Periodic solutions for second order Hamiltonian system with a p-Laplacian*

Xingyong Zhang

Xianhua Tang

Abstract

In this paper, by using an improved inequality, we improve an existence theorem of periodic solutions for second order Hamiltonian system with a p-Laplacian. Moreover, an estimate of solutions is also given. Our results improve those in some known literatures.

1. Introduction

Consider the ordinary p-Laplacian system

$$
\left\{\begin{array}{l}
\frac{d}{d t} \Phi_{p}(\dot{x}(t))+\nabla F(t, x(t))=0, \quad \text { a.e. } t \in[0, T], \tag{1.1}\\
\quad x(0)=x(T), \dot{x}(0)=\dot{x}(T) .
\end{array}\right.
$$

where

$$
\Phi_{p}(u)=|u|^{p-2} u=\left(\sum_{i=1}^{N} u_{i}^{2}\right)^{\frac{p-2}{2}}\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{N}
\end{array}\right)
$$

[^0]$T>0, p>1, q>1,1 / p+1 / q=1$, and $F:[0, T] \times \mathbb{R}^{N} \rightarrow \mathbb{R},(t, x) \rightarrow F(t, x)$ is measurable in t for every $x \in \mathbb{R}^{N}$ and continuously differentiable and convex in x for almost every $t \in[0, T]$.

When $p=2$, there are many existence results of periodic solutions for system (1.1) (see [1-6] and references therein). However, when $p>1$, there are few papers to study these problems. In [7] and [8], the authors considered system (1.1) by using the dual least action principle and a generalized Mountain pass Lemma, respectively, and they obtained some existence results of solutions for system (1.1). In [9], we also considered system (1.1) by using the generalized Saddle point Theorem and obtained that system (1.1) has multiple solutions. Especially, in [7], Tian and Ge obtained the following results:
Theorem A Suppose F satisfies the following conditions:
$\left(A_{1}\right)$ there exists $l \in L^{2 \max \{q, p-1\}}\left(0, T ; \mathbb{R}^{N}\right)$ such that for all $y \in \mathbb{R}^{N}$ and a.e. $t \in[0, T]$,

$$
F(t, y) \geq\left(l(t),|y|^{\frac{p-2}{2}} y\right)
$$

$\left(A_{2}\right)$ there are constants $\alpha \in\left(0, T^{-p / q}\right), \alpha^{q-1} \in\left(0, T^{-q / p}\right), p>1, \gamma \in L^{\max \{q, p-1\}}$ $\left(0, T ; \mathbb{R}^{N}\right)$ such that for $y \in \mathbb{R}^{N}$, and a.e. $t \in[0, T]$,

$$
F(t, y) \leq \frac{\alpha^{2}}{p}|y|^{p}+\gamma(t)
$$

$\left(A_{3}\right) \int_{0}^{T} F(t, y) d t \rightarrow+\infty$, as $|y| \rightarrow \infty, y \in \mathbb{R}^{N}$.
Then, system (1.1) has at least one solution.
In our paper, by using the improved inequality, we improve the condition $\left(A_{2}\right)$ and also obtain an estimate of periodic solution for system (1.1).

2. Preliminaries

In the following, we use $|\cdot|$ to denote the Euclidean norm in \mathbb{R}^{N}. Let

$$
\begin{aligned}
W_{T}^{1, p}= & \left\{u:[0, T] \rightarrow \mathbb{R}^{N} \mid u(t) \text { is absolutely continuous on }[0, T],\right. \\
& \left.u(0)=u(T) \text { and } \dot{u} \in L^{p}\left(0, T ; \mathbb{R}^{N}\right)\right\} .
\end{aligned}
$$

Then, it follows from [2] that $W_{T}^{1, p}$ is a Banach space with the norm defined by

$$
\|u\|_{W_{T}^{1, p}}=\left[\int_{0}^{T}|u(t)|^{p} d t+\int_{0}^{T}|\dot{u}(t)|^{p} d t\right]^{1 / p}, \quad u \in W_{T}^{1, p} .
$$

It follows from [2] that $W_{T}^{1, p}$ is also reflexive and uniformly convex Banach space.
Let

$$
X=\left\{v=\left(v_{1}, v_{2}\right): v_{1} \in W_{T}^{1, q}\left(0, T ; \mathbb{R}^{N}\right), v_{2} \in W_{T}^{1, p}\left(0, T ; \mathbb{R}^{N}\right)\right\}
$$

with the norm $\|v\|=\left\|v_{1}\right\|_{W_{T}^{1, q}}+\left\|v_{2}\right\|_{W_{T}^{1, p}}$. It is clear that X is a reflexive Banach space.

