Yosida-Hewitt type decompositions for order-weakly compact operators

Marian Nowak

Abstract

Let *E* be an ideal of L^0 over a σ -finite measure space (Ω, Σ, μ) . For a real Banach space $(X, \|\cdot\|_X)$ let E(X) be the subspace of the space $L^0(X)$ of μ -equivalence classes of strongly Σ -measurable functions $f : \Omega \to X$ consisting of all those $f \in L^0(X)$ for which the scalar function $\|f(\cdot)\|_X$ belongs to *E*. For a real Banach space *Y* a linear operator $T : E(X) \to Y$ is said to be order-weakly compact whenever for each $u \in E^+$ the set $T(\{f \in E(X) : \|f(\cdot)\|_X \leq u\})$ is relatively weakly compact in *Y*. In this paper we derive Yosida-Hewitt type decompositions for order-weakly compact operators $T : E(X) \to Y$. In particular, it is shown that if *X* is an Asplund space, then an order-weakly compact operator $T : E(X) \to Y$ can be uniquely decomposed as $T = T_1 + T_2$, where T_1, T_2 are order-weakly compact operators, T_1 is smooth and T_2 is weakly singular.

1 Introduction and preliminaries

The problem of Yosida-Hewitt type decompositions of linear mappings from vector lattices to vector lattices (Banach spaces) has been considered in [E], [S], [AB₁], [KM], [BBuY], [BBu]. In particular, Basile, Bukhvalov and Yakubson ([BBuY], [BBu]) have derived Yosida-Hewitt type decompositions for order-weakly compact operators from vector lattices to Banach spaces. Recall here that a linear operator *T* from a vector lattice *E* to a Banach space *Y* is said to be order-weakly compact if the set T([-u, u]) is relatively weakly compact in *Y* for every $u \in E^+$

Bull. Belg. Math. Soc. Simon Stevin 18 (2011), 259-269

Received by the editors February 2009 - In revised form in March 2010.

Communicated by F. Bastin.

²⁰⁰⁰ Mathematics Subject Classification : 47B38, 47B07, 46E40, 46A20.

Key words and phrases : vector-valued function spaces; order-bounded operators; order-weakly compact operators; smooth operators; singular operators.

(see [D], [AB₂, §18]). In [N₇] we obtained Yosida-Hewitt type decompositions for weakly compact operators from Köthe-Bochner function spaces E(X) to Banach spaces. The purpose of this paper is to derive Yosida-Hewitt type decompositions for order-weakly compact operators acting from more general function spaces E(X) to Banach spaces (see Theorems 3.3, 3.4 and 3.6 below).

We denote by $\sigma(L, K)$ and $\tau(L, K)$ the weak topology and the Mackey topology on *L* with respect to a dual pair $\langle L, K \rangle$. For terminology concerning vector-lattices and function spaces we refer to [AB₂], [KA].

Throughout the paper we assume that (Ω, Σ, μ) is a complete σ -finite measure space. Let L^0 denote the space of μ -equivalence classes of all Σ -measurable real valued functions defined on Ω . Let E be an ideal of L^0 with supp $E = \Omega$, and let E' stand for the Köthe dual of E. We will assume that supp $E' = \Omega$. Let E^{\sim} , E_n^{\sim} and E_s^{\sim} stand for the order dual, the order continuous dual and the singular dual of E respectively. Then E_n^{\sim} separates the points of E and it can be identified with E' through the mapping: $E' \ni v \mapsto \varphi_v \in E_n^{\sim}$, where $\varphi_v(u) = \int_{\Omega} u(\omega)v(\omega)d\mu$ for all $u \in E$.

From now on we assume that $(X, \|\cdot\|_X)$, $X \neq \{0\}$ and $(Y, \|\cdot\|_Y)$, $Y \neq \{0\}$ are real Banach spaces and let X^* and Y^* stand for their Banach duals. Let S_X stand for the unit sphere in X. By $L^0(X)$ we denote the set of μ -equivalence classes of all strongly Σ -measurable functions $f : \Omega \to X$. For $f \in L^0(X)$ let us set $\tilde{f}(\omega) := \|f(\omega)\|_X$ for $\omega \in \Omega$. Let

$$E(X) = \{ f \in L^0(X) : f \in E \}.$$

Basic concepts of the theory of vector-valued spaces E(X) can be found in monographs: [CM], [DU], [L]. Recall that the algebraic tensor product $E \otimes X$ is the subspace of E(X) spanned by the functions of the form $u \otimes x$, $(u \otimes x)(\omega) =$ $u(\omega)x$, where $u \in E$, $x \in X$. For each $u \in E^+$ the set $D_u = \{f \in E(X) : \tilde{f} \leq u\}$ will be called an *order interval* in E(X) (see [BuL]).

