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Abstract

Let E be an ideal of L0 over a σ-finite measure space (Ω, Σ, µ). For a
real Banach space (X, ‖ · ‖X) let E(X) be the subspace of the space L0(X)
of µ-equivalence classes of strongly Σ-measurable functions f : Ω → X
consisting of all those f ∈ L0(X) for which the scalar function ‖ f (·)‖X be-
longs to E. For a real Banach space Y a linear operator T : E(X) → Y
is said to be order-weakly compact whenever for each u ∈ E+ the set
T({ f ∈ E(X) : ‖ f (·)‖X ≤ u}) is relatively weakly compact in Y. In this
paper we derive Yosida-Hewitt type decompositions for order-weakly com-
pact operators T : E(X) → Y. In particular, it is shown that if X is an
Asplund space, then an order-weakly compact operator T : E(X) → Y can
be uniquely decomposed as T = T1 + T2, where T1, T2 are order-weakly
compact operators, T1 is smooth and T2 is weakly singular.

1 Introduction and preliminaries

The problem of Yosida-Hewitt type decompositions of linear mappings from vec-
tor lattices to vector lattices (Banach spaces) has been considered in [E], [S], [AB1],
[KM], [BBuY], [BBu]. In particular, Basile, Bukhvalov and Yakubson ([BBuY],
[BBu]) have derived Yosida-Hewitt type decompositions for order-weakly com-
pact operators from vector lattices to Banach spaces. Recall here that a linear
operator T from a vector lattice E to a Banach space Y is said to be order-weakly
compact if the set T([−u, u]) is relatively weakly compact in Y for every u ∈ E+
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(see [D], [AB2, §18]). In [N7] we obtained Yosida-Hewitt type decompositions for
weakly compact operators from Köthe-Bochner function spaces E(X) to Banach
spaces. The purpose of this paper is to derive Yosida-Hewitt type decompositions
for order-weakly compact operators acting from more general function spaces
E(X) to Banach spaces (see Theorems 3.3, 3.4 and 3.6 below).

We denote by σ(L, K) and τ(L, K) the weak topology and the Mackey topol-
ogy on L with respect to a dual pair 〈L, K〉. For terminology concerning vector-
lattices and function spaces we refer to [AB2], [KA].

Throughout the paper we assume that (Ω, Σ, µ) is a complete σ-finite mea-
sure space. Let L0 denote the space of µ-equivalence classes of all Σ-measurable
real valued functions defined on Ω. Let E be an ideal of L0 with supp E = Ω,
and let E′ stand for the Köthe dual of E. We will assume that supp E′ = Ω.
Let E∼, E∼

n and E∼
s stand for the order dual, the order continuous dual and

the singular dual of E respectively. Then E∼
n separates the points of E and it

can be identified with E′ through the mapping: E′ ∋ v 7→ ϕv ∈ E∼
n , where

ϕv(u) =
∫

Ω
u(ω)v(ω)dµ for all u ∈ E.

From now on we assume that (X, ‖ · ‖X), X 6= {0} and (Y, ‖ · ‖Y), Y 6= {0}
are real Banach spaces and let X∗ and Y∗ stand for their Banach duals. Let SX

stand for the unit sphere in X. By L0(X) we denote the set of µ-equivalence
classes of all strongly Σ-measurable functions f : Ω → X. For f ∈ L0(X) let us

set f̃ (ω) := ‖ f (ω)‖X for ω ∈ Ω. Let

E(X) = { f ∈ L0(X) : f̃ ∈ E }.

Basic concepts of the theory of vector-valued spaces E(X) can be found in
monographs: [CM], [DU], [L]. Recall that the algebraic tensor product E ⊗ X is
the subspace of E(X) spanned by the functions of the form u ⊗ x, (u ⊗ x)(ω) =

u(ω)x, where u ∈ E, x ∈ X. For each u ∈ E+ the set Du = { f ∈ E(X) : f̃ ≤ u}
will be called an order interval in E(X) (see [BuL]).

Following [D], [N4], [N5] we are now ready to define two classes of linear
operators.

Definition 1.1. A linear operator T : E(X) → Y is said to be order-weakly com-
pact (resp. order-bounded ) whenever for each u ∈ E+ the set T(Du) is relatively-
weakly compact (resp. norm bounded ) in Y.