Let

$$
\tilde{W}_{T}^{1, p}=\left\{u \in W_{T}^{1, p} \mid \int_{0}^{T} u(t) d t=0\right\}
$$

It is easy to know that $\tilde{W}_{T}^{1, p}$ is a subset of $W_{T}^{1, p}$ and $W_{T}^{1, p}=\mathbb{R}^{N} \oplus \tilde{W}_{T}^{1, p}$. Then \tilde{X} stands for

$$
\tilde{X}=\left\{v=\left(v_{1}, v_{2}\right): v_{1} \in \tilde{W}_{T}^{1, q}\left(0, T ; \mathbb{R}^{N}\right), v_{2} \in \tilde{W}_{T}^{1, p}\left(0, T ; \mathbb{R}^{N}\right)\right\}
$$

and $\left(W_{T}^{1, p}\right)^{*}$ stands for the conjugate space of $W_{T}^{1, p}$. Then

$$
X^{*}=\left\{f=\left(f_{1}, f_{2}\right): f_{1} \in\left(W_{T}^{1, q}\right)^{*}, f_{2} \in\left(W_{T}^{1, p}\right)^{*}\right\}
$$

is the conjugate space of X. Furthermore, we define

$$
Y=\left\{u=\left(u_{1}, u_{2}\right): u_{1} \in W_{T}^{1, p}\left(0, T ; \mathbb{R}^{N}\right), u_{2} \in W_{T}^{1, q}\left(0, T ; \mathbb{R}^{N}\right)\right\}
$$

For $h \in L^{1}\left([0, T] ; \mathbb{R}^{N}\right)$, the mean value is defined by $\bar{h}=1 / T \int_{0}^{T} h(t) d t$. Besides this, $\|\cdot\|_{\infty},\|\cdot\|_{L^{k}}$ and $\|\cdot\|_{W_{T}^{1, k}}$ stand for the norm in $C^{0}([0, T]), L^{k}([0, T])$ and $W_{T}^{1, k}$, respectively.
$\Gamma_{0}\left(\mathbb{R}^{N}\right)$ denotes the set of all convex lower semi-continuous (l.s.c.) functions $F: \mathbb{R}^{N} \rightarrow(-\infty,+\infty]$ whose effective domain $D(F)=\left\{u \in \mathbb{R}^{N}: F(u)<+\infty\right\}$ is nonempty. Let $H:[0, T] \times \mathbb{R}^{2 N} \rightarrow \mathbb{R},(t, u) \rightarrow H(t, u)$ be a smooth Hamiltonian such that for each $t \in[0, T], H(t, \cdot) \in \Gamma_{0}\left(\mathbb{R}^{2 N}\right)$ is strictly convex and $H(t, u) /|u| \rightarrow+\infty$, if $|u| \rightarrow \infty$. The Fenchel transform $H^{*}(t, \cdot)$ of $H(t, \cdot)$ is defined by

$$
H^{*}(t, v)=\sup _{u \in \mathbb{R}^{2 N}}\{(v, u)-H(t, u)\}
$$

or

$$
\begin{align*}
& H^{*}(t, v)=(v, u)-H(t, u) \\
& v=\nabla H(t, u), \quad \text { or } \quad u=\nabla H^{*}(t, v) . \tag{2.1}
\end{align*}
$$

If for $u=\left(u_{1}, u_{2}\right), u_{1}, u_{2} \in \mathbb{R}^{N}, H(t, u)$ can be split into parts $H(t, u)=H_{1}\left(t, u_{1}\right)+$ $H_{2}\left(t, u_{2}\right)$, then by $(2.1), H^{*}(t, v)=H_{1}^{*}\left(t, v_{1}\right)+H_{2}^{*}\left(t, v_{2}\right), v=\left(v_{1}, v_{2}\right), v_{1}, v_{2} \in \mathbb{R}^{N}$. We denote by J the symplectic matrix. Then $J^{2}=-I$ and $(J u, v)=-(u, J v)$ for all $u, v \in \mathbb{R}^{2 N}$. It is clear that $(J \dot{v}, v)=\left(\dot{v}_{2}, v_{1}\right)-\left(\dot{v}_{1}, v_{2}\right)$, where $v=\left(v_{1}, v_{2}\right)$, $v_{i} \in C\left(0, T ; \mathbb{R}^{N}\right), i=1,2$. The above knowledge and statement come from [2,7] and the references therein.