Following [D], [N₄], [N₅] we are now ready to define two classes of linear operators.

Definition 1.1. A linear operator $T : E(X) \to Y$ is said to be *order-weakly compact* (resp. *order-bounded*) whenever for each $u \in E^+$ the set $T(D_u)$ is relatively-weakly compact (resp. norm bounded) in Y.

Clearly each order-weakly compact operator $T : E(X) \to Y$ is order-bounded.

2 Duality of vector-valued function spaces

In this section we establish terminology and prove some results concerning duality of vector-valued function spaces E(X) (see [BuL], [N₁], [N₂], [N₃], [N₄]).

For an order-bounded functional *F* on E(X) let us put

$$|F|(f) := \sup\{|F(h)| : h \in E(X), h \le f\}$$
 for $f \in E(X)$.

Clearly $|F(f)| \leq |F|(f)$ for each $f \in E(X)$ and $|F|(f_1) \leq |F|(f_2)$ whenever $\tilde{f}_1 \leq \tilde{f}_2$. One can check that the mapping $f \mapsto |F|(f)$ is a seminorm on E(X). The set

$$E(X)^{\sim} = \{F \in E(X)^{\#} : |F|(f) < \infty \text{ for all } f \in E(X)\}$$

will be called the *order dual* of E(X) (here $E(X)^{\#}$ denotes the algebraic dual of E(X)). It is known that a linear operator $T : E(X) \to Y$ is order bounded if and only if T is $(\tau(E(X), E(X)^{\sim}), \|\cdot\|_{Y})$ -continuous (see [N₄, Theorem 2.3]).

Let $F \in E(X)^{\sim}$ and $x_0 \in S_X$ be fixed. For $u \in E^+$ let us set

$$\varphi_F(u) := |F|(u \otimes x_0) = \sup\{|F(h)| : h \in E(X), h \le u\}.$$

Note that $\varphi_F(u)$ does not depend on $x_0 \in S_X$. Then $\varphi_F : E^+ \to \mathbb{R}^+$ is an additive mapping and φ_F has a unique positive extension to a linear mapping from *E* to \mathbb{R} (denoted by φ_F again) and given by

$$\varphi_F(u) := \varphi_F(u^+) - \varphi_F(u^-)$$
 for all $u \in E$

(see [BuL, §3, Lemma 7]). Clearly $\varphi_F \in E^{\sim}$ and for $f \in E(X)$ we have

$$\varphi_F(\tilde{f}) = |F|(f)$$
 for all $f \in E(X)$.

Now we recall the concept of solidness in $E(X)^{\sim}$ (see $[N_1, \S 2]$, $[N_2]$). For $F_1, F_2 \in E(X)^{\sim}$ we will write $|F_1| \leq |F_2|$ whenever $|F_1|(f) \leq |F_2|(f)$ for all $f \in E(X)$. A subset A of $E(X)^{\sim}$ is said to be *solid* whenever $|F_1| \leq |F_2|$ with $F_1 \in E(X)^{\sim}$ and $F_2 \in A$ imply $F_1 \in A$. A linear subspace I of $E(X)^{\sim}$ will be called an *ideal* of $E(X)^{\sim}$ whenever I is solid.

An order bounded linear functional F on E(X) is said to be *smooth* whenever for a net (f_{α}) in E(X), $\tilde{f}_{\alpha} \xrightarrow{(o)} 0$ in E implies $F(f_{\alpha}) \rightarrow 0$ (see [BuL, § 3, Definition 2], [N₁], [N₂]). (Note that Bukhvalov and Lozanovskii [BuL] use the term "integral" and in [N₁], [N₂] we use the term "order continuous"). The set consisting of all smooth functionals on E(X) will be denoted by $E(X)_{n}^{\sim}$. Note that $E(X)_{n}^{\sim}$ separates the points of E(X) because we assume that supp $E' = \Omega$.

