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Abstract

We introduce the notion of generalized invertibility, a weak notion of
invertibility that makes sense in the nonstandard hull of a Banach algebra.
We show that a standard algebra is the closure of its invertible elements ex-
actly when all the elements of its nonstandard hull are generalized invert-
ible. For commutative algebras, we relate the problem of liftability of ho-
momorphisms to the property of approximately multiplicative functionals
being near to multiplicative functionals (AMNM property) and we prove a
nonstandard characterization of the latter property. Finally we show that a
standard superreflexive Banach algebra has the the AMNM property exactly
when its nonstandard hull does.

1 Introduction and preliminaries

Nonstandard methods (in the sense of A. Robinson) can be used to provide char-
acterizations of standard properties. These characterizations usually refer to no-
tions that are not available in the standard setting. In this paper we provide some
examples of nonstandard characterizations in the framework of Banach algebras
and their nonstandard hulls. For a detailed account of the nonstandard hull con-
struction see [6] or [4] (such a construction will be outlined below for sake of
fixing the notation). We recall that ultraproducts of Banach algebras are examples
of nonstandard hulls. Therefore we may say that we study properties of ultra-
products of Banach algebras, a well known construction in functional analysis.
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Accordingly, the paper could have been written in ultraproduct language, but
also, for the most part, in the language of continuous logic (see [2]). Our choice is
motivated mainly by our familiarity with the nonstandard methods.

In §2 we relate density of the invertible elements in a Banach algebra to a
weaker notion of invertibility, called generalized invertibility, that applies to the el-
ements of its nonstandard hull. In §3 we study the liftability of homomorphisms
in a nonstandard hull. We focus on commutative AMNM algebras (see [8]), for
which we provide a nonstandard characterization. Finally we show that a stan-
dard superreflexive Banach algebra has the AMNM property exactly when its
nonstandard hull does.

We assume familiarity with the basics of nonstandard analysis, a good refer-
ence can be found in [1]. Sufficient saturation of the nonstandard universe is used
throughout.

We always work with Banach algebras over the complex field with unit ele-
ment e. Throughout this paper, X denotes an arbitrary internal or external Ba-
nach algebra and Inv(X) denotes the set of its invertible elements. We denote by

Inv(X) the closure of Inv(X). Given an internal normed algebra X, the finite part
of X is

Fin(X) := {x ∈ X : ‖x‖ < n for some n ∈ N }.

The nonstandard hull X̂ is the set Fin(X)/ ≈, where x ≈ y means ‖x − y‖ ≈
0, together with operations induced by the equivalence relation and with norm
given by the standard part of the X–norm. For simplicity, we denote both norms
in the same way.

For x ∈ X, the equivalence class of x is called the monad of x and is denoted

by x̂ := {y ∈ X | y ≈ x }. Saturation ensures that X̂ is a complete normed linear
space, indeed a standard Banach algebra. The following holds:

Theorem 1. Let x ∈ Fin(X), where X is an internal normed algebra. Then

x̂ ∈ Inv(X̂) ⇔ x ∈ Inv(X) and x−1 ∈ Fin(X).

Proof. (⇒) Let z ∈ Fin(X) be such that xz ≈ e ≈ zx. First xz ∈ Inv(X) and
u := (xz)−1 = ∑

∞
n=0(e − xz)n. Since ‖e − xz‖ = ǫ ≈ 0, we have ‖u‖ ≤ ∑

∞
n=0 ǫ

n ≈
1, so u ∈ Fin(X), x(zu) = e and zu ∈ Fin(X). Secondly, zx ∈ Inv(X), so v :=
(zx)−1 = ∑

∞
n=0(e − zx)n. Since ‖e − zx‖ ≈ 0 so ‖v‖ / 1, hence v ∈ Fin(X),

(vz)x = e and vz ∈ Fin(X). Consequently x is both left- and right-invertible and
so x−1 = zu = vz ∈ Fin(X).

Corollary 2. Let x̂ ∈ Inv(X̂). Then y ∈ Inv(X) and y−1 ∈ Fin(X) for all y ≈ x.

If X is a standard normed algebra, we write X̂ instead of ∗̂X for the canonical
nonstandard hull extension.

We recall that a homomorphism f of a Banach algebra X is a multiplicative linear
mapping, i.e. f satisfies f (xy) = f (x) f (y) for all x, y ∈ X. It is well known that
any such f is continuous. Moreover f (e) = 1 and | f (x)| ≤ ‖x‖ holds for all x.
Therefore ‖ f‖ = 1 for all homomorphisms f .

