Sharp inequalities and complete monotonicity for the Wallis ratio

Cristinel Mortici

Abstract

The aim of this paper is to prove the complete monotonicity of a class of functions arising from Kazarinoff's inequality [Edinburgh Math. Notes 40 (1956) 19-21]. As applications, new sharp inequalities for the gamma and digamma functions are established.

1 Introduction and motivation

In this paper we study the complete monotonicity of the functions $f_{a}:(0, \infty) \rightarrow$ \mathbb{R},

$$
\begin{equation*}
f_{a}(x)=\ln \Gamma(x+1)-\ln \Gamma\left(x+\frac{1}{2}\right)-\frac{1}{2} \ln (x+a), \quad a \geq 0 \tag{1.1}
\end{equation*}
$$

related to the Kazarinoff's inequality:

$$
\begin{equation*}
\frac{1}{\sqrt{\pi\left(n+\frac{1}{2}\right)}}<\frac{1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 n-1)}{2 \cdot 4 \cdot 6 \cdot \ldots \cdot(2 n)}<\frac{1}{\sqrt{\pi\left(n+\frac{1}{4}\right)}}, n \geq 1 \tag{1.2}
\end{equation*}
$$

For proof and other details, see [5, 13, 14, 16, 18].
As for the Euler's gamma function Γ (see $[1,8,9]$), we have

$$
\Gamma(n+1)=n!, \quad \Gamma\left(n+\frac{1}{2}\right)=\frac{1 \cdot 3 \cdot \ldots \cdot(2 n-1)}{2^{n}} \sqrt{\pi}
$$

[^0]for every positive integer n, the inequality (1.2) can be extended in the form
$$
\sqrt{x+\frac{1}{4}}<\frac{\Gamma(x+1)}{\Gamma\left(x+\frac{1}{2}\right)}<\sqrt{x+\frac{1}{2}}, x>0
$$

In the papers $[3,7,13,30,32]$ the inequality (1.2) is proved mainly using the variation of the function $\frac{\Gamma(x+1)}{\Gamma\left(x+\frac{1}{2}\right)}$. Inequalities for the ratio $\frac{\Gamma(x+1)}{\Gamma\left(x+\frac{1}{2}\right)}$ (or more general, for ratio $\frac{\Gamma(x+1)}{\Gamma(x+s)}$, with $s>0$) have been studied extensively by many authors; for results and useful references, see, e.g., $[2,4,6,11,12,15,17,19,31$, 33].

In the last section of this work, we prove the following sharp inequalities for $x \geq 1$,

$$
\sqrt{x+\frac{1}{4}}<\frac{\Gamma(x+1)}{\Gamma\left(x+\frac{1}{2}\right)} \leq \omega \sqrt{x+\frac{1}{4}}
$$

and

$$
\mu \sqrt{x+\frac{1}{2}} \leq \frac{\Gamma(x+1)}{\Gamma\left(x+\frac{1}{2}\right)}<\sqrt{x+\frac{1}{2}}
$$

where $\omega=\frac{4}{\sqrt{5 \pi}}=1.009253 \ldots$ and $\mu=\frac{2 \sqrt{2}}{\sqrt{3 \pi}}=0.921317 \ldots$ are the best possible.
Then we establish some sharp inequalities for the digamma function ψ, that is the logarithmic derivative of the gamma function,

$$
\psi(x)=\frac{d}{d x} \ln \Gamma(x)=\frac{\Gamma^{\prime}(x)}{\Gamma(x)} .
$$

More precisely, we prove that for every $x \geq 1$,

$$
\frac{1}{2\left(x+\frac{1}{4}\right)}-\rho \leq \psi(x+1)-\psi\left(x+\frac{1}{2}\right)<\frac{1}{2\left(x+\frac{1}{4}\right)}
$$

and

$$
\frac{1}{2\left(x+\frac{1}{2}\right)}<\psi(x+1)-\psi\left(x+\frac{1}{2}\right) \leq \frac{1}{2\left(x+\frac{1}{2}\right)}+\sigma
$$

where the constants $\rho=\frac{7}{5}-2 \ln 2=0.013706 \ldots$ and $\sigma=2 \ln 2-\frac{4}{3}=0.052961 \ldots$ are the best possible.