A subset *H* of E(X) is said to be *solid* whenever $\tilde{f}_1 \leq \tilde{f}_2$ and $f_1 \in E(X)$, $f_2 \in H$ imply $f_1 \in H$. A linear topology τ on E(X) is said to be *locally solid* if it has a local base at zero consisting of solid sets. A locally solid topology τ on

E(X) is said to be a *Lebesgue topology* whenever for a net (f_{α}) in E(X), $\tilde{f}_{\alpha} \xrightarrow{(o)} 0$ in *E* implies $f_{\alpha} \to 0$ for τ (see [N₃, Definition 2.2]).

It is known that a Banach space X is an Asplund space if and only if X^* has the Radon-Nikodym property (see [DU, p. 213]).

The following theorem will be of importance (see [N₆, Theorems 1.2 and 4.1]):

Theorem 2.1. Assume that X is an Asplund space. Then the Mackey topology $\tau(E(X), E(X)_n^{\sim})$ is a locally convex-solid Lebesgue topology.

Recall that a functional $F \in E(X)^{\sim}$ is said to be *singular* if there exists an ideal M of E with supp $M = \Omega$ and such that F(f) = 0 for all $f \in M(X)$. The set consisting of all singular functionals on E(X) will be denoted by $E(X)_s^{\sim}$ and called the *singular dual* of E(X) (see [BuL, § 3, Definition 2]).

It is known that $E(X)_n^{\sim}$ and $E(X)_s^{\sim}$ are ideals of $E(X)^{\sim}$ (see [N₁]).

Due to Bukhvalov and Lozanovski (see [BuL, §3, Theorem 2]) we have the following Yosida-Hewitt type decomposition of $E(X)^{\sim}$.

Theorem 2.2. The following decomposition of $E(X)^{\sim}$ holds:

(1.1)
$$E(X)^{\sim} = E(X)^{\sim}_n \oplus E(X)^{\sim}_s$$

and $\varphi_F = \varphi_{F_1} + \varphi_{F_2}$ whenever $F = F_1 + F_2$ with $F_1 \in E(X)_n^{\sim}$, $F_2 \in E(X)_s^{\sim}$. Moreover, $\varphi_{F_1} \in E_n^{\sim}$ and $\varphi_{F_2} \in E_s^{\sim}$.

One can note that $E(X)_n^{\sim} = E(X)^{\sim}$ if and only if $E_n^{\sim} = E^{\sim}$.

In view of (1.1) we have linear projections $P_k : E(X)^{\sim} \to E(X)^{\sim}$ (k = 1, 2) defined by $P_k(F) = F_k$. Note that for $F \in E(X)^{\sim}$ and every $f \in E(X)$ we have:

$$|P_k(F)|(f) = |F_k|(f) = \varphi_{F_k}(\widetilde{f}) \le \varphi_F(\widetilde{f}) = |F|(f),$$

i.e., $|P_k(F)| \le |F|$.

Proposition 2.3. For a linear operator $T : E(X) \to Y$ the following statements are equivalent:

- (i) $y^* \circ T \in E(X)_n^{\sim}$ for every $y^* \in Y^*$.
- (ii) T is $(\sigma(E(X), E(X)_n^{\sim}), \sigma(Y, Y^*))$ -continuous.
- (iii) T is $(\tau(E(X), E(X)_n^{\sim}), \|\cdot\|_Y)$ -continuous.

Proof. (i) \iff (ii) See [AB₂, Theorem 9.26]; (ii) \iff (iii) See [W, Corollary 11-1-3, Corollary 11-2-6].

Following [BBuY] we define smooth and singular operators on E(X).

Definition 2.1. (i) An order bounded linear operator $T : E(X) \to Y$ is said to be *smooth* if for a net (f_{α}) in E(X), $\tilde{f}_{\alpha} \xrightarrow{(o)} 0$ in E implies $||T(f_{\alpha})||_{Y} \to 0$.

(ii) An order bounded linear operator $T : E(X) \to Y$ is said to be *singular* if there exists an ideal M of E with supp $M = \Omega$ such that T(f) = 0 for all $f \in M(X)$.

(iii) An order bounded linear operator $T : E(X) \to Y$ is said to be *weakly* singular if $y^* \circ T \in E(X)_s^{\sim}$ for every $y^* \in Y^*$.

The following theorem gives a characterization of smooth operators $T : E(X) \rightarrow Y$ when X is an Asplund space.

