A Fixed Point-Equilibrium Theorem with Applications

Mircea Balaj

Abstract

In this paper, using the Kakutani-Fan-Glicksberg fixed point theorem, we obtain an existence theorem of a point which is simultaneously fixed point for a given mapping and equilibrium point for a very general vector equilibrium problem. Finally some particular cases are discussed and three applications are given.

1 Introduction and preliminaries

If X and Y are topological spaces a multivalued mapping (or simply, a mapping) $T : X \multimap Y$ is said to be: (i) *upper semicontinuous* (in short, u.s.c) (respectively, *lower semicontinuous* (in short, l.s.c.)) if for every closed subset B of Y the set $\{x \in X : T(x) \cap B \neq \emptyset\}$ (respectively, $\{x \in X : T(x) \subseteq B\}$) is closed; (ii) *closed* if its graph (that is, the set $GrT = \{(x, y) \in X \times Y : y \in T(x), x \in X\}$) is a closed subset of $X \times Y$; (iii) *compact* if T(X) is contained in a compact subset of Y.

The following lemma collects known facts about u.s.c. or l.s.c. mappings (see for instance [14] for assertions (i) and (ii), respectively [26] for assertion (iii)).

Lemma 1 Let X and Y be topological spaces and $T : X \multimap Y$ be a mapping.

- (*i*) If Y is regular and T is u.s.c. with closed values, then T is closed.
- (ii) If Y is compact and T is closed, then T is u.s.c..
- (iii) *T* is l.s.c. if and only if for any $x \in X$, $y \in T(x)$ and any net $\{x_t\}$ converging to *x*, there exists a net $\{y_t\}$ converging to *y*, with $y_t \in T(x_t)$ for each *t*.

Bull. Belg. Math. Soc. Simon Stevin 17 (2010), 919–928

Received by the editors April 2009.

Communicated by E. Colebunders.

Key words and phrases : equilibrium problem, fixed point theorem, quasiconvex (quasiconcave) mapping, C(x)-quasiconvex mapping.

Since the topological vector spaces are regular, by (i) and (ii) we infer that, if *Y* is a compact subset of a topological vector space, a closed-valued mapping $T: X \rightarrow Y$ is u.s.c. if an only if it is closed.

Let *X* be a nonempty subset of a topological vector space and $f : X \times X \to \mathbb{R}$ be a function with $f(x, x) \ge 0$ for all $x \in X$. Then the scalar equilibrium problem, in the sense of Blum and Oettli ([7]), is to find a $\tilde{x} \in X$ such that $f(\tilde{x}, y) \ge 0$ for all $y \in X$. This problem includes fundamental mathematical problems like optimization problems, variational inequalities, fixed point problems, saddle point problems, problems of Nash equilibria, complementary problems (see [7]). In the last years the scalar equilibrium problem was extensively generalized in several ways to vector equilibrium for multivalued mappings (see [1], [2], [8-11], [13], [15-20] and the references therein).

In many of the papers mentioned above, for a suitable choice of the sets *X* and *Z* and of the mappings $F : X \times X \multimap Z$, $C : X \multimap Z$, the authors study, all or part of the following equilibrium problems:

(I) Find $\tilde{x} \in X$ such that $F(\tilde{x}, y)\rho_i C(\tilde{x})$, for all $y \in X$,

where, ρ_i ($i = \overline{1, 4}$) are (binary) relations on 2^Z defined by:

- (i) $A\rho_1B \Leftrightarrow A \subseteq B$,
- (ii) $A\rho_2 B \Leftrightarrow A \nsubseteq B$,
- (iii) $A\rho_3B \Leftrightarrow A \cap B \neq \emptyset$,
- (iv) $A\rho_4B \Leftrightarrow A \cap B = \emptyset$,

for $A, B \subseteq Z$.

In [4-6], [21], [24] and [25] the authors unify and extend all these problems considering an arbitrary relation ρ on 2^Z and looking for a point $\tilde{x} \in X$ such that

(II) $F(\tilde{x}, y) \rho C(\tilde{x})$, for all $y \in X$.

On the other hand, in [3], [10] and [21] is investigated the following problem, called vector quasi-equilibrium problem:

If *F*, *C*, ρ_i are as above and *T* : *X* \multimap *X* is a suitable mapping, find $\tilde{x} \in X$ such that

(III) $\widetilde{x} \in T(\widetilde{x})$ and $F(\widetilde{x}, y)\rho_i C(\widetilde{x})$ for all $y \in T(\widetilde{x})$.