2 A monotonicity result

The derivatives $\psi^{\prime}, \psi^{\prime \prime}, \psi^{\prime \prime \prime}, \ldots$ are known as polygamma functions. In what follows, we use the following integral representations, for every positive integer n,

$$
\begin{equation*}
\psi^{(n)}(x)=(-1)^{n-1} \int_{0}^{\infty} \frac{t^{n} e^{-x t}}{1-e^{-t}} d t \tag{2.1}
\end{equation*}
$$

and for every $r>0$,

$$
\begin{equation*}
\frac{1}{x^{r}}=\frac{1}{\Gamma(r)} \int_{0}^{\infty} t^{r-1} e^{-x t} d t \tag{2.2}
\end{equation*}
$$

See, e.g., [1, 18].
Recall that a function g is completely monotonic in an interval I if g has derivatives of all orders in I such that

$$
\begin{equation*}
(-1)^{n} g^{(n)}(x) \geq 0 \tag{2.3}
\end{equation*}
$$

for all $x \in I$ and $n=0,1,2,3 \ldots$. Dubourdieu [10] proved that if a non constant function g is completely monotonic, then strict inequalities hold in (2.3). Completely monotonic functions involving $\ln \Gamma(x)$ are important because they produce sharp bounds for the polygamma functions, see, e.g., [2, 4, 17, 20-29]. The famous Hausdorff-Bernstein-Widder theorem [34, p. 161] states that g is completely monotonic on $[0, \infty)$ if and only if

$$
g(x)=\int_{0}^{\infty} e^{-x t} d \mu(t)
$$

where μ is a non-negative measure on $[0, \infty)$ such that the integral converges for all $x>0$.

Lemma 2.1. Let $\left(w_{k}\right)_{k \geq 2}$ be the sequence defined by

$$
w_{k}=a^{k}-\left(a+\frac{1}{2}\right)^{k}+\frac{1}{2}, \quad k \geq 2
$$

(i) If $a \in\left[0, \frac{1}{4}\right]$, then $w_{k} \geq 0$, for every $k \geq 2$.
(ii) If $a \in\left[\frac{1}{2}, \infty\right)$, then $w_{k} \leq 0$, for every $k \geq 2$.

Proof. Regarded as a function of $a, w_{k}=w_{k}(a)$ is strictly decreasing, since

$$
\frac{d}{d a}\left(a^{k}-\left(a+\frac{1}{2}\right)^{k}+\frac{1}{2}\right)=k\left(a^{k-1}-\left(a+\frac{1}{2}\right)^{k-1}\right)<0
$$

For $a \leq \frac{1}{4}$ and $k \geq 2$, we have

$$
w_{k}=w_{k}(a) \geq w_{k}\left(\frac{1}{4}\right)=\frac{1}{4^{k}}-\left(\frac{3}{4}\right)^{k}+\frac{1}{2} \geq 0
$$

For $a \geq \frac{1}{2}$ and $k \geq 2$, we have

$$
w_{k}=w_{k}(a) \leq w_{k}\left(\frac{1}{2}\right)=\frac{1}{2^{k}}-\frac{1}{2}<0
$$

Now we are in position to give the following
Theorem 2.1. (i) The function f_{a} given by (1.1) is completely monotonic, for every $a \in\left[0, \frac{1}{4}\right]$.
(ii) The function $-f_{b}$ is completely monotonic, for every $b \in\left[\frac{1}{2}, \infty\right)$.

Proof. We have

$$
f_{a}^{\prime}(x)=\psi(x+1)-\psi\left(x+\frac{1}{2}\right)-\frac{1}{2(x+a)}
$$

and

$$
f_{a}^{\prime \prime}(x)=\psi^{\prime}(x+1)-\psi^{\prime}\left(x+\frac{1}{2}\right)+\frac{1}{2(x+a)^{2}} .
$$