Theorem 2.4. Assume that X is an Asplund space. Then for a linear operator $T : E(X) \to Y$ the following statements are equivalent:

- (i) *T* is smooth.
- (ii) $y^* \circ T \in E(X)_n^{\sim}$ for every $y^* \in Y^*$.
- (iii) T is $(\tau(E(X), E(X)_n^{\sim}), \|\cdot\|_Y)$ -continuous.

Proof. (i) ⇒(ii) It is obvious. (ii) ⇔(iii) See Proposition 2.3. (iii) ⇒(i) Clearly, because $\tau(E(X), E(X)_n^{\sim})$ is a Lebesgue topology (see Theorem 2.1).

We will need the following lemma.

Lemma 2.5. Assume that $|F| \leq |G|$, where $F, G \in E(X)^{\sim}$. Then $|P_k(F)| \leq |P_k(G)|$ for k = 1, 2.

Proof. We have $F = F_1 + F_2$, $G = G_1 + G_2$, where $F_1, G_1 \in E(X)_n^{\sim}$, $F_2, G_2 \in E(X)_s^{\sim}$ and $\varphi_F = \varphi_{F_1} + \varphi_{F_2}$, $\varphi_G = \varphi_{G_1} + \varphi_{G_2}$, where $\varphi_{F_1}, \varphi_{G_1} \in E_n^{\sim}$ and $\varphi_{F_2}, \varphi_{G_2} \in E_s^{\sim}$ (see (1.1)). Let $u \in E^+$ and $x_0 \in S_X$ be fixed. Then

$$\varphi_F(u) = |F|(u \otimes x_0) \le |G|(u \otimes x_0) = \varphi_G(u).$$

Since the order projections of E^{\sim} onto E_n^{\sim} and E_s^{\sim} are positive operators, for $f \in E(X)$ we have

$$|P_k(F)|(f) = |F_k|(f) = \varphi_{F_k}(\widetilde{f})$$

$$\leq \varphi_{G_k}(\widetilde{f}) = |G_k|(f) = |P_k(G)|(f).$$

For a linear functional *V* on $E(X)^{\sim}$ let us put:

$$|V|(F) = \sup\{|V(G)| : G \in E(X)^{\sim}, |G| \le |F|\}$$
 for $F \in E(X)^{\sim}$.

The set

$$(E(X)^{\sim})^{\sim} = \{ V \in (E(X)^{\sim})^{\#} : |V|(F) < \infty \text{ for all } F \in E(X)^{\sim} \}$$

will be a called the *order dual* of $E(X)^{\sim}$ (see [N₂]) (here $(E(X)^{\sim})^{\#}$ denotes the algebraic dual of $E(X)^{\sim}$).

For $V_1, V_2 \in (E(X)^{\sim})^{\sim}$ we will write $|V_1| \leq |V_2|$ whenever $|V_1|(F) \leq |V_2|(F)$ for all $F \in E(X)^{\sim}$. A subset K of $(E(X)^{\sim})^{\sim}$ is said to be *solid* whenever $|V_1| \leq |V_2|$ with $V_1 \in (E(X)^{\sim})^{\sim}$, $V_2 \in K$ imply $V_1 \in K$. A linear subspace L of $(E(X)^{\sim})^{\sim}$ is called an *ideal* if L is a solid subset of $(E(X)^{\sim})^{\sim}$.

For each $f \in E(X)$ let us put

$$\pi_f(F) = F(f)$$
 for all $F \in E(X)^{\sim}$.

One can show (see [N₂, \S 1]) that for $f \in E(X)$,

 $|\pi_f|(F) = |F|(f)$ for $F \in E(X)^{\sim}$ and that $\pi_f \in (E(X)^{\sim})^{\sim}$.

Thus we have a natural embedding $\pi : E(X) \ni f \mapsto \pi_f \in (E(X)^{\sim})^{\sim}$.

Denote by $E(X)_0$ the ideal of $(E(X)^{\sim})^{\sim}$ generated by the set $\pi(E(X))$, i.e., $E(X)_0$ is the smallest ideal of $(E(X)^{\sim})^{\sim}$ containing $\pi(E(X))$. One can show that (see [N₂, Theorem 3.2]):

$$E(X)_0 = \{ V \in (E(X)^{\sim})^{\sim} : |V| \le |\pi_f| \text{ for some } f \in E(X) \}.$$

Let

$$P_k^{\sim}: (E(X)^{\sim})^{\#} \to (E(X)^{\sim})^{\#}$$

stand for the conjugate of P_k (k = 1, 2) defined by

$$P_k^{\sim}(V)(F) = V(P_k(F))$$
 for $V \in (E(X)^{\sim})^{\#}$ and $F \in E(X)^{\sim}$.