The following hybrid problem arises naturally:

Find a point $\tilde{x} \in X$ such that

(IV) $\tilde{x} \in T(\tilde{x})$ and $F(\tilde{x}, y)\rho C(\tilde{x})$ for all $y \in X$.

In the next section we give an existence theorem for this problem in the case when *T* is a Kakutani mapping and ρ is an arbitrary relation on 2^{Z} . In Section 3 problem (III) will be studied in the particular cases $\rho = \rho_1$ and $\rho = \rho_2$, respectively. Three applications will be given in the last section of the paper.

2 Main result

Lemma 2 ([19]) Let X be a topological space, Y be a topological vector space and S, T : $X \multimap Y$ be two mappings. If S is u.s.c. with nonempty compact values and T is closed, then S + T is a closed mapping.

Lemma 3 Let X be a topological space and Y be a Hausdorff topological vector space. If $f : X \to \mathbb{R}$ is a continuous function and $T : X \multimap Y$ a compact closed mapping, then the mapping $fT : X \multimap Y$ defined by (fT)(x) = f(x)T(x) is closed.

Proof. Let $(x, y) \in \overline{Gr(fT)}$. Then there exists a net $\{(x_t, y_t)\}_{t \in \Delta}$ in Gr(fT) converging to (x, y). For each $t \in \Delta$ we have $y_t = f(x_t)z_t$, for some $z_t \in T(x_t)$. Since $\overline{T(X)}$ is compact there is a subnet $\{z_{t_{\alpha}}\}$ of $\{z_t\}$ converging to a point $z \in \overline{T(X)}$. Since the mapping T is closed, $z \in T(x)$. Hence, $y_{t_{\alpha}} \to f(x)z \in (fT)(x)$. The space Y being Hausdorff, y = f(x)z. It follows that $(x, y) \in Gr(fT)$ hence the mapping fT is closed.

Definition 1. ([12]) For a subset *K* of a vector space *E* and $x \in E$, the *outward* set of *K* at *x* is denoted and defined as follows: $O(K, x) = \bigcup_{k=1}^{n} (\lambda x + (1 - \lambda))K$

 $\mathbf{O}(K;x) = \bigcup_{\lambda \ge 1} (\lambda x + (1-\lambda)K).$

If *A* is a nonempty set and ρ is a relation on *A* we denote by ρ^c the complementary relation of ρ (that is, for any $a, b \in A$ exactly one of the following assertions $a\rho \ b, a\rho^c \ b$ holds).

Theorem 1. Let X be a nonempty compact convex subset of a locally convex Hausdorff topological vector space, Z be a nonempty set, ρ be a relation on 2^Z and $T : X \multimap X$, $F : X \times X \multimap Z$ and $C : X \multimap Z$ be three mappings satisfying the following conditions:

- *(i) T is u.s.c. with nonempty compact convex values;*
- (ii) for each $x \in X$, the set $\{y \in X : F(x, y)\rho^{c}C(x)\}$ is convex;
- (iii) for each $y \in X$, the set $\{x \in X : F(x, y) \rho C(x)\}$ is closed in X;
- (iv) for each $x \in X$ and $y \in \mathbf{O}(T(x); x) \cap X$, $F(x, y)\rho C(x)$.

Then there exists $\tilde{x} \in X$ *such that* $\tilde{x} \in T(\tilde{x})$ *and* $F(\tilde{x}, y) \rho C(\tilde{x})$ *for all* $y \in X$.

Proof. For $y \in X$, let $G_y = \{x \in X : F(x, y)\rho^c C(x)\}$. Let $G_0 = \{x \in X : x \notin T(x)\}$. Since the mapping *T* is closed, it follows readily that G_0 is open.