Let $x(t)=u_{1}(t), \Phi_{p}(\dot{x}(t))=\alpha u_{2}(t)$. Then system (1.1) is equivalent to the non-autonomous system

$$
\left\{\begin{array}{c}
\dot{u}_{2}(t)+\frac{1}{\alpha} \nabla F\left(t, u_{1}(t)\right)=0, \quad \text { a.e. } t \in[0, T], \tag{2.2}\\
-\dot{u}_{1}(t)+\Phi_{q}\left(\alpha u_{2}(t)\right)=0, \\
u_{i}(0)=u_{i}(T), \quad i=1,2,
\end{array}\right.
$$

that is

$$
\left\{\begin{array}{c}
J \dot{u}(t)+\nabla H(t, u(t))=0, \quad \text { a.e. } t \in[0, T] \tag{2.3}\\
u(0)=u(T),
\end{array}\right.
$$

where $u=\left(u_{1}, u_{2}\right), H(t, u)=H_{1}\left(t, u_{1}\right)+H_{2}\left(t, u_{2}\right)$,

$$
\begin{equation*}
H_{1}\left(t, u_{1}\right)=\frac{1}{\alpha} F\left(t, u_{1}\right), \quad H_{2}\left(t, u_{2}\right)=\frac{\alpha^{q-1}}{q}\left|u_{2}\right|^{q}, \tag{2.4}
\end{equation*}
$$

where $H:[0, T] \times \mathbb{R}^{2 N} \rightarrow \mathbb{R}, H_{i}:[0, T] \times \mathbb{R}^{N} \rightarrow \mathbb{R}, i=1,2$.
The dual action is defined on X by

$$
\varphi(v)=\int_{0}^{T}\left[\frac{1}{2}(J \dot{v}(t), v(t))+H_{1}^{*}\left(t, \dot{v}_{1}(t)\right)+H_{2}^{*}\left(t, \dot{v}_{2}(t)\right)\right] d t
$$

where $v=\left(v_{1}, v_{2}\right), H^{*}(t, \dot{v})=H_{1}^{*}\left(t, \dot{v}_{1}\right)+H_{2}^{*}\left(t, \dot{v}_{2}\right)$.
Lemma 2.1. (also see [9], Lemma 2.2) Let $u \in \tilde{W}_{T}^{1, p}$. Then

$$
\begin{equation*}
\|u\|_{\infty} \leq\left(\frac{T}{q+1}\right)^{1 / q}\left(\int_{0}^{T}|\dot{u}(s)|^{p} d s\right)^{1 / p} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{T}|u(s)|^{p} d s \leq \frac{T^{p} \Theta(p, q)}{(q+1)^{p / q}} \int_{0}^{T}|\dot{u}(s)|^{p} d s \tag{2.6}
\end{equation*}
$$

where

$$
\Theta(p, q)=\int_{0}^{1}\left[s^{q+1}+(1-s)^{q+1}\right]^{p / q} d s
$$

Proof. Fix $t \in[0, T]$. For every $\tau \in[0, T]$, we have

$$
\begin{equation*}
u(t)=u(\tau)+\int_{\tau}^{t} \dot{u}(s) d s \tag{2.7}
\end{equation*}
$$

Set

$$
\phi(s)= \begin{cases}s, & 0 \leq s \leq t \\ T-s, & t \leq s \leq T .\end{cases}
$$

