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Abstract

The notion of orthogonally conformal vector field on a Riemannian man-
ifold is introduced. This class of vector fields properly includes the normal-
ization of nowhere zero conformal ones. It is clarified in several examples.
An integral inequality which relates the existence of orthogonally conformal
vector fields with properties of the Ricci tensor of a compact Riemannian
manifold is proved and some applications are shown.

1 Introduction

Relating the existence of geometrically relevant vector fields on a Riemannian
manifold with its curvature properties is a classical topic in Differential Geome-
try. Recall for instance the well-known Bochner’s technique ([7] and references
therein). In this note, we introduce a new class of geometrically relevant vector
fields on Riemannian manifolds and obtain an integral inequality under the as-
sumption of the existence of such vector fields. The new notion has been inspired
by the behavior of the unit vector field tangent to the parallels of a surface of
revolution in the 3-dimensional Euclidean space. A flow of such a vector field
provides a linear isometry on its orthogonal complement at any point but, in
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general, this vector field fails to be Killing unless the surface is a cylinder (see
details in Example 1). This situation can be considered as a particular case of a
Riemannian submersion with 1-dimensional fibers. In this case, each (local) flow
of the unit vertical vector field gives linear isometries on horizontal spaces of the
submersion. But the unit vertical vector field of a such Riemannian submersion
is Killing if and only if the fibers are totally geodesics (Example 7). On the other
hand, if we consider a conformal (resp. Killing) vector field X on a Riemannian
manifold (M, g), i.e. the Lie derivative with respect to X of g satisfies L

X
g = 2ρg

(resp. LX g = 0), and we assume that X has no zeroes, then Z = (1/
√

g(X, X)) X
satisfies (LZ g)(U, V) = 2ρg(U, V) (resp. (LZ g)(U, V) = 0), for all U, V ⊥ Z.
Therefore, any of the flows Φt of the vector field Z induces a linear conformal
(resp. isometry) mapping from Z⊥

p onto Z⊥
Φt(p).

Thus, it seems natural to introduce the following notion: an orthogonally con-
formal vector field is a unit vector field Z on a Riemannian manifold, (M, g),
which satisfies

(LZ g)(U, V) = 2ρg(U, V), (1)

for all U, V ⊥ Z. In particular, when ρ = 0, we will call Z orthogonally Killing.
This class of vector fields properly includes the normalized vector fields of the
nowhere zero conformal vector fields (see Section 2). That is, there exist unit
vector fields which satisfy (1) but they cannot be obtained from a nowhere zero
conformal vector field. Even more, there exists a family of compact Riemannian
manifolds such that each one of its members admits a unit vector field satisfying
(1) although no conformal vector field is free of zeroes (Example 6).

The main aim of this note is to relate the existence of such orthogonal confor-
mal vector fields on a compact Riemannian manifold with its curvature proper-
ties. So, we will obtain a vanishing result in the spirit of the well-known Bochner’s
technique as follows.

Theorem 1. Let (M, g) be an n(≥ 3)-dimensional compact Riemannian manifold. If
(M, g) admits an orthogonally conformal vector field Z, then

∫

M
Ric(Z, Z)dµg ≥ 0,

where Ric denotes the Ricci tensor of (M, g) and dµg is the canonical measure induced
by the Riemannian metric g. Moreover, the equality holds if and only if ∇UZ = 0 for
any U ⊥ Z, and in such case, Z is orthogonally Killing.

As an application, we obtain two consequences.

Corollary 1. If a compact Einstein Riemannian manifold (M, g), with dim M ≥ 3 and
Ric = λg, admits an orthogonally conformal vector field, then λ ≥ 0.

The second one can be regarded as a Wu-type result [7] for orthogonally con-
formal vector fields.

Corollary 2. If the Ricci tensor of a n(≥ 3)-dimensional compact Riemannian manifold,
(M, g), is negative semi-definite everywhere and negative definite at some p ∈ M, then
(M, g) admits no orthogonally conformal vector field.
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2 Examples

It should be recalled that the existence of a nowhere zero vector field on a man-
ifold M imposes some restrictions on its topology. In fact, it holds if and only
if M is noncompact or its Euler-Poincaré number vanishes. If dimM = 2, then
every unit vector field is orthogonally conformal. Therefore, when dimM = 2,
(M, g) admits an orthogonally conformal vector field if, and only if, either M is
noncompact or M is compact and its Euler-Poincaré characteristic vanishes. We
would like to point out that if Z is an orthogonally conformal vector field for a

Riemannian metric g, then the vector field
(
1/

√
g1(Z, Z)

)
Z is also orthogonally

conformal for every Riemannian metric g1 conformally related to g.

Example 1. Let x(v) and z(v) be smooth functions on an open interval ]a, b[ with
x(v) > 0 for every v ∈]a, b[. Let S be the surface of revolution in the Euclidean
space E3 with rotation axis z obtained from the above data. Thus, a parametriza-
tion for S is given by

µ(u, v) =
(

x(v) cos u, x(v) sin u, z(v)
)

.