Suppose that the conclusion is false. Then for each $x \in X$, either $x \in G_0$ or $x \in G_y$, for some $y \in X$. Thus, $X = G_0 \bigcup \bigcup_{y \in X} G_y$. Since X is compact, there exists a finite set $\{y_1, \dots, y_n\} \subset X$ such that $X = G_0 \cup \bigcup_{i=1}^n G_{y_i}$. For the sake of simplicity, we will put G_i instead of G_{y_i} . Let $\{\alpha_0, \alpha_1, \dots, \alpha_n\}$ be a partition of unity on X subordinated to the open cover $\{G_0, G_1, \dots, G_n\}$. Recall that this means that

$$\begin{cases} \alpha_i : X \to [0,1] \text{ is continuous, for each } i \in \{0,1,\ldots,n\}; \\ \alpha_i(x) > 0 \Rightarrow x \in G_i; \\ \sum_{i=0}^n \alpha_i(x) = 1 \text{ for each } x \in X. \end{cases}$$

Define the mapping $S : X \multimap X$ by

$$S(x) = \alpha_0(x)T(x) + \alpha_1(x)y_1 + \cdots + \alpha_n(x)y_n.$$

It is clear that *S* has nonempty compact convex values. Since the mapping $x \mapsto \alpha_1(x)y_1 + \cdots + \alpha_n(x)y_n$ is closed, combining Lemmas 2 and 3 we infer that *S* is closed, hence u.s.c. By Kakutani-Fan-Glicksberg fixed point theorem, there exists $x_0 \in X$ such that $x_0 \in S(x_0)$. We shall prove that each of the cases $\alpha_0(x_0) = 0$, $\alpha_0(x_0) = 1$ and $\alpha_0(x_0) \in (0, 1)$ leads to a contradiction.

Let $I = \{i \in \{1, \dots, n\} : \alpha_i(x_0) > 0\}$. For each $i \in I$, $x_0 \in G_i$, hence $F(x_0, y_i)\rho^c C(x_0)$.

If $\alpha_0(x_0) = 0$, then

$$x_0 = \sum_{i \in I} \alpha_i(x_0) y_i \in co\{y_i : i \in I\}.$$

By (ii), it follows that $F(x_0, x_0)\rho^c C(x_0)$. On the other hand, since $x_0 \in O(T(x_0); x_0) \cap X$, $F(x_0, x_0)\rho C(x_0)$. We have thus obtained a contradiction.

If $\alpha_0(x_0) = 1$, it follows that $x_0 \in S(x_0) = T(x_0)$. On the other hand, since $\alpha_0(x_0) > 0$, $x_0 \in G_0$, that is, $x_0 \notin T(x_0)$; a contradiction again.

If $\alpha_0(x_0) \in (0, 1)$, then there exists $y_0 \in T(x_0)$ such that

$$x_0 = \alpha_0(x_0)y_0 + \sum_{i\in I} \alpha_i(x_0)y_i.$$

Dividing the previous relation by $1 - \alpha_0(x_0)$ and denoting by $\lambda = \frac{1}{1 - \alpha_0(x_0)}$ we get

$$\lambda x_0 + (1 - \lambda) y_0 = \sum_{i \in I} \frac{\alpha_i(x_0)}{1 - \alpha_0(x_0)} y_i.$$

Since $\lambda x_0 + (1 - \lambda)y_0 \in co\{y_i : i \in I\}$, by (ii) we have $F(x_0, \lambda x_0 + (1 - \lambda)y_0)\rho^c$ $C(x_0)$. On the other hand, since $\lambda > 1$, by (iv) we get $F(x_0, \lambda x_0 + (1 - \lambda)y_0)\rho$ $C(x_0)$. The contradiction obtained completes the proof.

Remark 1. Denote by S_{ρ} the set of all $\tilde{x} \in X$ satisfying the conclusion of Theorem 1. Since $S_{\rho} = \{x \in X : x \in T(x)\} \cap \bigcap_{y \in X} \{x \in X : F(x, y)\rho \ C(x)\}$, by the requirements of the theorem it follows that S_{ρ} is a closed subset of X and, since X is compact, S_{ρ} is compact, too.

Recall that a mapping $T : X \multimap Y$ (X and Y topological spaces) is said to be selectionable if there exists a continuous function $g : X \to Y$ such that $g(x) \in T(x)$, for all $x \in X$. If X is a paracompact topological space and Y is a convex set in a Hausdorff topological vector space, by the selection theorem of Yannelis and Prabhakar [27], any mapping $T : X \multimap Y$ with nonempty convex values and open fibers is selectionable. Also, when X is paracompact and Y is Banach space, T is selectionable, if it is l.s.c. with closed convex values, according to the well-known Michael's selection theorem ([22]).