We denote by hom(X) the family of nonzero complex homomorphisms of X,
by 0 the zero homomorphism (the context will prevent any ambiguity), and we
let hom(X) = hom(X) ∪ {0}.
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If Y is an internal Banach algebra and f ∈ ∗hom(Y), the mapping f̂ : Ŷ → C

defined by f̂ (ŷ) = ◦ f (y) is a well–defined complex homomorphism ( ◦ denotes
the standard part map).

2 Generalized invertibility

We define a generalization of the notion of invertibility in the nonstandard hull
of a Banach algebra and we relate it to the density of invertible elements of the
algebra.

Definition 3. Let X be an internal normed algebra. An element x̂ ∈ X̂ is called general-
ized invertible if there exists y ∈ x̂ ∩ Inv(X). The set of generalized invertible elements

in X̂ is denoted by GInv(X̂).

It follows from Theorem 1 that Inv(X̂) ⊆ GInv(X̂). Furthermore the inclusion
is strict, since 0 ∈ GInv(X̂). Note also that all elements in GInv(X̂) \ Inv(X̂) are
algebraic (equivalently: topological) divisors of zero. For, let x̂ ∈ GInv(X̂) \ Inv(X̂)
and let x ≈ y ∈ Inv(X). Note that y−1 has infinite norm. Let z = ‖y−1‖−1y−1.
Then xz = (x − y)z + yz ≈ 0. Similarly, zx ≈ 0.

In some specific cases, the existence of “nontrivial” generalized invertible el-

ements can be easily proved. For instance, all elements in ℓ̂∞(N) are generalized
invertible.

Proposition 4. Let X be a standard Banach algebra. Identifying x ∈ X with its im-

age x̂ in X̂, we have x ∈ Inv(X) if and only if x ∈ GInv(X̂), namely Inv(X) =

X ∩ GInv(X̂).

Proof. (⇒) Let yn ∈ Inv(X) and ‖x− yn‖ → 0. By saturation, there is y ∈ Inv( ∗X)
such that x ≈ y, hence x = ŷ ∈ GInv(X).
(⇐) Let y ∈ Inv( ∗X) be such that x ≈ y. By Transfer, for all n ∈ N+ there exists
yn ∈ Inv(X) such that ‖x − yn‖ ≤ 1/n.

The next proposition yields at once a nonstandard characterization of density
of the group of invertible elements in a standard Banach algebra Y: Inv(Y) is

dense in Y precisely when all the elements of the nonstandard hull Ŷ are gener-
alized invertible. Consequently, there are non generalized invertible elements in

the nonstandard hull of any standard Banach algebra Y such that Inv(Y) 6= Y.

Proposition 5. Let SY be the unit sphere of a standard Banach algebra Y and let X = Ŷ.

Then X = GInv(X) if and only if SY ⊆ Inv(Y).

Proof. (⇒) Assume SY 6⊆ Inv(Y). Then, for some x ∈ SY and some standard

r > 0, we have ‖x − y‖ ≥ r for all y ∈ Inv(Y). Applying Transfer, we get

‖x − y‖ ≥ r for all y ∈ Inv( ∗Y). Since r 6≈ 0, it follows that x̂ /∈ GInv(X).
(⇐) By Transfer, ∗SY is contained into the internal closure of Inv( ∗Y) so for all
x ∈ ∗SY there is y ∈ Inv( ∗Y) such that x ≈ y. (Recall also that 0 ∈ GInv(X).)
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By saturation, the set GInv(X̂) is a closed multiplicative monoid in every inter-
nal normed algebra X (recall that the group of invertible elements in a Banach al-

gebra is open). It follows that Inv(X̂) ⊆ GInv(X̂), but the converse inclusion does

not hold in general: a counterexample can be found in ℓ̂1(N), with N ∈ ∗N \ N

and product given by convolution.
Let X be a standard Banach algebra. From Proposition 5, the closedness of

GInv(X̂) and from Inv(X̂) ⊆ GInv(X̂), we get that Inv(X) = X whenever

Inv(X̂) = X̂.

Question 6. Suppose X is a standard Banach algebra such that Inv(X) = X. Does it

follow that Inv(X̂) = X̂?

Note that the condition Inv(Y) = Y does not imply Inv(Ŷ) = Ŷ for all internal
Banach algebras Y. A counterexample is given by ℓ1(N), where N ∈ ∗N \ N: on
one hand, the property of density of the group of invertible elements of ℓ1(n), for
all n ∈ N, transfers to ℓ1(N); on the other hand we have previously remarked

that Inv(X̂) ( GInv(X̂).