Using (2.1)-(2.2), we get

$$
f_{a}^{\prime \prime}(x)=\int_{0}^{\infty} \frac{t e^{-(x+1) t}}{1-e^{-t}} d t-\int_{0}^{\infty} \frac{t e^{-\left(x+\frac{1}{2}\right) t}}{1-e^{-t}} d t+\frac{1}{2} \int_{0}^{\infty} t e^{-(x+a) t} d t
$$

or

$$
f_{a}^{\prime \prime}(x)=\int_{0}^{\infty} \frac{t e^{-(x+1+a) t}}{1-e^{-t}} \varphi_{a}(t) d t
$$

where

$$
\varphi_{a}(t)=e^{a t}-e^{\left(a+\frac{1}{2}\right) t}+\frac{1}{2}\left(e^{t}-1\right)=\sum_{k=2}^{\infty} w_{k} t^{k}
$$

(i) If $a \in\left[0, \frac{1}{4}\right]$, then $w_{k} \geq 0$ and then $\varphi_{a}>0$. In consequence, $f_{a}^{\prime \prime}$ is completely monotonic, that is

$$
\begin{equation*}
(-1)^{n} f_{a}^{(n)}(x)>0 \tag{2.4}
\end{equation*}
$$

for every $x \in(0, \infty)$ and $n \geq 2$. Further, $f_{a}^{\prime \prime}>0$, so f_{a}^{\prime} is strictly increasing. As $\lim _{x \rightarrow \infty} f_{a}^{\prime}(x)=0$, we have $f_{a}^{\prime}(x)<0$, for every $x>0$, so f_{a} is strictly decreasing. As $\lim _{x \rightarrow \infty} f_{a}(x)=0$, it results that $f_{a}>0$. Now (2.4) holds also for $n=1$ and $n=0$, meaning that f_{a} is completely monotonic.
(ii) If $b \in\left[\frac{1}{2}, \infty\right)$, then $w_{k} \leq 0$ and then $\varphi_{b}<0$. In consequence, $-f_{b}^{\prime \prime}$ is completely monotonic, that is

$$
\begin{equation*}
(-1)^{n} f_{b}^{(n)}(x)<0 \tag{2.5}
\end{equation*}
$$

for every $x \in(0, \infty)$ and $n \geq 2$. Further, $f_{b}^{\prime \prime}<0$, so f_{b}^{\prime} is strictly decreasing. As $\lim _{x \rightarrow \infty} f_{b}^{\prime}(x)=0$, we have $f_{b}^{\prime}(x)>0$, for every $x>0$, so f_{b} is strictly increasing. As $\lim _{x \rightarrow \infty} f_{b}(x)=0$, it results that $f_{b}<0$. Now (2.5) holds also for $n=1$ and $n=0$, meaning that $-f_{b}$ is completely monotonic.

3 Applications

In view of their importance, the gamma and polygamma functions have incited the work of many researches, so that numerous remarkable estimates were discovered. We refer here to [$4,15,17$].

We establish in this section some new sharp inequalities for the gamma and digamma functions, using the monotonicity results stated in Theorem 2.1.

More precisely, for $a=\frac{1}{4}$, the function

$$
f_{1 / 4}(x)=\ln \Gamma(x+1)-\ln \Gamma\left(x+\frac{1}{2}\right)-\frac{1}{2} \ln \left(x+\frac{1}{4}\right)
$$

is completely monotonic, in particular it is strictly decreasing. In consequence, we have, for every $x \geq 1$,

$$
0=\lim _{x \rightarrow \infty} f_{1 / 4}(x)<f_{1 / 4}(x) \leq f_{1 / 4}(1)
$$

By exponentiating, we obtain the sharp inequalities for $x \geq 1$,

$$
\sqrt{x+\frac{1}{4}}<\frac{\Gamma(x+1)}{\Gamma\left(x+\frac{1}{2}\right)} \leq \omega \sqrt{x+\frac{1}{4}}
$$

where the constant $\omega=\exp f_{1 / 4}(1)=\frac{4}{\sqrt{5 \pi}}=1.009253 \ldots$ is the best possible.
The function

$$
f_{1 / 4}^{\prime}(x)=\psi(x+1)-\psi\left(x+\frac{1}{2}\right)-\frac{1}{2\left(x+\frac{1}{4}\right)}
$$