Integrating (2.7) over $[0, T]$ and using the Hölder's inequality, we obtain

$$
\begin{align*}
T|u(t)| & =\left|\int_{0}^{T} u(\tau) d \tau+\int_{0}^{T} \int_{\tau}^{t} \dot{u}(s) d s d \tau\right| \\
& \leq \int_{0}^{t} \int_{\tau}^{t}|\dot{u}(s)| d s d \tau+\int_{t}^{T} \int_{t}^{\tau}|\dot{u}(s)| d s d \tau \\
& =\int_{0}^{t} s|\dot{u}(s)| d s+\int_{t}^{T}(T-s)|\dot{u}(s)| d s \\
& =\int_{0}^{T} \phi(s)|\dot{u}(s)| d s \\
& \leq\left(\int_{0}^{T}[\phi(s)]^{q} d s\right)^{1 / q}\left(\int_{0}^{T}|\dot{u}(s)|^{p} d s\right)^{1 / p} \\
& =\frac{1}{(q+1)^{1 / q}}\left[t^{q+1}+(T-t)^{q+1}\right]^{1 / q}\left(\int_{0}^{T}|\dot{u}(s)|^{p} d s\right)^{1 / p} \tag{2.8}
\end{align*}
$$

Since $t^{q+1}+(T-t)^{q+1} \leq T^{q+1}$ for $t \in[0, T]$, it follows from (2.8) that (2.5) holds. On the other hand, from (2.8), we have

$$
\begin{aligned}
T^{p} \int_{0}^{T}|u(t)|^{p} d t & \leq \frac{1}{(q+1)^{p / q}}\left(\int_{0}^{T}|\dot{u}(s)|^{p} d s\right) \int_{0}^{T}\left[t^{q+1}+(T-t)^{q+1}\right]^{p / q} d t \\
& \leq \frac{T^{1+p(q+1) / q}}{(q+1)^{p / q}}\left(\int_{0}^{T}|\dot{u}(s)|^{p} d s\right) \int_{0}^{1}\left[s^{q+1}+(1-s)^{q+1}\right]^{p / q} d s \\
& =\frac{T^{2 p} \Theta(p, q)}{(q+1)^{p / q}} \int_{0}^{T}|\dot{u}(s)|^{p} d s
\end{aligned}
$$

It follows that (2.6) holds. The proof is complete.
Remark 2.1. Obviously, our Lemma 2.1 improve Proposition 1.1 in [2] which shows that

$$
\begin{equation*}
\|u\|_{\infty} \leq T^{1 / q}\|\dot{u}\|_{L^{p}}, \quad\|u\|_{L^{p}}^{p} \leq T^{p}\|\dot{u}\|_{L^{p}}^{p} \tag{2.9}
\end{equation*}
$$

Lemma 2.2. For every $v=\left(v_{1}, v_{2}\right) \in X$,

$$
\begin{equation*}
\int_{0}^{T}(J \dot{v}(t), v(t)) d t \geq-\frac{C}{p}\left\|\dot{v}_{2}\right\|_{L^{p}}^{p}-\frac{C}{q}\left\|\dot{v}_{1}\right\|_{L^{q}}^{q} ; \tag{2.10}
\end{equation*}
$$

for every $u=\left(u_{1}, u_{2}\right) \in Y$,

$$
\begin{equation*}
\int_{0}^{T}(J \dot{u}(t), u(t)) d t \geq-\frac{C}{q}\left\|\dot{u}_{2}\right\|_{L^{q}}^{q}-\frac{C}{p}\left\|\dot{u}_{1}\right\|_{L^{p}}^{p} \tag{2.11}
\end{equation*}
$$

where

$$
C=\frac{T}{(q+1)^{1 / q}}+\frac{T}{(p+1)^{1 / p}}
$$

Proof. Let $v=\bar{v}+\tilde{v}$, where $\bar{v}=1 / T \int_{0}^{T} v(s) d s$. Then by Lemma 2.1, Hölder's inequality and Young's inequality, for $v \in X$, we have