Clearly each order-weakly compact operator T : E(X) → Y is order-bounded.

2 Duality of vector-valued function spaces

In this section we establish terminology and prove some results concerning dual-
ity of vector-valued function spaces E(X) (see [BuL], [N1], [N2], [N3], [N4]).

For an order-bounded functional F on E(X) let us put

|F|( f ) := sup{|F(h)| : h ∈ E(X), h̃ ≤ f̃ } for f ∈ E(X).
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Clearly |F( f )| ≤ |F|( f ) for each f ∈ E(X) and |F|( f1) ≤ |F|( f2) whenever

f̃1 ≤ f̃2. One can check that the mapping f 7→ |F|( f ) is a seminorm on E(X).
The set

E(X)∼ = {F ∈ E(X)# : |F|( f ) < ∞ for all f ∈ E(X)}

will be called the order dual of E(X) (here E(X)# denotes the algebraic dual of
E(X)). It is known that a linear operator T : E(X) → Y is order bounded if and
only if T is (τ(E(X), E(X)∼), ‖ · ‖Y)-continuous (see [N4, Theorem 2.3]).

Let F ∈ E(X)∼ and x0 ∈ SX be fixed. For u ∈ E+ let us set

ϕF(u) := |F|(u ⊗ x0) = sup{|F(h)| : h ∈ E(X), h̃ ≤ u}.

Note that ϕF(u) does not depend on x0 ∈ SX. Then ϕF : E+ → R
+ is an

additive mapping and ϕF has a unique positive extension to a linear mapping
from E to R (denoted by ϕF again) and given by

ϕF(u) := ϕF(u
+)− ϕF(u

−) for all u ∈ E

(see [BuL, §3, Lemma 7]). Clearly ϕF ∈ E∼ and for f ∈ E(X) we have

ϕF( f̃ ) = |F|( f ) for all f ∈ E(X).

Now we recall the concept of solidness in E(X)∼ (see [N1, §2], [N2]). For
F1, F2 ∈ E(X)∼ we will write |F1| ≤ |F2| whenever |F1|( f ) ≤ |F2|( f ) for all
f ∈ E(X). A subset A of E(X)∼ is said to be solid whenever |F1| ≤ |F2| with
F1 ∈ E(X)∼ and F2 ∈ A imply F1 ∈ A. A linear subspace I of E(X)∼ will be
called an ideal of E(X)∼ whenever I is solid.

An order bounded linear functional F on E(X) is said to be smooth when-

ever for a net ( fα) in E(X), f̃α

(o)
−→ 0 in E implies F( fα) → 0 (see [BuL, § 3,

Definition 2], [N1], [N2]). (Note that Bukhvalov and Lozanovskii [BuL] use the
term “integral” and in [N1], [N2] we use the term “order continuous”). The set
consisting of all smooth functionals on E(X) will be denoted by E(X)∼n . Note
that E(X)∼n separates the points of E(X) because we assume that supp E′ = Ω.

A subset H of E(X) is said to be solid whenever f̃1 ≤ f̃2 and f1 ∈ E(X),
f2 ∈ H imply f1 ∈ H. A linear topology τ on E(X) is said to be locally solid if

it has a local base at zero consisting of solid sets. A locally solid topology τ on

E(X) is said to be a Lebesgue topology whenever for a net ( fα) in E(X), f̃α

(o)
−→ 0

in E implies fα → 0 for τ (see [N3, Definition 2.2]).

It is known that a Banach space X is an Asplund space if and only if X∗ has
the Radon-Nikodym property (see [DU, p. 213]).

The following theorem will be of importance (see [N6, Theorems 1.2 and 4.1]):

Theorem 2.1. Assume that X is an Asplund space. Then the Mackey topology
τ(E(X), E(X)∼n ) is a locally convex-solid Lebesgue topology.
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Recall that a functional F ∈ E(X)∼ is said to be singular if there exists an ideal
M of E with supp M = Ω and such that F( f ) = 0 for all f ∈ M(X). The
set consisting of all singular functionals on E(X) will be denoted by E(X)∼s and
called the singular dual of E(X) (see [BuL, § 3, Definition 2]).

It is known that E(X)∼n and E(X)∼s are ideals of E(X)∼ (see [N1]).

