
Sharp inequalities and complete monotonicity

for the Wallis ratio

Cristinel Mortici

Abstract

The aim of this paper is to prove the complete monotonicity of a class of
functions arising from Kazarinoff’s inequality [Edinburgh Math. Notes 40
(1956) 19–21]. As applications, new sharp inequalities for the gamma and
digamma functions are established.

1 Introduction and motivation

In this paper we study the complete monotonicity of the functions fa : (0, ∞) →
R,

fa (x) = ln Γ (x + 1)− ln Γ

(

x +
1

2

)

−
1

2
ln (x + a) , a ≥ 0, (1.1)

related to the Kazarinoff’s inequality:

1
√

π
(

n + 1
2

)

<
1 · 3 · 5 · ... · (2n − 1)

2 · 4 · 6 · ... · (2n)
<

1
√

π
(

n + 1
4

)

, n ≥ 1. (1.2)

For proof and other details, see [5, 13, 14, 16, 18].
As for the Euler’s gamma function Γ (see [1, 8, 9]), we have

Γ (n + 1) = n!, Γ

(

n +
1

2

)

=
1 · 3 · ... · (2n − 1)

2n

√
π,
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for every positive integer n, the inequality (1.2) can be extended in the form
√

x +
1

4
<

Γ (x + 1)

Γ
(

x + 1
2

) <

√

x +
1

2
, x > 0.

In the papers [3, 7, 13, 30, 32] the inequality (1.2) is proved mainly using the

variation of the function
Γ(x + 1)

Γ
(

x + 1
2

) . Inequalities for the ratio
Γ(x+1)

Γ(x+ 1
2)

(or more

general, for ratio
Γ(x+1)
Γ(x+s)

, with s > 0) have been studied extensively by many

authors; for results and useful references, see, e.g., [2, 4, 6, 11, 12, 15, 17, 19, 31,
33].

In the last section of this work, we prove the following sharp inequalities for
x ≥ 1,

√

x +
1

4
<

Γ (x + 1)

Γ
(

x + 1
2

) ≤ ω

√

x +
1

4
,

and

µ

√

x +
1

2
≤

Γ (x + 1)

Γ
(

x + 1
2

) <

√

x +
1

2
,

where ω = 4√
5π

= 1.009253... and µ = 2
√

2√
3π

= 0.921317... are the best possible.

Then we establish some sharp inequalities for the digamma function ψ, that is
the logarithmic derivative of the gamma function,

ψ (x) =
d

dx
ln Γ (x) =

Γ′ (x)

Γ (x)
.

More precisely, we prove that for every x ≥ 1,

1

2
(

x + 1
4

) − ρ ≤ ψ (x + 1)− ψ

(

x +
1

2

)

<
1

2
(

x + 1
4

)

and
1

2
(

x + 1
2

) < ψ (x + 1)− ψ

(

x +
1

2

)

≤
1

2
(

x + 1
2

) + σ,

where the constants ρ = 7
5 − 2 ln 2 = 0.013706... and σ = 2 ln 2 − 4

3 = 0.052961...
are the best possible.

2 A monotonicity result

The derivatives ψ′, ψ′′, ψ′′′, ... are known as polygamma functions. In what fol-
lows, we use the following integral representations, for every positive integer n,

ψ(n) (x) = (−1)n−1
∫ ∞

0

tne−xt

1 − e−t
dt (2.1)
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and for every r > 0,
1

xr
=

1

Γ (r)

∫ ∞

0
tr−1e−xtdt. (2.2)

See, e.g., [1, 18].
Recall that a function g is completely monotonic in an interval I if g has deriva-

tives of all orders in I such that

(−1)n g(n) (x) ≥ 0, (2.3)

for all x ∈ I and n = 0, 1, 2, 3... . Dubourdieu [10] proved that if a non constant
function g is completely monotonic, then strict inequalities hold in (2.3). Com-
pletely monotonic functions involving ln Γ (x) are important because they pro-
duce sharp bounds for the polygamma functions, see, e.g., [2, 4, 17, 20-29]. The
famous Hausdorff-Bernstein-Widder theorem [34, p. 161] states that g is com-
pletely monotonic on [0, ∞) if and only if

g (x) =
∫ ∞

0
e−xtdµ (t) ,

where µ is a non-negative measure on [0, ∞) such that the integral converges for
all x > 0.

Lemma 2.1. Let (wk)k≥2 be the sequence defined by

wk = ak −
(

a +
1

2

)k

+
1

2
, k ≥ 2.

(i) If a ∈
[

0, 1
4

]

, then wk ≥ 0, for every k ≥ 2.

(ii) If a ∈
[

1
2 , ∞

)

, then wk ≤ 0, for every k ≥ 2.

Proof. Regarded as a function of a, wk = wk (a) is strictly decreasing, since

d

da

(

ak −
(

a +
1

2

)k

+
1

2

)

= k

(

ak−1 −
(

a +
1

2

)k−1
)

< 0.

For a ≤ 1
4 and k ≥ 2, we have

wk = wk (a) ≥ wk

(

1

4

)

=
1

4k
−
(

3

4

)k

+
1

2
≥ 0.

For a ≥ 1
2 and k ≥ 2, we have

wk = wk (a) ≤ wk

(

1

2

)

=
1

2k
−

1

2
< 0.