Corollary 2. Let X be a nonempty compact convex subset of a Hausdorff locally convex topological vector space, Z be a nonempty set, ρ be a relation on 2^Z and $T : X \multimap X$, $F : X \times X \multimap Z$ and $C : X \multimap Z$ be three mappings satisfying conditions (ii), (iii) and (iv) in Theorem 1. If T is selectionable, then there exists $\tilde{x} \in X$ such that $\tilde{x} \in T(\tilde{x})$ and $F(\tilde{x}, y)\rho C(\tilde{x})$ for all $y \in X$.

Proof. Let $g : X \to Y$ be a continuous selection of T and the mapping $T_1 : X \multimap X$ defined by $T_1(x) = \{g(x)\}$. Apply Theorem 1 for the mappings T_1, F, C .

3 Particular cases of Theorem 1

In this section we show that if the relation ρ is one of the relations ρ_i considered in the first section of the paper, conditions (*ii*) and (*iii*) in Theorem 1 can be replaced by suitable conditions on the mappings *F* and *C*. Let us observe that each existence result concerning relation ρ_1 (respectively, ρ_2) yields an existence theorem for ρ_4 (respectively ρ_3), if we take into account the following equivalences: $F(x, y) \subseteq C(x) \Leftrightarrow F(x, y) \cap C^c(x) = \emptyset$ and $F(x, y) \nsubseteq C(x) \Leftrightarrow F(x, y) \cap C^c(x) \neq \emptyset$. For this reason we can fix our attention on relations ρ_1 and ρ_2 , only.

Definition 2. ([23]) Let *X* and *Z* be convex sets in two vector spaces. A mapping $F : X \multimap Z$ is said to be:

(a) *quasiconvex* if $F(x_1) \cap C \neq \emptyset$ and $F(x_2) \cap C \neq \emptyset \Rightarrow F(x) \cap C \neq \emptyset$ for all convex sets $C \subseteq Z$, $x_1, x_2 \in X$ and $x \in co\{x_1, x_2\}$;

(b) *quasiconcave* if $F(x_1) \subseteq C$ and $F(x_2) \subseteq C \Rightarrow F(x) \subseteq C$ for all convex sets $C \subseteq Z$, $x_1, x_2 \in X$ and $x \in co\{x_1, x_2\}$.

It is clear that any convex (respectively, concave) mapping is quasiconvex (respectively, quasiconcave).

Definition 3. ([2]) Let *X* and *Y* be two nonempty convex subsets of two vector spaces and *Z* be a vector space. Let $F : X \times Y \multimap Z$ and $C : X \multimap Z$ be two mappings such that for each $x \in X$, C(x) is a convex cone. We say that:

- (i) *F* is C(x)-quasiconvex if for all $x \in X, y_1, y_2 \in Y$ and $\lambda \in [0, 1]$, we have either $F(x, y_1) \subseteq F(x, \lambda y_1 + (1 \lambda)y_2) + C(x)$, or $F(x, y_2) \subseteq F(x, \lambda y_1 + (1 \lambda)y_2) + C(x)$.
- (ii) *F* is C(x)-quasiconvex-like if for any $x \in X$, $y_1, y_2 \in Y$ and $\lambda \in [0, 1]$, we have either $F(x, \lambda y_1 + (1 \lambda)y_2) \subseteq F(x, y_1) C(x)$, or $F(x, \lambda y_1 + (1 \lambda)y_2) \subseteq F(x, y_2) C(x)$.

In the next results we suppose that *Z* is a topological vector space.

Theorem 3. Suppose that for $\rho = \rho_1$ conditions (i) and (iv) in Theorem 1 are fulfilled. *Moreover suppose that:*

- (ii) either
- (*ii*₁) for each $x \in X$, the mapping $F(x, \cdot)$ is quasiconvex and $Z \setminus C(x)$ is convex set; or
- (*ii*₂) C has nonempty convex cone values and the mapping F is C(x)-quasiconvex;
- (iii) *C* is closed mapping and for each $y \in X$, $F(\cdot, y)$ is l.s.c.

Then there exists $\tilde{x} \in X$ such that $\tilde{x} \in T(\tilde{x})$ and $F(\tilde{x}, y) \subseteq C(\tilde{x})$ for all $y \in X$.