is strictly increasing. In consequence, for every $x \geq 1$, we have

$$
f_{1 / 4}^{\prime}(1) \leq f_{1 / 4}^{\prime}(x)<\lim _{x \rightarrow \infty} f_{1 / 4}^{\prime}(x)=0,
$$

thus

$$
\frac{1}{2\left(x+\frac{1}{4}\right)}-\rho \leq \psi(x+1)-\psi\left(x+\frac{1}{2}\right)<\frac{1}{2\left(x+\frac{1}{4}\right)}
$$

where the constant $\rho=-f_{1 / 4}^{\prime}(1)=\frac{7}{5}-2 \ln 2=0.013706 \ldots$ is the best possible.
For $b=\frac{1}{2}$, the function $-f_{1 / 2}$ is completely monotonic, in particular, the function

$$
g(x)=\ln \Gamma(x+1)-\ln \Gamma\left(x+\frac{1}{2}\right)-\frac{1}{2} \ln \left(x+\frac{1}{2}\right)
$$

is strictly increasing. In consequence, for every $x \geq 1$, we have

$$
g(1) \leq g(x) \leq \lim _{x \rightarrow \infty} g(x)=0
$$

By exponentiating, we obtain the sharp inequalities for $x \geq 1$,

$$
\mu \sqrt{x+\frac{1}{2}} \leq \frac{\Gamma(x+1)}{\Gamma\left(x+\frac{1}{2}\right)}<\sqrt{x+\frac{1}{2}}
$$

where the constant $\mu=\exp g(1)=\frac{2 \sqrt{2}}{\sqrt{3 \pi}}=0.92132 \ldots$ is the best possible.
The function

$$
f_{1 / 2}^{\prime}(x)=\psi(x+1)-\psi\left(x+\frac{1}{2}\right)-\frac{1}{2\left(x+\frac{1}{2}\right)}
$$

is strictly decreasing. In consequence, for every $x \geq 1$, we have

$$
0=\lim _{x \rightarrow \infty} f_{1 / 2}^{\prime}(x)<f_{1 / 2}^{\prime}(x) \leq f_{1 / 2}^{\prime}
$$

thus

$$
\frac{1}{2\left(x+\frac{1}{2}\right)}<\psi(x+1)-\psi\left(x+\frac{1}{2}\right) \leq \frac{1}{2\left(x+\frac{1}{2}\right)}+\sigma
$$

where the constant $\sigma=f_{1 / 2}^{\prime}(1)=2 \ln 2-\frac{4}{3}=0.052961 \ldots$ is the best possible.
Acknowledgements: The author thanks the anonymous referees for useful comments and corrections that improved the initial form of this paper.