We consider the unit vector field tangent to parallels, Z ∈ X(S), given by

Z(µ(u, v)) =
1

x(v)

∂µ

∂u
|(u,v) .

From the well-known formulas for the Christoffel symbols of a surface of revolu-
tion, we deduce that Z is orthogonally Killing. If we suppose that Z is Killing then
Z is a geodesic vector field. Therefore all the parallels of the surface of revolution
S are geodesics and so x is constant, and S is a cylinder.

Example 2. Let (T2, g) be a 2-dimensional flat Riemannian torus and let Z be
a unit vector field on T2 which is not parallel. We assert that the orthogonally
conformal vector field Z is not the normalization of a conformal vector field K.
Indeed, if such K exists, then as a consequence of the classical result by H. Wu
[7], which improved a previous one by K. Yano [8], the conformal vector field K
is parallel. Hence Z must be also parallel. This contradicts our choice of Z.

Example 3. Let (I, dt2) be an open interval endowed with its standard metric and
let (M, g) be a Riemannian manifold. Given a smooth function f > 0 defined on

M̃ = I × M, we consider on M̃ the twisted metric g̃ = π∗
I dt2 + f 2π∗

Mg, where
πI and πM are the corresponding projections onto I and M, respectively. The

vector field ∂t on M̃ is orthogonally conformal. Indeed, given U, V ⊥ ∂t, clearly
[∂t, U] = [∂t, V] = 0 and a direct computation shows that the Lie derivative of g̃
with respect to ∂t satisfies

(L
∂t

g̃)(U, V) = 2 ∂t(log( f )) g̃(U, V).

This computation also holds if (I, dt2) is replaced by the 1-sphere (S1, dθ2). There-
fore, for M compact, we obtain orthogonally conformal vector fields on compact
Riemannian manifolds.
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Remark 1. In Example 3, if the function f only depends on t then g̃ is in fact
the warped product of dt2 and g with warping function f . In this case, it is not

difficult to show that ∇X( f ∂t) = f ′X for any vector field X on M̃, [3, Prop. 7.35].
Therefore, f ∂t is conformal with L

f ∂t
g̃ = 2 f ′ g̃ and ∂t is the normalized vector

field obtained from f ∂t. Clearly, the function ∂t(log( f )) is now constant along
each slice {t} × M.

Example 4. In order to show examples of orthogonally conformal vector fields
which cannot be obtained from nowhere zero conformal vector fields, we add in
Example 3 the condition that the twisting function f satisfies that ∂t(log( f )) is not
constant along each slice {t} × M. Suppose now that ∂t is the normalization of a
nowhere zero conformal vector field, i.e. for a certain smooth function h > 0 de-
fined on M̃, the vector field h ∂t is conformal. Given U ⊥ ∂t, direct computations
show

U(h) = 0 and ∂t(log(h)) = ∂t(log( f )).

Therefore,

U(∂t(log( f ))) = U(∂t(log(h))) = ∂t(U(log(h))) = 0,

which implies that ∂t(log( f )) only depends on t, contrary to our assumption.

Example 5. Let us consider the usual Hopf fibration π : S2n+1 −→ CPn from the

odd dimensional unit sphere S2n+1 = {(z1, ..., zn+1) ∈ Cn+1: ∑
n+1
j=1 | zj |2= 1}

onto the complex projective space CPn endowed with its Fubini-Study metric g
FS

of constant holomorphic sectional curvature 4. For each u ∈ C∞(S2n+1) we set
gu = eu π∗g

FS
+ ω ⊗ ω, where ω is the 1-form naturally obtained from the usual

connection on this fibre bundle. Each gu is a Riemannian metric on S2n+1. The
Hopf vector field Z ∈ X(S2n+1), given by z 7→ iz, satisfies gu(Z, Z) = 1 and

(LZ gu)(U, V) = Z(u) gu(U, V), U, V ⊥ Z.

Therefore Z is orthogonally conformal on every (S2n+1, gu). It can be deduced
that Z is not conformal whenever Z(u) 6= 0. Note that in this family of examples
the distribution Z⊥ is not integrable.