Due to Bukhvalov and Lozanovski (see [BuL, §3, Theorem 2]) we have the
following Yosida-Hewitt type decomposition of E(X)∼ .

Theorem 2.2. The following decomposition of E(X)∼ holds:

(1.1) E(X)∼ = E(X)∼n ⊕ E(X)∼s

and ϕF = ϕF1
+ ϕF2

whenever F = F1 + F2 with F1 ∈ E(X)∼n , F2 ∈ E(X)∼s .
Moreover, ϕF1

∈ E∼
n and ϕF2

∈ E∼
s .

One can note that E(X)∼n = E(X)∼ if and only if E∼
n = E∼.

In view of (1.1) we have linear projections Pk : E(X)∼ → E(X)∼ (k = 1, 2)
defined by Pk(F) = Fk. Note that for F ∈ E(X)∼ and every f ∈ E(X) we have:

|Pk(F)|( f ) = |Fk|( f ) = ϕFk
( f̃ ) ≤ ϕF( f̃ ) = |F|( f ),

i.e., |Pk(F)| ≤ |F|.

Proposition 2.3. For a linear operator T : E(X) → Y the following statements are
equivalent:

(i) y∗ ◦ T ∈ E(X)∼n for every y∗ ∈ Y∗.

(ii) T is (σ(E(X), E(X)∼n ), σ(Y, Y∗))-continuous.

(iii) T is (τ(E(X), E(X)∼n ), ‖ · ‖Y)-continuous.

Proof. (i)⇐⇒(ii) See [AB2, Theorem 9.26]; (ii)⇐⇒(iii) See [W, Corollary 11-1-3,
Corollary 11-2-6].

Following [BBuY] we define smooth and singular operators on E(X).

Definition 2.1. (i) An order bounded linear operator T : E(X) → Y is said to

be smooth if for a net ( fα) in E(X), f̃α

(o)
−→ 0 in E implies ‖T( fα)‖Y → 0.

(ii) An order bounded linear operator T : E(X) → Y is said to be singular
if there exists an ideal M of E with supp M = Ω such that T( f ) = 0 for all
f ∈ M(X).

(iii) An order bounded linear operator T : E(X) → Y is said to be weakly
singular if y∗ ◦ T ∈ E(X)∼s for every y∗ ∈ Y∗.

The following theorem gives a characterization of smooth operators T : E(X) →
Y when X is an Asplund space.
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Theorem 2.4. Assume that X is an Asplund space. Then for a linear operator
T : E(X) → Y the following statements are equivalent:

(i) T is smooth.

(ii) y∗ ◦ T ∈ E(X)∼n for every y∗ ∈ Y∗.

(iii) T is (τ(E(X), E(X)∼n ), ‖ · ‖Y)-continuous.

Proof. (i)=⇒(ii) It is obvious. (ii)⇐⇒(iii) See Proposition 2.3.
(iii)=⇒(i) Clearly, because τ(E(X), E(X)∼n ) is a Lebesgue topology (see The-

orem 2.1).

We will need the following lemma.

Lemma 2.5. Assume that |F| ≤ |G|, where F, G ∈ E(X)∼ . Then |Pk(F)| ≤
|Pk(G)| for k = 1, 2.

Proof. We have F = F1 + F2, G = G1 + G2, where F1, G1 ∈ E(X)∼n , F2, G2 ∈
E(X)∼s and ϕF = ϕF1

+ ϕF2
, ϕG = ϕG1

+ ϕG2
, where ϕF1

, ϕG1
∈ E∼

n and ϕF2
, ϕG2

∈
E∼

s (see (1.1)). Let u ∈ E+ and x0 ∈ SX be fixed. Then

ϕF(u) = |F|(u ⊗ x0) ≤ |G|(u ⊗ x0) = ϕG(u).

Since the order projections of E∼ onto E∼
n and E∼

s are positive operators, for
f ∈ E(X) we have

|Pk(F)|( f ) = |Fk|( f ) = ϕFk
( f̃ )

≤ ϕGk
( f̃ ) = |Gk|( f ) = |Pk(G)|( f ).

For a linear functional V on E(X)∼ let us put:

|V|(F) = sup{|V(G)| : G ∈ E(X)∼ , |G| ≤ |F|} for F ∈ E(X)∼ .