3 Liftable homomorphisms and the AMNM property

In this section all Banach algebras are assumed to be commutative.
We study the liftability of homomorphisms in a nonstandard hull and the

AMNM Banach algebras, where almost multiplicative mappings are near mul-
tiplicative.

It is well known that an element x of a standard commutative Banach algebra
X is invertible if and only if f (x) 6= 0 for all f ∈ hom(X). We want to investigate
whether a similar characterization holds for generalized invertible elements.

The following notion is crucial for the application of nonstandard techniques:

Definition 7. Let X be an an internal Banach algebra. We say that

1. f ∈ (X̂)′ is l–liftable if there exists g ∈ X′ (the internal set of ∗-linear bounded
functionals of X) such that f (x̂) ≈ g(x) for all x ∈ Fin(X). We say that g as
above is an l–lifting of f .

2. f ∈ hom(X̂) is h–liftable if there exists g ∈ hom(X) (the internal set of
∗–complex homomorphisms of X) such that f (x̂) ≈ g(x) for all x ∈ Fin(X).
We say that g as above is an h–lifting of f .

In both cases we write f = ĝ.

Definition 8. Let X be an internal Banach algebra. We say that g ∈ X′ is almost
multiplicative (briefly: a.m.) if g(xy) ≈ g(x)g(y) for all x, y ∈ Fin(X).

We recall a definition from [8]: a linear bounded functional on a standard
Banach algebra X is called ǫ–multiplicative, where ǫ is a positive real number, if

| f (xy)− f (x) f (y)| ≤ ǫ‖x‖‖y‖ for all x, y ∈ X.
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We denote by homǫ(X) the set of ǫ–multiplicative functionals.
Note that the l–lifting of a homomorphism is a.m. Moreover the a.m. internal

functionals are exactly the ǫ–multiplicative ones, for some infinitesimal ǫ. As for
the nontrivial inclusion, let g be an a.m. functional on an internal Banach alge-
bra X. Let ǫ be the internal supremum of the set { |g(xy) − g(x)g(y)| : x, y ∈
X and ‖x‖ = ‖y‖ = 1 }. Then ǫ ≈ 0 and |g(xy) − g(x)g(y)| ≤ ǫ‖x‖‖y‖, for all
x, y ∈ X.

Furthermore, suppose g is a.m. By the previous remark and by Transfer of
Proposition 5.5 in [7], we get ‖g‖ ≤ 1 + ǫ for some infinitesimal ǫ. Moreover if
g(e) 6≈ 0 then g(e) ≈ 1 and so ‖g‖ ≈ 1. Note also that g(e) ≈ 0 is equivalent to
g(x) ≈ 0 for all x ∈ Fin(X).

Invertibility within the monad of a point and liftable homomorphisms are
related:

Proposition 9. Let 0 6= x̂ ∈ X̂, where X is an internal Banach algebra. Then there

exists noninvertible y ∈ x̂ if and only if f (x̂) = 0 for some h–liftable f ∈ hom(X̂).

Proof. (⇐) Let g be an h–lifting of f ∈ hom(X̂) such that f (x̂) = 0. Then g(x) = ǫ

for some ǫ ≈ 0. The element y = (1− ǫ)x is in x̂ and g(y) = 0. Hence y /∈ Inv(X).

Corollary 10. Let 0 6= x̂ be an element of the nonstandard hull X̂ of an internal Banach

algebra X. If f (x̂) 6= 0 for all h–liftable f ∈ hom(X̂) then x̂ ∈ GInv(X̂).

The converse implication in Corollary 10 does not hold in general: let X =
∗ℓ∞(N) and let f : (an)n∈ ∗N 7→ a0. Clearly f̂ is h–liftable. Let x = (0, 1, 1, . . . ).

Then 0 6= x̂ ∈ GInv(X̂) and f̂ (x̂) = 0.
We point out that liftability of linear functionals is an important property of a

nonstandard hull: the nonstandard hull X̂ of an internal Banach space X is reflex-
ive (equivalently: superreflexive) if and only all its bounded linear functionals

are l–liftable, namely if and only if (X̂)′ = (̂X′) (see [5, Theorem 8.5] or [6, Propo-
sition 3.11]).

Next we provide a necessary condition for the l–liftability of all homomor-
phisms that refers to the joint spectrum. We recall that the joint spectrum σ(ā) of a
tuple ā = (a1, . . . , an) ∈ Xn is the set {( f (a1), . . . , f (an)) : f ∈ hom(X)}.