$$
\begin{aligned}
\int_{0}^{T}(J \dot{v}(t), v(t)) d t & =\int_{0}^{T}(J \dot{v}(t), \tilde{v}(t)) d t \\
& =\int_{0}^{T}\left[\left(\dot{v}_{2}(t), \tilde{v}_{1}(t)\right)-\left(\dot{v}_{1}(t), \tilde{v}_{2}(t)\right)\right] d t \\
& \geq-\left\|\tilde{v}_{1}\right\|_{\infty} \int_{0}^{T}\left|\dot{v}_{2}(t)\right| d t-\left\|\tilde{v}_{2}\right\|_{\infty} \int_{0}^{T}\left|\dot{v}_{1}(t)\right| d t \\
& \geq-\frac{T}{(p+1)^{1 / p}}\left\|\dot{v}_{1}\right\|_{L^{q}}\left\|\dot{v}_{2}\right\|_{L^{p}}-\frac{T}{(q+1)^{1 / q}}\left\|\dot{v}_{2}\right\|_{L^{p}}\left\|\dot{v}_{1}\right\|_{L^{q}} \\
& =-C\left\|\dot{v}_{2}\right\|_{L^{p}}\left\|\dot{v}_{1}\right\|_{L^{q}} \\
& \geq-\frac{C}{p}\left\|\dot{v}_{2}\right\|_{L^{p}}^{p}-\frac{C}{q}\left\|\dot{v}_{1}\right\|_{L^{q}}^{q} .
\end{aligned}
$$

Similarly to the above process, the result (2.11) holds for $u=\left(u_{1}, u_{2}\right) \in Y$.
Remark 2.2. Obviously, our Lemma 2.2 improve Lemma 3.3 in [7].
Lemma 2.3. [2, Proposition 1.4] Let $G \in C^{1}\left(\mathbb{R}^{N}, \mathbb{R}\right)$ be a convex function. Then, for all $x, y \in \mathbb{R}^{N}$, we have

$$
G(x) \geq G(y)+(\nabla G(y), x-y)
$$

3. Main results and Proofs

Theorem 3.1 Suppose F satisfies $\left(A_{1}\right),\left(A_{3}\right)$ and the following condition:
$\left(A_{2}\right)^{\prime}$ there are constants $\alpha \in\left(0,(C / 2)^{-p / q}\right), \alpha^{q-1} \in\left(0,(C / 2)^{-q / p}\right), \gamma \in L^{\max \{q, p-1\}}$ $\left(0, T ; \mathbb{R}^{N}\right)$ such that for all $y \in \mathbb{R}^{N}$, and a.e. $t \in[0, T]$,

$$
F(t, y) \leq \frac{\alpha^{2}}{p}|y|^{p}+\gamma(t)
$$

where

$$
C=\frac{T}{(q+1)^{1 / q}}+\frac{T}{(p+1)^{1 / p}} .
$$

Then, system (2.3) has at least one solution $u \in Y$ such that

$$
v(t)=\binom{v_{1}(t)}{v_{2}(t)}=-J\left[u(t)-\frac{1}{T} \int_{0}^{T} u(s) d s\right]=\binom{-u_{2}(t)+\frac{1}{T} \int_{0}^{T} u_{2}(s) d s}{u_{1}(t)-\frac{1}{T} \int_{0}^{T} u_{1}(s) d s}
$$

minimizes the dual action

$$
\varphi: X \rightarrow(-\infty,+\infty], \quad v \rightarrow \int_{0}^{T}\left[\frac{1}{2}(J \dot{v}(t), v(t))+H^{*}(t, \dot{v}(t))\right] d t
$$

that is to say, system (1.1) has at least one solution $x \in W_{T}^{1, p}$.
Proof. The proof is same as in [7]. We only need to replace Lemma 3.3 in [7] with Lemma 2.2 and replace (2.9) with (2.5) in the process of proof.

Next, we consider the estimate of solutions for system (1.1).
Theorem 3.2 Assume that there exist $\alpha \in\left(0, \min \left\{C^{-1}, C^{-p / q}\right\}\right), \beta \geq 0, \gamma \geq 0$ and $\delta>0$ such that

$$
\begin{equation*}
\delta|y|-\beta \leq F(t, y) \leq \frac{\alpha^{2}}{p}|y|^{p}+\gamma \tag{3.1}
\end{equation*}
$$

for all $t \in[0, T]$ and $y \in \mathbb{R}^{N}$. Then each solution x of system (1.1) satisfies

$$
\begin{align*}
& \int_{0}^{T}|x(t)| d t \leq \frac{(\gamma+\beta) T}{\delta}+\frac{T \alpha^{q} B^{1 / p} D^{1 / q}}{\delta(q+1)^{1 / q}} \tag{3.2}\\
& \int_{0}^{T}|\dot{x}(t)|^{p} d t \leq \frac{p T(\gamma+\beta)}{1-C \alpha} \tag{3.3}
\end{align*}
$$

where

$$
B=\frac{p T(\gamma+\beta)}{\alpha^{q}-C \alpha^{q+1}}, \quad D=\frac{q T(\gamma+\beta)}{\alpha^{1-q / p}-C \alpha} .
$$