The set

(E(X)∼)∼ = {V ∈ (E(X)∼)# : |V|(F) < ∞ for all F ∈ E(X)∼}

will be a called the order dual of E(X)∼ (see [N2]) (here (E(X)∼)# denotes the
algebraic dual of E(X)∼).

For V1, V2 ∈ (E(X)∼)∼ we will write |V1| ≤ |V2| whenever |V1|(F) ≤ |V2|(F)
for all F ∈ E(X)∼ . A subset K of (E(X)∼)∼ is said to be solid whenever |V1| ≤
|V2| with V1 ∈ (E(X)∼)∼, V2 ∈ K imply V1 ∈ K. A linear subspace L of
(E(X)∼)∼ is called an ideal if L is a solid subset of (E(X)∼)∼.

For each f ∈ E(X) let us put

π f (F) = F( f ) for all F ∈ E(X)∼ .
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One can show (see [N2, §1]) that for f ∈ E(X),

|π f |(F) = |F|( f ) for F ∈ E(X)∼ and that π f ∈ (E(X)∼)∼.

Thus we have a natural embedding π : E(X) ∋ f 7→ π f ∈ (E(X)∼)∼.

Denote by E(X)0 the ideal of (E(X)∼)∼ generated by the set π(E(X)), i.e.,
E(X)0 is the smallest ideal of (E(X)∼)∼ containing π(E(X)). One can show that
(see [N2, Theorem 3.2]):

E(X)0 = {V ∈ (E(X)∼)∼ : |V| ≤ |π f | for some f ∈ E(X)}.

Let
P∼

k : (E(X)∼)# → (E(X)∼)#

stand for the conjugate of Pk (k = 1, 2) defined by

P∼
k (V)(F) = V(Pk(F)) for V ∈ (E(X)∼)# and F ∈ E(X)∼ .

Observe that
P∼

k ((E(X)∼)∼) ⊂ (E(X)∼)∼.

Indeed, let V ∈ (E(X)∼)∼. Then by making use of Lemma 2.5 we have for
F ∈ E(X)∼ ,

|P∼
k (V)|(F) = sup{|P∼

k (V)(G)| : G ∈ E(X)∼ , |G| ≤ |F|}

= sup{|V(Pk(G)| : G ∈ E(X)∼ , |G| ≤ |F|}

≤ sup{|V|(Pk(G)) : G ∈ E(X)∼ , |G| ≤ |F|}

≤ |V|(Pk(F)) ≤ |V|(F) < ∞.

Hence, in particular, we get:

Corollary 2.6. Let f ∈ E(X). Then for every F ∈ E(X)∼ we have

|P∼
k (π f )|(F) ≤ |π f |(Pk(F)) ≤ |π f |(F),

and hence P∼
k (π f ) ∈ E(X)0 (k = 1, 2).

3 A Yosida-Hewitt type decomposition for order-weakly com-

pact operators

In this section we derive Yosida-Hewitt type decompositions for order-weakly
compact operators T : E(X) → Y.

Assume now that T : E(X) → Y is an order bounded operator, i.e., T is
(τ(E(X), E(X)∼ ), ‖ · ‖Y)-continuous. It follows that y∗ ◦ T ∈ E(X)∼ for every
y∗ ∈ Y∗. Then we can consider the linear mappings (see [N6]):

T∼ : Y∗ → E(X)∼
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defined by

T∼(y∗)( f ) = y∗(T( f )) for y∗ ∈ Y and all f ∈ E(X),

and
T∼∼ : E(X)0 → Y∗∗

defined by

T∼∼(V)(y∗) = V(T∼(y∗)) for V ∈ E(X)0 and all y∗ ∈ Y∗.

The map T∼∼ is (σ(E(X)0 , E(X)∼), σ(Y∗∗, Y∗))-continuous.

Let i : Y ∋ y 7→ iy ∈ Y∗∗ stand for the canonical isometry, i.e., iy(y∗) = y∗(y)
for y∗ ∈ Y∗. Moreover, let j : i(Y) → Y stand for the left inverse of i, i.e.,
j ◦ i = idY. Then T∼∼ ◦ π = i ◦ T.

The following characterization of order-weakly compact operators T : E(X)→
Y will be of importance.