Observe that

$$P_k^{\sim}((E(X)^{\sim})^{\sim}) \subset (E(X)^{\sim})^{\sim}.$$

Indeed, let $V \in (E(X)^{\sim})^{\sim}$. Then by making use of Lemma 2.5 we have for $F \in E(X)^{\sim}$,

$$\begin{aligned} |P_{k}^{\sim}(V)|(F) &= \sup\{|P_{k}^{\sim}(V)(G)| : G \in E(X)^{\sim}, |G| \leq |F|\} \\ &= \sup\{|V(P_{k}(G)| : G \in E(X)^{\sim}, |G| \leq |F|\} \\ &\leq \sup\{|V|(P_{k}(G)) : G \in E(X)^{\sim}, |G| \leq |F|\} \\ &\leq |V|(P_{k}(F)) \leq |V|(F) < \infty. \end{aligned}$$

Hence, in particular, we get:

Corollary 2.6. Let $f \in E(X)$. Then for every $F \in E(X)^{\sim}$ we have

$$|P_k^{\sim}(\pi_f)|(F) \le |\pi_f|(P_k(F)) \le |\pi_f|(F),$$

and hence $P_k^{\sim}(\pi_f) \in E(X)_0 \ (k = 1, 2)$.

3 A Yosida-Hewitt type decomposition for order-weakly compact operators

In this section we derive Yosida-Hewitt type decompositions for order-weakly compact operators $T : E(X) \to Y$.

Assume now that $T : E(X) \to Y$ is an order bounded operator, i.e., T is $(\tau(E(X), E(X)^{\sim}), \|\cdot\|_Y)$ -continuous. It follows that $y^* \circ T \in E(X)^{\sim}$ for every $y^* \in Y^*$. Then we can consider the linear mappings (see [N₆]):

$$T^{\sim}: Y^* \to E(X)^{\sim}$$

defined by

$$T^{\sim}(y^*)(f) = y^*(T(f))$$
 for $y^* \in Y$ and all $f \in E(X)$,

and

$$T^{\sim \sim}: E(X)_0 \to Y^{**}$$

defined by

$$T^{\sim \sim}(V)(y^*) = V(T^{\sim}(y^*))$$
 for $V \in E(X)_0$ and all $y^* \in Y^*$.

The map T^{\sim} is $(\sigma(E(X)_0, E(X)^{\sim}), \sigma(Y^{**}, Y^*))$ -continuous.

Let $i : Y \ni y \mapsto i_y \in Y^{**}$ stand for the canonical isometry, i.e., $i_y(y^*) = y^*(y)$ for $y^* \in Y^*$. Moreover, let $j : i(Y) \to Y$ stand for the left inverse of *i*, i.e., $j \circ i = id_Y$. Then $T^{\sim \sim} \circ \pi = i \circ T$.

The following characterization of order-weakly compact operators $T: E(X) \rightarrow Y$ will be of importance.

Theorem 3.1 (see [N₅, Theorem 2.3]). *For an order-bounded operator* $T : E(X) \rightarrow Y$ *the following statements are equivalent:*

- (i) *T* is order-weakly compact.
- (ii) $T^{\sim \sim}(E(X)_0) \subset i(Y)$.

For $f \in E(X)$ let us set

$$I_f = \{ V \in E(X)_0 : |V| \le |\pi_f| \}.$$

The following property of I_f will be needed. **Theorem 3.2.** For $f \in E(X)$ the set I_f is $\sigma(E(X)_0, E(X)^{\sim})$ -compact in $E(X)_0$.