Proof. By (3.1), for $u=\left(u_{1}, u_{2}\right) \in \mathbb{R}^{N} \times \mathbb{R}^{N}$, we have

$$
\begin{align*}
& \frac{\delta}{\alpha}\left|u_{1}\right|-\frac{\beta}{\alpha}+\frac{\alpha^{q-1}}{q}\left|u_{2}\right|^{q} \\
\leq & H(t, u)=\frac{1}{\alpha} F\left(t, u_{1}\right)+\frac{\alpha^{q-1}}{q}\left|u_{2}\right|^{q} \\
\leq & \frac{\alpha}{p}\left|u_{1}\right|^{p}+\frac{\gamma}{\alpha}+\frac{\alpha^{q-1}}{q}\left|u_{2}\right|^{q} . \tag{3.4}
\end{align*}
$$

Then, we have

$$
(u, v)-H(t, u) \geq(u, v)-\frac{\alpha}{p}\left|u_{1}\right|^{p}-\frac{\gamma}{\alpha}-\frac{\alpha^{q-1}}{q}\left|u_{2}\right|^{q} .
$$

Since

$$
\begin{aligned}
& (u, v)-\frac{\alpha}{p}\left|u_{1}\right|^{p}-\frac{\gamma}{\alpha}-\frac{\alpha^{q-1}}{q}\left|u_{2}\right|^{q} \\
= & \left(u_{1}, v_{1}\right)+\left(u_{2}, v_{2}\right)-\frac{\alpha}{p}\left|u_{1}\right|^{p}-\frac{\gamma}{\alpha}-\frac{\alpha^{q-1}}{q}\left|u_{2}\right|^{q} \\
\leq & \left|u_{1}\right|\left|v_{1}\right|-\frac{\alpha}{p}\left|u_{1}\right|^{p}-\frac{\gamma}{\alpha}+\left|u_{2}\right|\left|v_{2}\right|-\frac{\alpha^{q-1}}{q}\left|u_{2}\right|^{q} \\
\leq & \sup _{u_{1} \in \mathbb{R}^{N}}\left\{\left|u_{1}\right|\left|v_{1}\right|-\frac{\alpha}{p}\left|u_{1}\right|^{p}-\frac{\gamma}{\alpha}\right\}+\sup _{u_{2} \in \mathbb{R}^{N}}\left\{\left|u_{2}\right|\left|v_{2}\right|-\frac{\alpha^{q-1}}{q}\left|u_{2}\right|^{q}\right\} \\
= & \alpha^{-q / p} \frac{\left|v_{1}\right|^{q}}{q}-\frac{\gamma}{\alpha}+\frac{1}{p \alpha}\left|v_{2}\right|^{p} .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
H^{*}(t, v) \geq \alpha^{-q / p} \frac{\left|v_{1}\right|^{q}}{q}-\frac{\gamma}{\alpha}+\frac{1}{p \alpha}\left|v_{2}\right|^{p} \tag{3.5}
\end{equation*}
$$

By (2.1) and (3.4), we get

$$
\begin{equation*}
H^{*}(t, v)=(u, v)-H(t, u) \leq(u, v)+\frac{\beta}{\alpha} . \tag{3.6}
\end{equation*}
$$

Then

$$
\begin{equation*}
\alpha^{-q / p} \frac{\left|v_{1}\right|^{q}}{q}-\frac{\gamma}{\alpha}+\frac{1}{p \alpha}\left|v_{2}\right|^{p} \leq(u, v)+\frac{\beta}{\alpha} . \tag{3.7}
\end{equation*}
$$