Proposition 11. Let X be an internal Banach algebra such that hom(X̂) ⊆ (̂X′). Then
σ(â1, . . . , ân) =

◦{(g(a1), . . . , g(an)) : g ∈ X′, ‖g‖ = 1 and g is a.m.}, for all n ∈ N

and all (a1, . . . , an) ∈ Fin(X)n.

Proof. Let λ̄ ∈ σ(â1, . . . , ân). Then there exists f ∈ hom(X̂) such that f (âi) = λi,
i = 1, . . . , n. Let g be an l–lifting of f . Since g is a.m., we can assume without loss of
generality that ‖g‖ = 1. Then g(ai) ≈ λi, i = 1, . . . , n and
λ̄ ∈ ◦{(g(a1), . . . , g(an)) : g ∈ X′, ‖g‖ = 1 and g is a.m.}. Conversely, let λ̄ ∈
◦{(g(a1), . . . , g(an)) : g ∈ X′, ‖g‖ = 1 and g is a.m.} and let g ∈ X′ be an a.m.

norm one functional such that λi ≈ g(ai), i = 1, . . . , n. Then ĝ ∈ hom(X̂) and
ĝ(âi) = λi, i = 1, . . . , n. Hence λ̄ ∈ σ(â1, . . . , ân).
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We do not know whether the condition in the previous proposition suffices
for the l–liftability of all homomorphisms. The condition σ(â) = ◦{g(a) : g ∈
X′, ‖g‖ = 1 and g is a.m.} for all a ∈ Fin(X) does not, as shown by letting X :=
∗C(K), where K is compact and Hausdorff. As a Banach algebra, X̂ is isometrically

isomorphic to C(K̂), for some compact Hausdorff space K̂ that contains ∗K as

dense subset (see [4, §3]). Let f ∈ X. Then σ( f ) = { f (k) : k ∈ ∗K} and σ( f̂ ) =

{ f̂ (k) : k ∈ K̂}.

We claim that σ( f̂ ) = ◦
σ( f ) = ◦{g( f ) : g ∈ X′, ‖g‖ = 1 and g is a.m.}, for

all f ∈ X. As for the inclusion σ( f̂ ) ⊆ ◦
σ( f ), let k ∈ K̂ \ ∗K. From the properties

of f̂ and the density of ∗K in K̂, we get f̂ (K̂) = f̂ ( ∗K). Let (kn)n∈N ⊂ ∗K be such

that ( f̂ (kn))n∈N converges to f̂ (k). By saturation there exists h ∈ ∗K such that

f (h) ≈ f̂ (k). Hence f̂ (k) ∈ ◦
σ( f ). Moreover ◦

σ( f ) ⊆ ◦{g( f ) : g ∈ X′, ‖g‖ =

1 and g is a.m.} ⊆ σ( f̂ ) always hold. On the other hand, from Example 18 below

we get that hom(X̂) 6⊆ (̂X′).

We recall another definition from [8]: a Banach algebra X has the AMNM
property (briefly: X is AMNM) if

∀ǫ > 0 ∃δ > 0 ∀ f ∈ homδ(X) ∃g ∈ hom(X) (‖ f − g‖ < ǫ).

The following is a nonstandard characterization of the AMNM property:

Theorem 12. Let X be a standard Banach algebra. Then X is AMNM if and only if
̂∗hom(X) = hom(X̂) ∩ (̂X′).

Proof. (⇒) The inclusion ̂∗hom(X) ⊆ hom(X̂) ∩ (̂X′) always holds. As for the

converse inclusion, let f ∈ hom(X̂)∩ (̂X′). Then there exists an l–lifting g ∈ ∗(X′)
of f , which is ǫ–multiplicative for some ǫ ≈ 0. By Transfer of the property that X
is AMNM, we have dist(g, ∗hom(X)) < 1/n for all n ∈ N+. By saturation there

exists h ∈ ∗hom(X) such that ‖h − g‖ ≈ 0. Hence ĥ = f and so f ∈ ̂∗hom(X).
(⇐) Suppose X is not AMNM and let ǫ ∈ R+ be such that for all n ∈ N+ there ex-
ists a norm one 1/n–multiplicative linear functional fn such that
dist( fn, ∗hom(X)) > ǫ. By saturation, there exist N ∈ ∗N \ N and a norm one
1/N–multiplicative f ∈ ∗(X′) such that dist( f , ∗hom(X)) > ǫ. Hence

f̂ /∈ ̂∗hom(X), but f̂ ∈ hom(X̂) ∩ (̂X′).