Theorem 3.1 (see [N5, Theorem 2.3]). For an order-bounded operator T : E(X) →
Y the following statements are equivalent:

(i) T is order-weakly compact.

(ii) T∼∼(E(X)0) ⊂ i(Y).

For f ∈ E(X) let us set

I f = {V ∈ E(X)0 : |V| ≤ |π f |}.

The following property of I f will be needed.
Theorem 3.2. For f ∈ E(X) the set I f is σ(E(X)0 , E(X)∼)-compact in E(X)0 .

Proof. Clearly σ(E(X)0 , E(X)∼) = σ((E(X)∼)#, E(X)∼)|E(X)0
. We shall show

that I f is a totally bounded and closed set in ((E(X)∼)#, σ((E(X)∼)#, E(X)∼)).
In fact, let F ∈ E(X)∼ . Then for each V ∈ I f we have

|V(F)| ≤ |V|(F) ≤ |π f |(F) = |F|( f ) < ∞.

This means that I f is bounded for σ((E(X)∼)#, E(X)∼), so by [KA, Lemma

3.3.5] it is totally bounded in (E(X)∼)#, σ((E(X)∼)#, E(X)∼)).
To see that I f is closed in ((E(X)∼)#, σ((E(X)∼)#, E(X)∼)), assume that Vα →

V for σ((E(X)∼))#, E(X)∼), where (Vα) is a net in I f and V ∈ (E(X)∼)#. It
is enough to show that |V| ≤ |π f |, i.e., |V|(F) ≤ |π f |(F) = |F|( f ) for each
F ∈ E(X)∼ . In fact, let F ∈ E(X)∼ and ε > 0 be given. Let G ∈ E(X)∼ and
|G| ≤ |F|. Since Vα(G) → V(G), there exists α0 such that for α ≥ α0 we get

|V(G)| ≤ |Vα(G)| + ε ≤ |Vα|(G) + ε ≤ |π f |(G) + ε ≤ |π f |(F) + ε.

It follows that |V|(F) ≤ |π f |(F), so |V| ≤ |π f |, as desired.
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Since the space ((E(X)∼)#, σ((E(X)∼)#, E(X)∼)) is complete (see [KA, Lemma
3.3.4]), the set I f is complete for σ((E(X)∼)#, E(X)∼), so we can conclude that I f

is compact for σ((E(X)∼)#, E(X)∼) (see [KA, Theorem 3.1.4]). It follows that I f

is also σ(E(X)0 , E(X)∼)-compact.

Now we are in position to prove our main result.

Theorem 3.3. Let T : E(X) → Y be an order-weakly compact operator. Then T
can be uniquely decomposed as T = T1 + T2, where T1, T2 are order-weakly compact
operators, T1 is (τ(E(X), E(X)∼n ), ‖ · ‖Y)-continuous and T2 is weakly singular.

Proof. In view of Corollary 2.6, P∼
k (π f ) ∈ E(X)0 (k = 1, 2). Hence by Theo-

rem 3.1, T∼∼(P∼
k (π f )) ∈ i(Y), and we can define linear mappings:

Tk = j ◦ T∼∼ ◦ P∼
k ◦ π : E(X) → Y.

Then for y∗ ∈ Y∗ and f ∈ E(X) we have

y∗(Tk( f )) = y∗(j((T∼∼ ◦ P∼
k ◦ π)( f )))

= (T∼∼ ◦ P∼
k ◦ π( f ))(y∗)

= (T∼∼(π f ◦ Pk))(y
∗)

= (π f ◦ Pk)(T
∼(y∗))

= (π f ◦ Pk)(y
∗ ◦ T)

= π f (Pk(y
∗ ◦ T))

= Pk(y
∗ ◦ T)( f ),

i.e., y∗ ◦ T1 = P1(y
∗ ◦ T) ∈ E(X)∼n and y∗ ◦ T2 = P2(y

∗ ◦ T) ∈ E(X)∼s , and
this means that T1 is (τ(E(X), E(X)∼n ), ‖ · ‖Y)-continuous (see Proposition 2.2)
and T2 is weakly singular (see Definition 2.1). Moreover, for every y∗ ∈ Y∗ and
f ∈ E(X) we have

y∗(T1( f ) + T2( f )) = P1(y
∗ ◦ T)( f ) + P2(y

∗ ◦ T)( f ) = y∗(T( f )),

so T( f ) = T1( f ) + T2( f ). The uniqueness of the decomposition T = T1 + T2

follows from the uniqueness of the decomposition y∗ ◦ T = y∗ ◦ T1 + y∗ ◦ T2 for
each y∗ ∈ Y∗ (see (1.1)).