Note that

$$
v=\nabla H(t, u)=\binom{\nabla H_{1}\left(t, u_{1}\right)}{\nabla H_{2}\left(t, u_{2}\right)}=\binom{\frac{1}{\alpha} \nabla F\left(t, u_{1}\right)}{\alpha^{q-1}\left|u_{2}\right|^{q-2} u_{2}} .
$$

Then by (2.1) and (3.7), we have

$$
\alpha^{-q / p} \frac{\left|\frac{1}{\alpha} \nabla F\left(t, u_{1}\right)\right|^{q}}{q}-\frac{\gamma}{\alpha}+\left.\left.\frac{1}{p \alpha}\left|\alpha^{q-1}\right| u_{2}\right|^{q-2} u_{2}\right|^{p} \leq(u, \nabla H(t, u))+\frac{\beta}{\alpha},
$$

that is

$$
\frac{\alpha^{-q / p-q}}{q}\left|\nabla F\left(t, u_{1}\right)\right|^{q}-\frac{\gamma}{\alpha}+\frac{\alpha^{q-1}}{p}\left|u_{2}\right|^{q} \leq(u, \nabla H(t, u))+\frac{\beta}{\alpha} .
$$

For each solution $u=\left(u_{1}, u_{2}\right)$ of system (2.3), it is easy to know that u_{1} is the solution of (1.1). By (2.2) and (2.3), we know $\nabla F\left(t, u_{1}(t)\right)=-\alpha \dot{u}_{2}(t)$ and $\nabla H(t, u(t))=-J \dot{u}(t)$. Hence

$$
\frac{\alpha^{-q / p}}{q}\left|\dot{u}_{2}(t)\right|^{q}-\frac{\gamma}{\alpha}+\frac{\alpha^{q-1}}{p}\left|u_{2}(t)\right|^{q} \leq(u(t),-J \dot{u}(t))+\frac{\beta}{\alpha} .
$$

Integrating the above inequality over $[0, T]$ and using Lemma 2.2 and (2.2), we obtain

$$
\begin{aligned}
\frac{\alpha^{-q / p}}{q}\left\|\dot{u}_{2}\right\|_{L^{q}}^{q}-\frac{\gamma T}{\alpha}+\frac{\alpha^{q-1}}{p}\left\|u_{2}\right\|_{L^{q}}^{q} & \leq-\int_{0}^{T}(u(t), J \dot{u}(t)) d t+\frac{\beta T}{\alpha} \\
& \leq \frac{C}{q}\left\|\dot{u}_{2}\right\|_{L^{q}}^{q}+\frac{C}{p}\left\|\dot{u}_{1}\right\|_{L^{p}}^{p}+\frac{\beta T}{\alpha} \\
& =\frac{C}{q}\left\|\dot{u}_{2}\right\|_{L^{q}}^{q}+\frac{C}{p}\left\|\Phi_{q}\left(\alpha u_{2}\right)\right\|_{L^{p}}^{p}+\frac{\beta T}{\alpha} \\
& =\frac{C}{q}\left\|\dot{u}_{2}\right\|_{L^{q}}^{q}+\frac{C \alpha^{q}}{p}\left\|u_{2}\right\|_{L^{q}}^{q}+\frac{\beta T}{\alpha} .
\end{aligned}
$$

So

$$
\left(\frac{\alpha^{-q / p}}{q}-\frac{C}{q}\right)\left\|\dot{u}_{2}\right\|_{L^{q}}^{q}+\left(\frac{\alpha^{q-1}}{p}-\frac{C \alpha^{q}}{p}\right)\left\|u_{2}\right\|_{L^{q}}^{q} \leq \frac{T(\beta+\gamma)}{\alpha} .
$$

Since $\alpha \in\left(0, \min \left\{C^{-1}, C^{-p / q}\right\}\right)$, we have

$$
\left\|u_{2}\right\|_{L^{q}}^{q} \leq \frac{p T(\gamma+\beta)}{\alpha^{q}-C \alpha^{q+1}}=B, \quad\left\|\dot{u}_{2}\right\|_{L^{q}}^{q} \leq \frac{q T(\gamma+\beta)}{\alpha^{1-q / p}-C \alpha}=D .
$$