Proof. Clearly $\sigma(E(X)_0, E(X)^{\sim}) = \sigma((E(X)^{\sim})^{\#}, E(X)^{\sim})|_{E(X)_0}$. We shall show that I_f is a totally bounded and closed set in $((E(X)^{\sim})^{\#}, \sigma((E(X)^{\sim})^{\#}, E(X)^{\sim}))$. In fact, let $F \in E(X)^{\sim}$. Then for each $V \in I_f$ we have

$$|V(F)| \le |V|(F) \le |\pi_f|(F) = |F|(f) < \infty.$$

This means that I_f is bounded for $\sigma((E(X)^{\sim})^{\#}, E(X)^{\sim})$, so by [KA, Lemma 3.3.5] it is totally bounded in $(E(X)^{\sim})^{\#}, \sigma((E(X)^{\sim})^{\#}, E(X)^{\sim}))$.

To see that I_f is closed in $((E(X)^{\sim})^{\#}, \sigma((E(X)^{\sim})^{\#}, E(X)^{\sim}))$, assume that $V_{\alpha} \to V$ for $\sigma((E(X)^{\sim}))^{\#}, E(X)^{\sim})$, where (V_{α}) is a net in I_f and $V \in (E(X)^{\sim})^{\#}$. It is enough to show that $|V| \leq |\pi_f|$, i.e., $|V|(F) \leq |\pi_f|(F) = |F|(f)$ for each $F \in E(X)^{\sim}$. In fact, let $F \in E(X)^{\sim}$ and $\varepsilon > 0$ be given. Let $G \in E(X)^{\sim}$ and $|G| \leq |F|$. Since $V_{\alpha}(G) \to V(G)$, there exists α_0 such that for $\alpha \geq \alpha_0$ we get

$$|V(G)| \le |V_{\alpha}(G)| + \varepsilon \le |V_{\alpha}|(G) + \varepsilon \le |\pi_f|(G) + \varepsilon \le |\pi_f|(F) + \varepsilon.$$

It follows that $|V|(F) \leq |\pi_f|(F)$, so $|V| \leq |\pi_f|$, as desired.

Since the space $((E(X)^{\sim})^{\#}, \sigma((E(X)^{\sim})^{\#}, E(X)^{\sim}))$ is complete (see [KA, Lemma 3.3.4]), the set I_f is complete for $\sigma((E(X)^{\sim})^{\#}, E(X)^{\sim})$, so we can conclude that I_f is compact for $\sigma((E(X)^{\sim})^{\#}, E(X)^{\sim})$ (see [KA, Theorem 3.1.4]). It follows that I_f is also $\sigma(E(X)_0, E(X)^{\sim})$ -compact.

Now we are in position to prove our main result.

Theorem 3.3. Let $T : E(X) \to Y$ be an order-weakly compact operator. Then T can be uniquely decomposed as $T = T_1 + T_2$, where T_1, T_2 are order-weakly compact operators, T_1 is $(\tau(E(X), E(X)_n^{\sim}), \|\cdot\|_Y)$ -continuous and T_2 is weakly singular.

Proof. In view of Corollary 2.6, $P_k^{\sim}(\pi_f) \in E(X)_0$ (k = 1, 2). Hence by Theorem 3.1, $T^{\sim \sim}(P_k^{\sim}(\pi_f)) \in i(Y)$, and we can define linear mappings:

$$T_k = j \circ T^{\sim \sim} \circ P_k^{\sim} \circ \pi : E(X) \to Y.$$

Then for $y^* \in Y^*$ and $f \in E(X)$ we have

$$\begin{split} y^*(T_k(f)) &= y^*(j((T^{\sim\sim} \circ P_k^{\sim} \circ \pi)(f))) \\ &= (T^{\sim\sim} \circ P_k^{\sim} \circ \pi(f))(y^*) \\ &= (T^{\sim\sim} (\pi_f \circ P_k))(y^*) \\ &= (\pi_f \circ P_k)(T^{\sim}(y^*)) \\ &= (\pi_f \circ P_k)(y^* \circ T) \\ &= \pi_f(P_k(y^* \circ T)) \\ &= P_k(y^* \circ T)(f), \end{split}$$

i.e., $y^* \circ T_1 = P_1(y^* \circ T) \in E(X)_n^{\sim}$ and $y^* \circ T_2 = P_2(y^* \circ T) \in E(X)_s^{\sim}$, and this means that T_1 is $(\tau(E(X), E(X)_n^{\sim}), \|\cdot\|_Y)$ -continuous (see Proposition 2.2) and T_2 is weakly singular (see Definition 2.1). Moreover, for every $y^* \in Y^*$ and $f \in E(X)$ we have

$$y^*(T_1(f) + T_2(f)) = P_1(y^* \circ T)(f) + P_2(y^* \circ T)(f) = y^*(T(f)),$$

so $T(f) = T_1(f) + T_2(f)$. The uniqueness of the decomposition $T = T_1 + T_2$ follows from the uniqueness of the decomposition $y^* \circ T = y^* \circ T_1 + y^* \circ T_2$ for each $y^* \in Y^*$ (see (1.1)).