Corollary 13. Let X be a standard AMNM Banach algebra and let f ∈ hom(X̂). Then
f is h–liftable if and only if it is l–liftable.

Proof. Suppose f is l–liftable. Then f ∈ hom(X̂) ∩ (̂X′) and Theorem 12 applies.

Next we investigate whether the AMNM property is preserved from nonstan-
dard hull to algebra and conversely.
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Proposition 14. Let X be a standard Banach algebra. If X̂ is AMNM then X is AMNM.

Proof. Let δ ∈ R+ corresponding to ǫ ∈ R+ in the definition of AMNM for X̂. By

Transfer, each f ∈ homδ(X) extends to f̂ ∈ homδ(X̂) (regarding X as a subalgebra

of X̂). Let g ∈ hom(X̂) be such that ‖ f̂ − g‖ < ǫ and let g′ = g|X. Clearly
g′ ∈ hom(X) and ‖ f − g′‖ < ǫ.

Proposition 15. Let X be a standard AMNM Banach algebra. Suppose that for all

δ ∈ R+ all δ–homomorphism of X̂ are l–liftable. Then X̂ is AMNM.

Proof. Let ǫ ∈ R+ and let δ
′ = 1

2δ(ǫ/2), where δ(ǫ/2) is a positive real number

corresponding to ǫ/2 in the definition of AMNM for X. Given h ∈ homδ′(X̂), let
k ∈ ∗(X′) be an l–lifting of h. By easy calculation we get that k ∈ ∗homδ(ǫ/2).

Hence, by Transfer of the AMNM property for X, there exists g ∈ ∗hom(X) such

that ‖g − k‖ < ǫ/2. The map ĝ : X̂ → C defined by x̂ 7→ ◦g(x), x ∈ Fin( ∗X), is

thus a homomorphism of X̂ and ‖h − ĝ‖ < ǫ.

Corollary 16. Let X be a standard superreflexive AMNM Banach algebra. Then X̂ is
AMNM.

Proof. By [6, Corollary 3.9], X̂ is superreflexive. Then [6, Proposition 3.11] applies
and all the assumptions of Proposition 15 are satisfied.

Corollary 17. Let X be a superreflexive Banach algebra. Then X is AMNM if and only

if X̂ is AMNM.

We finish with two examples of Banach algebras that behave differently with
respect to h–liftability.

Example 18. We characterize the h–liftable homomorphisms of Ĉ(K), where K is a
compact Hausdorff space. The algebra X := C(K) is AMNM (see [8]). Moreover,

X̂ is isometrically isomorphic to C(K̂) for some compact Hausdorff space K̂ that
contains ∗K as dense subset (see [4, §3]). For k ∈ K, let θk be the evaluation map
at point k. The map k 7→ θk is a bijection between K and hom(X). Same with ∗X

and X̂.
Suppose θk ∈ hom(X̂) is h–liftable and let h ∈ ∗K be such that θk( f̂ ) ≈ θh( f )

for all f ∈ Fin( ∗X). Then f̂ (k) = θk( f̂ ) = θ̂h( f̂ ) = ◦
θh( f ) = ◦ f (h) = f̂ (h), for

all f̂ ∈ X̂, and so k = h. Therefore the h–liftable homomorphisms in hom(X̂) are
exactly the evaluation maps at points of ∗K. Furthermore, Corollary 13 implies

that the evaluation maps at points of K̂ \ ∗K are not even l–liftable. Note that the

existence of non–l–liftable linear functionals in X̂′ follows from [6, Corollary 3.9,
Proposition 3.1].

Example 19. We describe a nonstandard hull all of whose homomorphisms are
h–liftable. We embed the Banach algebra ℓ2 = ℓ2(N) (with pointwise multiplica-
tion) into a unit algebra in the usual way: as for the Banach space structure we
let X = ℓ2 ⊕1 C (the ℓ1–sum of ℓ2 and C), with norm and multiplication given
by ‖(x, a)‖ = ‖x‖+ |a|, and (x, a) · (y, b) = (xy + bx + ay, ab) respectively. The
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algebra X is AMNM by [8, Proposition 4.2, Corollary 3.5]. Since X̂ = ℓ̂2 ⊕1 C and

the two summands are reflexive ([6, Corollary 3.9]), X̂ is reflexive. By [6, Propo-

sition 3.11], the elements of hom(X̂) are l–liftable. Corollary 13 implies that they
are h–liftable.
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