Hence,

$$
\begin{equation*}
\left\|\dot{u}_{1}\right\|_{L^{p}}^{p}=\left\|\Phi_{q}\left(\alpha u_{2}\right)\right\|_{L^{p}}^{p}=\alpha^{q}\left\|u_{2}\right\|_{L^{q}}^{q} \leq B \alpha^{q} . \tag{3.8}
\end{equation*}
$$

It follows that (3.3) holds. Since F is continuously differentiable and convex in x, then by Lemma 2.3, (3.1), (2.2), (2.5), Hölder's inequality and (3.8), we have

$$
\begin{aligned}
\delta \int_{0}^{T}\left|u_{1}(t)\right| d t-\beta T & \leq \int_{0}^{T} F\left(t, u_{1}(t)\right) d t \\
& \leq \int_{0}^{T}\left[F(t, 0)+\left(\nabla F\left(t, u_{1}(t)\right), u_{1}(t)\right)\right] d t \\
& \leq \gamma T-\int_{0}^{T}\left(\alpha \dot{u}_{2}(t), u_{1}(t)\right) d t \\
& \leq \gamma T+\alpha\left\|\tilde{u}_{1}\right\|_{\infty} \int_{0}^{T}\left|\dot{u}_{2}(t)\right| d t \\
& \leq \gamma T+\alpha T^{1 / p}\left\|\tilde{u}_{1}\right\|_{\infty}\left(\int_{0}^{T}\left|\dot{u}_{2}(t)\right|^{q} d t\right)^{1 / q} \\
& \leq \gamma T+\alpha \frac{T}{(q+1)^{1 / q}}\left\|\dot{u}_{1}\right\|_{L^{p}}\left\|\dot{u}_{2}\right\|_{L^{q}} \\
& \leq \gamma T+\frac{T \alpha^{q} B^{1 / p} D^{1 / q}}{(q+1)^{1 / q}} .
\end{aligned}
$$

So, we get

$$
\int_{0}^{T}\left|u_{1}(t)\right| d t \leq \frac{(\gamma+\beta) T}{\delta}+\frac{T \alpha^{q} B^{1 / p} D^{1 / q}}{\delta(q+1)^{1 / q}} .
$$

It follows that (3.2) holds. The proof is complete.

References

[1] Y. M. Long, Nonlinear oscillations for classical Hamiltonian systems with bi-even subquadritic potentials, Nonlinear Anal. 24(1995)1665-1671.
[2] J. Mawhin, M. Willem, Critical Point Theory and Hamiltonian Systems, Springer-Verlag, New York, 1989.
[3] J. Mawhin, M. Willem, Critical points of convex perturbations of some indefinite quadratic forms and semilinear boundary value problems at resonance, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3(1986)431-453.
[4] P. H. Rabinowitz, On subharmonic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 33 (1980)609-633.
[5] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, in: CBMS Regional Conf. Ser. in Math., Vol. 65, American Mathematical Society, Providence, RI, 1986.
[6] C. L. Tang, X.P. Wu, Notes on periodic solutions of subquadratic second order systems, J. Math. Anal. Appl. 285(1)(2003)8-16.
[7] Y. Tian, W. Ge, Periodic solutions of non-autonomous second-order systems with a p-Laplacian, Nonlinear Analysis, 66(2007)192-203.
[8] B. Xu, C. L. Tang, Some existence results on periodic solutions of ordinary p-Laplacian systems, J. Math. Anal. Appl., 333(2007)1228-1236.
[9] X. Zhang, X. Tang, Periodic solutions for an ordinary p-Laplacian system, Taiwanese Journal of Mathematics (in press).

School of Mathematical Sciences and Computing Technology,
Central South University, Changsha,
Hunan 410083, P.R. China
E-mail: tangxh@mail.csu.edu.cn

[^0]: *This work is supported by the Graduate degree thesis Innovation Foundation of Central South University (No: 3960-71131100014) and supported by the Outstanding Doctor degree thesis Implantation Foundation of Central South University(No: 2008yb032) and partially supported by the NNSF (No: 10771215) of China.

 Received by the editors October 2009.
 Communicated by J. Mawhin.
 2000 Mathematics Subject Classification : 34C25, 58E50.
 Key words and phrases : p-Laplacian systems; Periodic solutions; Critical point; Sobolev's inequality; Writinger's inequality.