Proof. We proof first that for $x \in X$, arbitrarily fixed, the set $M = \{y \in X : F(x,y) \notin C(x)\} = \{y \in X : F(x,y) \cap (Z \setminus C(x)) \neq \emptyset\}$ is convex. Clearly, this is the situation in case (ii_1) . Suppose now that (ii_2) holds and let $y_1, y_2 \in M$ and $\lambda \in [0,1]$. Then $F(x,y_1) \notin C(x)$ and $F(x,y_2) \notin C(x)$. We want to show that $F(x, \lambda y_1 + (1 - \lambda)y_2) \notin C(x)$. Suppose to the contrary that $F(x, \lambda y_1 + (1 - \lambda)y_2) \subseteq C(x)$. Since F is C(x)-quasiconvex, for some $i \in \{1,2\}$ we obtain the following contradiction

 $F(x, y_i) \subseteq F(x, \lambda y_1 + (1 - \lambda)y_2) + C(x) \subseteq C(x) + C(x) = C(x).$

We show now that for $y \in X$, arbitrarily fixed, the set $N = \{x \in X : F(x, y) \subseteq C(x)\}$ is closed in X. Indeed, if $x \in \overline{N}$ (the closure being considered relative to X) then there exists a net $\{x_t\}_{t\in\Delta}$ in N such that $x_t \to x$. Then, for each $t \in \Delta$, $F(x_t, y) \subseteq C(x_t)$. Let $z \in F(x, y)$. Since $F(\cdot, y)$ is l.s.c., by Lemma 1 (iii), there is a net $\{z_t\}_{t\in\Delta}$ in Z converging to z such that $z_t \in F(x_t, y)$ for all $t \in \Delta$. It follows that $z_t \in C(x_t)$ and since C is closed, $z \in C(x)$ hence $F(x, z) \subseteq C(x)$. This shows that the set N is closed.

The desired conclusion follows now from Theorem 1.

Example Let X = [0,3], $Z = \mathbb{R}$ and the mappings $F : [0,3] \times [0,3] \longrightarrow \mathbb{R}$, $C : [0,3] \longrightarrow \mathbb{R}$ and $T : [0,3] \longrightarrow [0,3]$ defined by

$$F(x,y) = [x+y,+\infty), \ C(x) = [2x-1,+\infty),$$

$$T(x) = \begin{cases} [-x+2, -2x+3] & \text{if } x \in [0,1), \\ [(x-2)^2, x] & \text{if } x \in [1,3]. \end{cases}$$

Observe that $F(x, y) \subseteq C(x)$ if and only if $x \leq y + 1$ and

$$\mathbf{O}(T(x);x) \cap X = \begin{cases} [0,x] & \text{if } x \in [0,1), \\ \{1\} & \text{if } x = 1, \\ [x,3] & \text{if } x \in (1,3]. \end{cases}$$

One readily verify that the mappings *F*, *C*, *T* satisfy all the requirements of Theorem 3. The unique \tilde{x} satisfying the conclusion of Theorem 3 is $\tilde{x} = 1$.

Theorem 4. Suppose that for $\rho = \rho_2$ conditions (i), and (iv) in Theorem 1 are fulfilled. Moreover suppose that:

(*ii*) either

(*ii*₁) for each $x \in X$, the mapping $F(x, \cdot)$ is quasiconcave and C(x) is convex set; or

- (ii_2) C has nonempty convex cone values and the mapping F is C(x)-quasiconvex-like;
- (iii) *C* has open graph and for each $y \in X$, $F(\cdot, y)$ is u.s.c.

Then there exists $\tilde{x} \in X$ *such that* $\tilde{x} \in T(\tilde{x})$ *and* $F(\tilde{x}, y) \nsubseteq C(\tilde{x})$ *for all* $y \in X$.

The proof of the previous theorem is similar to that of Theorem 3. For the proof of the fact that, in the case $\rho = \rho_2$ condition (iii) in Theorem 4 implies the condition similarly denoted in Theorem 1 see, for example, the proof of Theorem 2.1 in [2].

4 Applications

We give in this section some applications for Theorems 3 and 4. The first one is a common fixed point theorem.