References

[1] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York, 1965.
[2] H. Alzer, Some gamma function inequalities, Math. Comp., 60 (1993), no. 201, 337-346.
[3] H. Alzer, Inequalities for the volume of the unit ball in \mathbb{R}^{n}, J. Math. Anal. Appl., 252 (2000), 353-363.
[4] N. Batir, Some new inequalities for gamma and polygamma functions, J. Inequal. Pure Appl. Math., 6(4), (2005), Article 103.
[5] P. S. Bullen, A Dictionary of Inequalities, Pitman Monographs and Surveys in Pure and Applied Mathematics, 97, Addison Wesley Longman Limited, 1998.
[6] J. Bustoz and M.E.H. Ismail, On the gamma function inequalities, Math. Comp., 47 (1986), no. 176, 659-667.
[7] Ch.-P. Chen and F. Qi, The best bounds in Wallis' inequality, Proc. Amer. Math. Soc., 133 (2005), 397-401.
[8] P. J. Davis, Leonhard Euler's integral: A historical profile of the gamma function, Amer. Math. Monthly 66 (1959), 849-869.
[9] S. S. Dragomir, R. P. Agarwal and N. S. Barnett, Inequalities for beta and gamma functions via some classical and new integral inequalities, J. of Inequal. Appl., 5 (2000), 103-165.
[10] J. Dubourdieu, Sur un théorème de M. S. Bernstein relatif á la transformation de Laplace-Stieltjes, Compositio Math., 7 (1939), 96-14.
[11] N. Elezović, C. Giordano and J. Pečarić, The best bounds in Gautschi's inequality, Math. Inequal. Appl., 3(2) (2000), 239-252.
[12] C. Giordano and A. Laforgia, Inequalities and monotonicity properties for the gamma function, J. Comput. Appl. Math. , 133(1-2) (2001), 387-396.
[13] D. K. Kazarinoff, On Wallis' formula, Edinburgh Math. Notes, 40 (1956), 1921.
[14] N. D. Kazarinoff, Analytic Inequalities, Holt, Rhinehart and Winston, NewYork, 1961.
[15] D. Kershaw, Some extensions of of W. Gautschi inequalities for the gamma function, Math. Comp., 41 (1983), no. 164, 607-611.
[16] J.-Ch. Kuang, Chángyòng Bùdĕngshì (Applied Inequalities), 2nd edition, Hunan Education Press, Changsha, China, 1993. (Chinese)
[17] A. Laforgia, Further inequalities for the gamma function, Math. Comp., 42 (1984), no. 166, 597-600.
[18] W. Magnus, F. Oberhettinger and R. P. Soni, Formulas and theorems for the special functions of mathematical physics, Springer, Berlin, 1966.
[19] M. Merkle, Convexity, Schur-convexity and bounds for the gamma function involving the digamma function, Rocky Mountain J. Math., 28(3) (1998), 1053-1066.
[20] C. Mortici, An ultimate extremely accurate formula for approximation of the factorial function, Arch. Math. (Basel), 93 (2009), no. 1, 37-45.
[21] C. Mortici, New approximations of the gamma function in terms of the digamma function, Appl. Math. Lett., 23 (2010), no. 1, 97-100.
[22] C. Mortici, The proof of Muqattash-Yahdi conjecture Math. Comp. Modelling, 51 (2010), no. 9-10, 1154-1159.
[23] C. Mortici, Complete monotonic functions associated with gamma function and applications, Carpathian J. Math., 25 (2009), no. 2, 186-191.
[24] C. Mortici, Optimizing the rate of convergence in some new classes of sequences convergent to Euler's constant, Anal. Appl. (Singap.), 8 (2010), no. 1, 99-107.
[25] C. Mortici, Improved convergence towards generalized Euler-Mascheroni constant, Appl. Math. Comput., 215 (2010), 3443-3448.
[26] C. Mortici, Best estimates of the generalized Stirling formula, Appl. Math. Comput., (2010), 215 (2010), no. 11, 4044-4048.
[27] C. Mortici, A class of integral approximations for the factorial function, Comput. Math. Appl., (2010), 59 (2010), no. 6, 2053-2058.
[28] C. Mortici, Sharp inequalities related to Gosper's formula, C. R. Acad. Sci. Paris, 48 (2010), no. 3-4, 137-140.
[29] C. Mortici, Product approximations via asymptotic integration, Amer. Math. Monthly, 117 (2010), no. 5, 434-441.
[30] F. Qi, D.-W. Niu, J. Cao and S.-X. Chen, Four logarithmically completely monotonic functions involving gamma function, J. Korean Math. Soc., 45 (2008), no. 2, 559-573.
[31] F. Qi, X.-A. Li and S.-X. Chen, Refinements, extensions and generalizations of the second Kershaw's double inequality, Math. Inequal. Appl., 11 (2008), no. 3, 457-465.
[32] G. N. Watson, A note on gamma function, Proc. Edinburgh Math. Soc., 11(2) (1959), 7-9.
[33] J. G. Wendel, Note on the gamma function, Amer. Math. Monthly 55 (1948), no. 9, 563-564.
[34] D. V. Widder, The Laplace Transform, 1981.

[^1]
[^0]: Received by the editors May 2009 - In revised form in October 2009.
 Communicated by A. Bultheel.
 2000 Mathematics Subject Classification : 26D15; 33B15; 26D07.
 Key words and phrases : Gamma function; digamma function; polygamma functions; completely monotonic functions; Kazarinoff's inequality.

[^1]: Valahia University of Târgovişte, Department of Mathematics, Bd. Unirii 18, 130082 Târgovişte, Romania, E-mail: cmortici@valahia.ro Website: www.cristinelmortici.ro