Now we shall show that $T_k : E(X) \to Y$ are order-weakly compact operators. Indeed, let $u \in E^+$ and $D_u = \{h \in E(X) : \tilde{h} \le u\}$. In view of Corollary 2.6 for $h \in D_u$ and a fixed $x_0 \in S_X$ we get for $F \in E(X)^\sim$:

$$|P_k^{\sim}(\pi_h)|(F) \le |\pi_h|(F) = |F|(h) \le |F|(u \otimes x_0) = |\pi_{u \otimes x_0}|(F)$$

i.e., $|P_k^{\sim}(\pi_h)| \leq |\pi_{u \otimes x_0}|$. Then $\{P_k^{\sim}(\pi_h) : h \in D_u\} \subset I_{u \otimes x_0}$. According to Theorem 3.2 the set $I_{u \otimes x_0}$ is $\sigma(E(X)_0, E(X)^{\sim})$ -compact in $E(X)_0$, and this means that $\{P_k^{\sim}(\pi_h) : h \in D_u\}$ is a relatively $\sigma(E(X)_0, E(X)^{\sim})$ -compact subset of $E(X)_0$.

Since $T^{\sim\sim}(E(X)_0) \subset i(Y) \subset Y^{**}$ and $T^{\sim\sim}$ is $(\sigma(E(X)_0, E(X)^{\sim}), \sigma(Y^{**}, Y^{*}))$ continuous, the set $\{T^{\sim\sim}(P_k^{\sim}(\pi_h)) : h \in D_u\}$ is relatively $\sigma(Y^{**}, Y^{*})$ -compact in Y^{**} . But the mapping j is $(\sigma(i(Y), Y^{*}), \sigma(Y, Y^{*}))$ -continuous, so the set $T_k(D_u) =$ $\{j(T^{\sim\sim}(P_k^{\sim}(\pi_h))) : h \in D_u\}$ is relatively $\sigma(Y, Y^{*})$ -compact in Y.

Using Theorems 2.4 and 3.3 we obtain the following Yosida-Hewitt type decomposition for order-weakly compact operators $T : E(X) \longrightarrow Y$.

Theorem 3.4. Let $T : E(X) \longrightarrow Y$ be an order weakly compact operator. Assume that X is an Asplund space. Then T can be uniquely decomposed as $T = T_1 + T_2$, where T_1, T_2 are order-weakly compact, T_1 is smooth and T_2 is weakly singular.

From now on we assume that $(E, \|\cdot\|_E)$ is a Banach function space. Then the space E(X) provided with the norm $\|f\|_{E(X)} := \|\tilde{f}\|_E$ is a Banach space and is usually called a *Köthe-Bochner function space*. Then the Mackey topology $\tau(E(X), E(X)^{\sim})$ coincides with the $\|\cdot\|_{E(X)}$ -norm topology and a linear operator $T : E(X) \to Y$ is order bounded if and only if T is $(\|\cdot\|_{E(X)}, \|\cdot\|_Y)$ -continuous (see [N₄, Theorem 2.3]). Let

 $E_a = \{ u \in E : |u| \ge u_n \downarrow 0 \text{ in } E \text{ implies } \|u_n\|_E \to 0 \}.$

It is well known that E_a is $\|\cdot\|_E$ – closed ideal of E and $E_a = E$ if and only if $\|\cdot\|_E$ is order continuous.

We will need the following useful characterization of singular operators on Köthe-Bochner function spaces (see [N₇, Proposition 1.4]).

Proposition 3.5. Assume that $(E, \|\cdot\|_E)$ is a Banach function space with supp $E_a = \Omega$. Then for a $(\|\cdot\|_{E(X)}, \|\cdot\|_Y)$ -continuous linear operator $T : E(X) \to Y$ the following statements are equivalent:

- (i) T is singular.
- (ii) *T* is weakly singular.
- (iii) T(f) = 0 for all $f \in E_a(X)$.