Theorem 5. Let $(E, \langle \cdot, \cdot \rangle)$ be a real inner product space and X be a nonempty compact convex subset of E. Let $T : X \multimap X$ be a u.s.c. mapping with nonempty compact convex values and $f : X \to X$ be a continuous function. Suppose that

$$\langle f(x) - x, y - x \rangle \ge 0$$
, for each $x \in X$ and $y \in T(x)$. (1)

Then, there exists $\tilde{x} \in X$ such that $f(\tilde{x}) = \tilde{x} \in T(\tilde{x})$.

Proof. Take in Theorem 3, $Z = \mathbb{R}$,

$$F(x,y) = [||y - f(x)|| - ||x - f(x)||, +\infty), \quad C(x) = [0, +\infty),$$

where $\|\cdot\|$ is the norm generated by the inner product $\langle\cdot,\cdot\rangle$.

Observe that $F(x, y) \subseteq C(x) \Leftrightarrow ||x - f(x)|| \le ||y - f(x)||$. Since the function $y \mapsto ||y - f(x)||$ is quasiconvex, it is easy to see that *F* is C(x)-quasiconvex. Thus, condition (*ii*₂) in Theorem 3 holds.

Let $x \in X$ and $z \in O(T(x); x) \cap X$. Then $z = \lambda x + (1 - \lambda)y$, for some $y \in T(x)$ and $\lambda \ge 1$. Taking into account (1), we have

 $\begin{aligned} \|z - f(x)\|^2 &= \|(x - f(x)) + (\lambda - 1)(x - y)\|^2 = \|x - f(x)\|^2 + 2(\lambda - 1)\langle x - f(x), x - y \rangle + (\lambda - 1)^2 \|x - y\|^2 \ge \|x - f(x)\|^2. \end{aligned}$

Thus, for $\rho = \rho_1$ condition (iv) in Theorem 1 is fulfilled. One readily check that all the other requirements of Theorem 3 are fulfilled. Consequently there exists $\tilde{x} \in X$ such that $\tilde{x} \in T(\tilde{x})$ and $\|\tilde{x} - f(\tilde{x})\| \le \|y - f(\tilde{x})\|$, for each $y \in X$.

Taking $y = f(\tilde{x})$ we get $\|\tilde{x} - f(\tilde{x})\| \le 0$, that is $\tilde{x} = f(\tilde{x})$. So, $f(\tilde{x}) = \tilde{x} \in T(\tilde{x})$.

Theorem 6. Let *E* be a locally convex Hausdorff topological vector space and *X* be a nonempty compact convex subset of *E*. Let $T : X \multimap X$ be a u.s.c. mapping with nonempty compact convex values and *L* be a continuous function from *X* to *E*^{*} endowed with weak^{*}-topology. Suppose that:

- (i) $\langle L(x), x \rangle \geq 0$, for all $x \in X$;
- (ii) $\max_{y \in T(x)} \langle L(x), y \rangle \leq \langle L(x), x \rangle$, for all $x \in X$.

Then there exists $\tilde{x} \in X$ such that $\tilde{x} \in T(\tilde{x})$ and $\langle L(\tilde{x}), y \rangle \geq 0$, for all $y \in X$.

Proof. We take in Theorem 3, $Z = \mathbb{R}$ and for all $x, y \in X$,

 $F(x,y) = \{ \langle L(x), y \rangle \}, C(x) = [0, +\infty).$

Then, $F(x, y) \subseteq C(x) \Leftrightarrow \langle L(x), y \rangle \geq 0$. We show that, for $\rho = \rho_1$ condition (iv) in Theorem 1 is fulfilled. Let $x \in X$ and $y \in T(x)$. By (ii), $\langle L(x), y \rangle \leq \langle L(x), x \rangle$. Then, for any $\lambda \geq 1$ for which $\lambda x + (1 - \lambda)y \in X$ we have $\langle L(x), \lambda x + (1 - \lambda)y \rangle = \langle L(x), y \rangle + \lambda[\langle L(x), x \rangle - \langle L(x), y \rangle] \geq 0$. It is easy to see that all the other requirements of Theorem 3 are satisfied. The desired conclusion follows by Theorem 3. As application of Theorem 4 we shall obtain an existence theorem for the solution of a quasivector optimization problem. But first we need recall some concepts. Let *X* be a nonempty compact convex of \mathbb{R}^n and *C* be a proper, closed, pointed and convex cone of \mathbb{R}^m . A function $\varphi : X \to \mathbb{R}^m$ is said to be *C*-convex if, for every $x_1, x_2 \in X$ and $\lambda \in [0, 1]$, we have

$$\lambda \varphi(x_1) + (1-\lambda)\varphi(x_2) - \varphi(\lambda x_1 + (1-\lambda)x_2) \in C.$$