Now we are in position to give the following

Theorem 2.1. (i) The function fa given by (1.1) is completely monotonic, for every

a ∈
[

0, 1
4

]

.
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(ii) The function − fb is completely monotonic, for every b ∈
[

1
2 , ∞

)

.

Proof. We have

f ′a (x) = ψ (x + 1)− ψ

(

x +
1

2

)

−
1

2 (x + a)

and

f ′′a (x) = ψ′ (x + 1)− ψ′
(

x +
1

2

)

+
1

2 (x + a)2
.

Using (2.1)-(2.2), we get

f ′′a (x) =
∫ ∞

0

te−(x+1)t

1 − e−t
dt −

∫ ∞

0

te−(x+ 1
2)t

1 − e−t
dt +

1

2

∫ ∞

0
te−(x+a)tdt,

or

f ′′a (x) =
∫ ∞

0

te−(x+1+a)t

1 − e−t
ϕa (t) dt,

where

ϕa (t) = eat − e(a+ 1
2)t +

1

2

(

et − 1
)

=
∞

∑
k=2

wktk.

(i) If a ∈
[

0, 1
4

]

, then wk ≥ 0 and then ϕa > 0. In consequence, f ′′a is completely

monotonic, that is

(−1)n f
(n)
a (x) > 0, (2.4)

for every x ∈ (0, ∞) and n ≥ 2. Further, f ′′a > 0, so f ′a is strictly increasing. As
limx→∞ f ′a (x) = 0, we have f ′a (x) < 0, for every x > 0, so fa is strictly decreasing.
As limx→∞ fa (x) = 0, it results that fa > 0. Now (2.4) holds also for n = 1 and
n = 0, meaning that fa is completely monotonic.

(ii) If b ∈
[

1
2 , ∞

)

, then wk ≤ 0 and then ϕb < 0. In consequence, − f ′′b is

completely monotonic, that is

(−1)n f
(n)
b (x) < 0, (2.5)

for every x ∈ (0, ∞) and n ≥ 2. Further, f ′′b < 0, so f ′b is strictly decreasing. As
limx→∞ f ′b (x) = 0, we have f ′b (x) > 0, for every x > 0, so fb is strictly increasing.
As limx→∞ fb (x) = 0, it results that fb < 0. Now (2.5) holds also for n = 1 and
n = 0, meaning that − fb is completely monotonic.

3 Applications

In view of their importance, the gamma and polygamma functions have incited
the work of many researches, so that numerous remarkable estimates were dis-
covered. We refer here to [4, 15, 17].

We establish in this section some new sharp inequalities for the gamma and
digamma functions, using the monotonicity results stated in Theorem 2.1.
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More precisely, for a = 1
4 , the function

f1/4 (x) = ln Γ (x + 1)− ln Γ

(

x +
1

2

)

−
1

2
ln

(

x +
1

4

)

is completely monotonic, in particular it is strictly decreasing. In consequence,
we have, for every x ≥ 1,

0 = lim
x→∞

f1/4 (x) < f1/4 (x) ≤ f1/4 (1) .

By exponentiating, we obtain the sharp inequalities for x ≥ 1,

√

x +
1

4
<

Γ (x + 1)

Γ
(

x + 1
2

) ≤ ω

√

x +
1

4
,

where the constant ω = exp f1/4 (1) =
4√
5π

= 1.009253... is the best possible.

The function

f ′1/4 (x) = ψ (x + 1)− ψ

(

x +
1

2

)

−
1

2
(

x + 1
4

)

is strictly increasing. In consequence, for every x ≥ 1, we have

f ′1/4 (1) ≤ f ′1/4 (x) < lim
x→∞

f ′1/4 (x) = 0,

thus
1

2
(

x + 1
4

) − ρ ≤ ψ (x + 1)− ψ

(

x +
1

2

)

<
1

2
(

x + 1
4

) ,

where the constant ρ = − f ′1/4 (1) =
7
5 − 2 ln 2 = 0.013706... is the best possible.

For b = 1
2 , the function − f1/2 is completely monotonic, in particular, the func-

tion

g (x) = ln Γ (x + 1)− ln Γ

(

x +
1

2

)

−
1

2
ln

(

x +
1

2

)

is strictly increasing. In consequence, for every x ≥ 1, we have

g (1) ≤ g (x) ≤ lim
x→∞

g (x) = 0.

By exponentiating, we obtain the sharp inequalities for x ≥ 1,

µ

√

x +
1

2
≤

Γ (x + 1)

Γ
(

x + 1
2

) <

√

x +
1

2
,

where the constant µ = exp g (1) = 2
√

2√
3π

= 0.921 32... is the best possible.

The function

f ′1/2 (x) = ψ (x + 1)− ψ

(

x +
1

2

)

−
1

2
(

x + 1
2

)
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is strictly decreasing. In consequence, for every x ≥ 1, we have

0 = lim
x→∞

f ′1/2 (x) < f ′1/2 (x) ≤ f ′1/2 (1) ,

thus
1

2
(

x + 1
2

) < ψ (x + 1)− ψ

(

x +
1

2

)

≤
1

2
(

x + 1
2

) + σ,

where the constant σ = f ′1/2 (1) = 2 ln 2 − 4
3 = 0.052961... is the best possible.
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