uηξ) = γ. Thus
I seek to find a horizontal vector field B such that π∗B = γ′. But γ′ = uηξb′ = rb′.
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Therefore π∗B = rb′ which implies ϑ(r′) = b′. The vertical vector field is clearly

−ξ̃. Thus,
r′ = (b′)αBα − ξ̃.

Hence,

Ω′r = (b′)αBαΩr − ∂
ξ̃
Ωr

= (b′)αBαΩr + [ξ, Ωr]−Ωr(ξ·, ·) −Ωr(·, ξ·).

Therefore,

d(ηξΩr(v, w)η−1
ξ )/ds

=− [ξ, ηξ Ωr(v, w)η−1
ξ ] + ηξ(b

′)αBαΩr(v, w)η−1
ξ + ηξ [ξ, Ωr(v, w)]η−1

ξ

+ ηξΩr(η
−1
ξ η′ξv, w)η−1

ξ + ηξΩr(v, η−1
ξ η′ξw)η−1

ξ + ηξΩr(v
′, w)η−1

ξ + ηξΩr(v, w′)η−1
ξ .

Hence

Ωr(v, w)

=η−1
ξ

∫ ·

0
[ηξ(∂B(b′)Ωr)(v, w)](τ)dτ · ηξ + η−1

ξ

∫ ·

0
Γu(v

′, w)(τ)dτ · ηξ

+ η−1
ξ

∫ ·

0
Γu(v, w′)(τ)dτ · ηξ + η−1

ξ

∫ ·

0
[ηξΩr(v, η−1

ξ η′ξw)η−1
ξ ](τ)dτ

+ η−1
ξ

∫ ·

0
[ηξΩr(η

−1
ξ η′ξv, w)η−1

ξ ](τ)dτ · ηξ + η−1
ξ Ωr(0)(v(0), w(0))ηξ ,

or at γ0 ∈ O ⊆
⋃

x∈U Lx M,

[DνΛw − DµΛv −Λ[ηξv,ηξ w] + Λv ∧Λw + Dνλw − Dµλv](γ0) = Ωr(v, w)(γ0).
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