Following [2], for a such function, we define the subdifferential of φ in $x \in X$, denoted by $\partial \varphi(x)$, as

$$\varphi(x) = \{ u \in (\mathbb{R}^n, \mathbb{R}^m)^* : \varphi(y) - \varphi(x) - \langle u, y - x \rangle \in C, \forall y \in X \},\$$

where $(\mathbb{R}^n, \mathbb{R}^m)^*$ and $\langle u, x \rangle$ denote the space of linear continuous function from \mathbb{R}^n into \mathbb{R}^m and the evaluation of $u \in (\mathbb{R}^n, \mathbb{R}^m)^*$ at $x \in \mathbb{R}^n$, respectively.

The following theorem and its proof are inspired from Theorem 4.1 in [3].

Theorem 7. Let X be a nonempty compact convex subset of \mathbb{R}^n , C be a proper, closed, pointed and convex cone of \mathbb{R}^m , $T : X \multimap X$ be a u.s.c. mapping with nonempty compact convex values and $\varphi : X \to \mathbb{R}^m$ be a C-convex function. Suppose that:

(*i*) $\partial \varphi$ is a u.s.c. mapping with nonempty compact convex values;

(ii) for each $x \in X$ and $y \in T(x)$, $\varphi(y) - \varphi(x) \notin C$.

Then there exists $\tilde{x} \in X$ *such that* $\tilde{x} \in T(\tilde{x})$ *and* $\varphi(y) - \varphi(\tilde{x}) \notin -int C$ *, for all* $y \in X$ *.*

Proof. We take in Theorem 4, $Z = \mathbb{R}$ and for any $x, y \in X$,

$$F(x,y) = \langle \partial \varphi(x), y - x \rangle = \{ \langle u, y - x \rangle : u \in \partial \varphi(x) \}, \ C(x) = -int \ C.$$

Then, $F(x,y) \nsubseteq C(x) \Leftrightarrow \exists u \in \varphi(x) : \langle u, y - x \rangle \notin -int C$.

Since the mapping $\partial \varphi$ is u.s.c. with compact values, by Theorem 1 in [16], it follows that for each $y \in X$, $F(\cdot, y)$ is u.s.c.. We claim that $\langle u, y - x \rangle \notin C$, whenever $x \in X$, $y \in T(x)$ and $u \in \partial \varphi(x)$. Supposing the contrary, we infer that

$$\varphi(y) - \varphi(x) \in \langle u, y - x \rangle + C \subseteq C,$$

and this contradicts (ii). For *x*, *y*, *u* as above and $\lambda > 1$ such that $\lambda x + (1 - \lambda)y \in X$ we have

$$\langle u, (\lambda x + (1 - \lambda)y) - x \rangle = (1 - \lambda) \langle u, y - x \rangle \notin -C,$$

and consequently,

$$\langle u, (\lambda x + (1 - \lambda)y) - x \rangle \notin -int C.$$
 (2)

Obviously (2) holds too, when $\lambda = 1$. This proves that, for $\rho = \rho_2$ condition (iv) in Theorem 1 is fulfilled. One can be easily check that the other requirements of Theorem 4 are also satisfied. Then, according to this theorem, there exists $\tilde{x} \in X$ such that $\tilde{x} \in T(\tilde{x})$ and

$$\forall y \in X \; \exists u \in \partial \varphi(\widetilde{x}) : \langle u, y - \widetilde{x} \rangle \notin -int \; C. \tag{3}$$

Since $u \in \partial \varphi(\tilde{x})$, we have

$$\varphi(y) - \varphi(\widetilde{x}) - \langle u, y - \widetilde{x} \rangle \in C.$$
(4)

Combining (3) and (4), we get $\varphi(y) - \varphi(\tilde{x}) \notin -int C$, for all $y \in X$.