Now we shall show that Tk : E(X) → Y are order-weakly compact operators.

Indeed, let u ∈ E+ and Du = {h ∈ E(X) : h̃ ≤ u}. In view of Corollary 2.6 for
h ∈ Du and a fixed x0 ∈ SX we get for F ∈ E(X)∼ :

|P∼
k (πh)|(F) ≤ |πh|(F) = |F|(h) ≤ |F|(u ⊗ x0) = |πu⊗x0 |(F)

i.e., |P∼
k (πh)| ≤ |πu⊗x0 |. Then {P∼

k (πh) : h ∈ Du} ⊂ Iu⊗x0 . According to Theo-
rem 3.2 the set Iu⊗x0 is σ(E(X)0 , E(X)∼)-compact in E(X)0 , and this means that
{P∼

k (πh) : h ∈ Du} is a relatively σ(E(X)0 , E(X)∼)-compact subset of E(X)0 .
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Since T∼∼(E(X)0) ⊂ i(Y) ⊂ Y∗∗ and T∼∼ is (σ(E(X)0 , E(X)∼), σ(Y∗∗, Y∗))-
continuous, the set {T∼∼(P∼

k (πh)) : h ∈ Du} is relatively σ(Y∗∗, Y∗)-compact in
Y∗∗. But the mapping j is (σ(i(Y), Y∗), σ(Y, Y∗))-continuous, so the set Tk(Du) =
{j(T∼∼(P∼

k (πh))) : h ∈ Du} is relatively σ(Y, Y∗)-compact in Y.

Using Theorems 2.4 and 3.3 we obtain the following Yosida-Hewitt type de-
composition for order-weakly compact operators T : E(X) −→ Y.

Theorem 3.4. Let T : E(X) −→ Y be an order weakly compact operator. Assume
that X is an Asplund space. Then T can be uniquely decomposed as T = T1 + T2,
where T1, T2 are order-weakly compact, T1 is smooth and T2 is weakly singular.

From now on we assume that (E, ‖ · ‖E) is a Banach function space. Then

the space E(X) provided with the norm ‖ f‖E(X) := ‖ f̃ ‖E is a Banach space
and is usually called a Köthe-Bochner function space. Then the Mackey topology
τ(E(X), E(X)∼) coincides with the ‖ · ‖E(X)-norm topology and a linear operator

T : E(X) → Y is order bounded if and only if T is (‖ · ‖E(X), ‖ · ‖Y)-continuous
(see [N4, Theorem 2.3]). Let

Ea = {u ∈ E : |u| ≥ un ↓ 0 in E implies ‖un‖E → 0}.

It is well known that Ea is ‖ · ‖E – closed ideal of E and Ea = E if and only if
‖ · ‖E is order continuous.

We will need the following useful characterization of singular operators on
Köthe-Bochner function spaces (see [N7, Proposition 1.4]).

Proposition 3.5. Assume that (E, ‖ · ‖E) is a Banach function space with supp Ea =
Ω. Then for a (‖ · ‖E(X), ‖ · ‖Y)-continuous linear operator T : E(X) → Y the follow-
ing statements are equivalent:

(i) T is singular.

(ii) T is weakly singular.

(iii) T( f ) = 0 for all f ∈ Ea(X).

Combining Theorem 3.4 with Proposition 3.5 we are ready to state a Yosida-
Hewitt type decomposition for order-weakly compact operators acting from Köthe-
Bochner function spaces E(X) to Banach spaces.

Theorem 3.6. Assume that (E, ‖ · ‖E) is a Banach function space with supp Ea =
Ω and X is an Asplund space. Let T : E(X) → Y be an order-weakly compact operator.
Then T can be uniquely decomposed as T = T1 + T2, where T1, T2 are order-weakly
compact operators, T1 is smooth and T2 is singular.

Acknowledgements. The author is very grateful to the referee for many use-
ful corrections and suggestions which have improved the paper.
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