Example 6. Even more, we will construct a compact Riemannian manifold which
admits an orthogonally conformal vector field but does not admit a nowhere zero
conformal one. We consider an n(≥ 3)-dimensional compact Riemannian man-
ifold (M, g) whose Ricci tensor is negative definite (recall that on any n(≥ 3)-
dimensional compact manifold M, there always exists a Riemannian metric g
with everywhere negative definite Ricci tensor [1].) Next, we construct the com-

pact manifold M̃ = S1 × M endowed with a twisted metric g̃ = π∗
S1 dθ2 + f 2π∗

Mg

and suppose that ∂θ(log( f )) is not constant along each slice {eiθ} × M. As Exam-
ple 4 shows, ∂θ is orthogonally conformal and cannot be obtained by normalizing

a nowhere zero conformal vector field. Let K̃ ∈ X(M̃) be a conformal vector field
with L

K̃
g̃ = 2ρ g̃. Put K = K̃− g̃(K̃, ∂θ)∂θ , then we have K(eiθ ,p) ∈ TpM ⊂ T(eiθ ,p)M̃

and
(L

K
g̃)(U, V) = 2σ g̃(U, V),
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for any U, V ⊥ ∂θ, where σ = ρ − g̃(K̃, ∂θ)∂θ(log( f )). Therefore, for every θ we
deduce that the vector field Kθ ∈ X(M) defined by (Kθ)p = K(eiθ ,p) is conformal.

From our assumption on the Ricci tensor of (M, g) and as a consequence of the
classical result by H. Wu [7] we obtain that Kθ = 0 for every θ. Therefore K = 0,
which means that K̃ must be proportional to ∂θ . In case K̃ has no zero, then ∂θ

should be its normalization.

Example 7. Let π : (M, g) −→ (B, g′) be a Riemannian submersion with 1-di-
mensional fibers. The fundamental tensor fields of π (O’Neill tensors) are given
by

TEF = h
(
∇v(E)v(F)

)
+ v

(
∇v(E)h(F)

)

AEF = v
(
∇h(E)h(F)

)
+ h

(
∇h(E)v(F)

)
,

where E, F ∈ X(M) and v (resp. h) denotes the vertical (resp. horizontal) projec-
tion [2]. A unit vertical vector field W ∈ X(M) is orthogonally Killing. In fact, let
X, Y ∈ X(M) be horizontal vector fields then,

(L
W

g)(X, Y) = −g(AXY, W)− g(AYX, W) = 0,

since the fundamental tensor A of π satisfies AXY = −AYX, [2]. Note that W is
a Killing vector field if and only if the fundamental tensor T vanishes identically,
that is, the fibers are totally geodesics.

3 Proofs of the results

We begin this section by recalling a formula which is our main tool. Let us re-
mark that our approach has been inspired from the recent application of Bochner
technique to Lorentzian Geometry [4], [5] and [6]. Let (M, g) be a Riemannian
manifold and let X be any vector field on M. If ∇ denotes the Levi-Civita con-
nection of g, then we have a (1,1)-tensor field AX on M given by AX(v) = −∇vX,
for any v ∈ TpM, p ∈ M. Note that trace AX = −div(X). If M is compact, then
the following integral formula holds true,

∫

M

{
Ric(X, X) + trace(A2

X)− (trace AX)
2
}

dµg = 0. (2)

Proof. Theorem 1 If Z is an orthogonally conformal vector field, we have

g(AZU, V) + g(U, AZV) = −2ρg(U, V), U, V ⊥ Z. (3)

Direct computations show

trace AZ = −ρ(n − 1) and trace(A2
Z) = 2ρ2(n − 1)− ‖∇Z‖2 + ‖∇ZZ‖2. (4)

Observe that ‖∇Z‖2 ≥ ‖∇ZZ‖2, and equality holds if, and only if, ∇UZ = 0 for
any U ⊥ Z, and in this case ρ = 0. Now, making use of (4) in (2) we get
∫

M
Ric(Z, Z)dµg = (n − 1)(n − 3)

∫

M
ρ2dµg +

∫

M

{
‖∇Z‖2 − ‖∇ZZ‖2

}
dµg, (5)

which concludes the proof.
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Remark 2. If a unit vector field Z on a Riemannian manifold (M, g) satisfies
∇UZ = 0 for any U ⊥ Z (hence Z is orthogonally Killing) then the distribution
Z⊥ is integrable with totally geodesic leaves.

Remark 3. When dimM = 2, trace(A2
Z) = (trace AZ)

2 and Ric(Z, Z) = K, the
Gaussian curvature of (M, g), for any unit vector field Z on (M, g). Hence, in
the compact case, equation (2) reduces to

∫
T2 Kdµg = 0, which is the well known

Gauss-Bonnet theorem for a Riemannian metric on the torus T2.

Proof. Corollary 1 If (M, g) admits an orthogonally conformal vector field Z, from
Theorem 1 we get 0 ≤

∫
M Ric(Z, Z)dµg = λvol(M, g), and therefore λ ≥ 0.

Proof. Corollary 2 Suppose that (M, g) admits an orthogonally conformal vector
field Z. From Theorem 1 and the assumption on the Ricci tensor, we deduce that
Ric(Z, Z) = 0 on the whole M. Finally, being the Ricci tensor negative definite at
a point p ∈ M, we obtain Zp = 0 which is a contradiction.
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Universidad de Málaga, 29071 Málaga, Spain,
E-mail: fjpalomo@ctima.uma.es