Combining Theorem 3.4 with Proposition 3.5 we are ready to state a Yosida-Hewitt type decomposition for order-weakly compact operators acting from Köthe-Bochner function spaces E(X) to Banach spaces.

Theorem 3.6. Assume that $(E, \|\cdot\|_E)$ is a Banach function space with supp $E_a = \Omega$ and X is an Asplund space. Let $T : E(X) \to Y$ be an order-weakly compact operator. Then T can be uniquely decomposed as $T = T_1 + T_2$, where T_1, T_2 are order-weakly compact operators, T_1 is smooth and T_2 is singular.

Acknowledgements. The author is very grateful to the referee for many useful corrections and suggestions which have improved the paper.

References

- [AB₁] Aliprantis, C.D. and O. Burkinshaw, On positive order continuous operators, Indag. Math., 45 (1983), 1–6.
- [AB₂] Aliprantis, C.D. and O. Burkinshaw, Positive Operators, Academic Press, Orlando, San Diego, New York, Tokyo, 1985.
- [BBuY] Basile, A., Bukhvalov, A.V. and M.Ya. Yakubson, The generalized Yosida-Hewitt theorem, Math. Proc. Camb. Phil. Soc., 116 (1994), 527–533.
- [BBu] Basile, A. and A.V. Bukhvalov, On a unifying approach to decomposition theorems Yosida-Hewitt type, Ann. Math. Pura Appl., 173 (4), (1997), 107–125.
- [BuL] Bukhvalov, A.V. and G.Ya. Lozanovskii, On sets closed in measure in spaces of measurable functions, Trans. Moscow Math. Soc., 2, (1978), 127–148.
- [CM] Cembranos, P. and J. Mendoza, Banach spaces of vector-valued functions, Lectures Notes in Math., 1676, Springer Verlag, Berlin, Heidelberg, 1997.
- [DU] Diestel, J. and J.J. Uhl, Vector Measures, Amer. Math. Soc., Math. Surveys, no. 15, Providence, Rhode Island 1977.
- [D] Dodds, P.G., *o*-weakly compact mappings of Riesz spaces, Trans. Amer. Math. Soc., 214 (1975), 389–402.
- [E] Eldik van, P., The integral component of an order bounded transformation, Quastiones Math., 1 (1976), 135–144.
- [KA] Kantorovitch, L.V. and A.V. Akilov, Functional Analysis, Pergamon Press, Oxford-Elmsford, N.Y.,1982.
- [KM] Kusraev, A.G. and S.A. Malyugin, On the order continuous component of a majorized operator, Siberian J. Math., 28 (1988), no. 4, 617–627.
- [L] Lin Pei-Kee, Köthe-Bochner Function Spaces, Birkhauser Verlag, Boston, Besel, Berlin, 2003.
- [N₁] Nowak, M., Duality theory of vector valued function spaces I, Comment. Math., Prace Mat., 37 (1997), 195–215.
- [N₂] Nowak, M., Duality theory of vector valued function spaces II, Comment. Math., Prace Mat., 37 (1997), 217–230.
- [N₃] Nowak, M., Lebesgue topologies on vector-valued function spaces, Math. Japonica 52, no. 2 (2000), 171–182.
- [N₄] Nowak, M., Order bounded operators from vector-valued function spaces to Banach spaces, Proc. Conf. Function Spaces VII, Poznań 2003, Banach Center Publ., 68 (2005), 109–114.

- [N₅] Nowak, M., Order-weakly compact operators from vector-valued function spaces to Banach spaces, Proc. Amer. Math. Soc., 135, no. 9 (2007), 2803-2809.
- [N₆] Nowak, M., Linear operators on vector-valued function spaces with Mackey topologies, J. Convex Analysis, 15 no. 1 (2008), 165–178.
- [N₇] Nowak, M., Yosida-Hewitt type decompositions for weakly compact operators and operator-valued measures, J. Math. Anal. Appl., 336 no. 1 (2007), 93–100.
- [S] Schep, A.R., Order continuous components of operators and measures, Indag. Math., 40, no. 1 (1978), 110–117.
- [W] Wilansky, A., Modern methods in Topological Vector-Spaces, Mc Graw-Hill, 1978.

Faculty of Mathematics, Computer Science and Econometrics University of Zielona Góra ul. Szafrana 4A, 65–516 Zielona Góra, Poland e-mail: M.Nowak@wmie.uz.zgora.pl