References

- [1] Q. H. Ansari, W. Oettle and D. Schläger, *A generalization of vector equilibria*, Math. Methods Oper. Res. 47 (1997), 147-152.
- [2] Q. H. Ansari and J.-C Yao, *An existence result for the generalized vector equilibrium problem*, Appl. Math. Lett. 12 (1999), 53-56.
- [3] Q. H. Ansari and Flores-Bazán, Fabián, *Generalized vector quasi-equilibrium problems with applications*. J. Math. Anal. Appl. 277 (2003), 246-256.
- [4] M. Balaj, An intersection theorem with applications in minimax theory and equilibrium problem, J. Math. Anal. Appl. 336 (2007), 363-371.
- [5] M. Balaj, *Coincidence and maximal element theorems and their applications to generalized equilibrium problems and minimax inequalities*, Nonlinear Anal. 68 (2008), 3962-3971.
- [6] M. Balaj and L. J. Lin, Fixed points, coincidence points and maximal elements with applications to generalized equilibrium problems and minimax theory, Nonlinear Anal. doi:10.1016/j.na.2007.12.005.
- [7] E. Blum and W. Oettli, *From optimization and variational inequalities problems to equilibrium problems* Math. Student 63 (1994), 123-146.
- [8] X. P. Ding and T. M. Ding, *KKM type theorems and generalized vector equilibrium problems in noncompact FC-spaces*, J. Math. Anal. App. 331 (2007), 1230-1245.
- [9] X. P. Ding and J. Y. Park, *Generalized vector equilibrium problems in generalized convex spaces*, J. Optimiz. Theory Appl. 120 (2004), 327-353.
- [10] M. Fakhar and J. Zafarani, Generalized vector equilibrium problems for pseudomonotone multivalued bifunctions, J. Optim. Theory Appl. 126 (2005), 109-124.
- [11] J. Y. Fu, Generalized vector quasi-equilibrium problems Math. Methods Oper. Res. 52 (2000), 57-64.
- [12] B. R. Halpern and G. M. Bergman, *A fixed-point theorem for inward and outward maps*, Trans. Amer. Math. Soc. 130 (1968), 353-358.
- [13] A. Kristaly and C. Varga, *Set-valued versions of Ky Fan's inequality with application to variational inclusion theory*, J. Math. Anal. Appl. 282 (2003), 8-20.
- [14] M. Lassonde, *Fixed points for Kakutani factorizable multifunctions*, J. Math. Anal. Appl. 152(1990), 46-60.
- [15] S. F. Li, K. L. Teo and X. Q. Yang *Generalized vector quasi-equilibrium problems*, Math. Methods Oper. Res. 61 (2005), 385-397.
- [16] L. J. Lin and Z. T. Yu, *On some equilibrium problems for multimaps*, J. Comput. Appl. Math. 129 (2001), 171-183.

- [17] L. J. Lin, Q. H. Ansari and J.-Y. Wu, Geometric properties, coincidence theorems and existence results for generalized vector equilibrium problems, J. Optim. Theory Appl. 117 (2003), 121-137.
- [18] L. J. Lin and H. L. Chen, The study of KKM theorems with applications to vector equilibrium problems and implicit vector variational inequalities problems, J. Global Optim. 32 (2005), 135-157.
- [19] L. J. Lin, S. Y. Wang and C. S. Chuang, Existence theorems of systems of variational inclusion problems with applications, J. Global Optimization, 40 (2008), 751-764.
- [20] Z. Lin, J. Yu, The existence of solutions for the system of generalized vector quasiequilibrium problems, Appl. Math. Lett. 18 (2005), 415-422.
- [21] D. T. Luc, An abstract problem in variational analysis, J. Optim. Theory Appl. 138 (2008), 65-76.
- [22] E. Michael, Continuous selections I Ann. of Math. (2) 63 (1956), 361-382.
- [23] K. Nikodem, K-Convex ann K-Concave Set-Valued Functions, Politechnika Lodzka, 1989.
- [24] P. S. Sach and L. A. Tuan, Existence results for set-valued vector quasiequilibrium problems, J. Optim. Theory Appl. 133 (2007), 229-240.
- [25] P. H. Sach, On a class of generalized vector quasiequilibrium problems with setvalued maps, J. Optim. Theory Appl. 139 (2008), 337-350.
- [26] N. X. Tan and P. N. Tinh, On the existence of equilibrium points of vector functions, Numerical Functional Analysis Optimiz., 19 (1998), 141-156.
- [27] N. C. Yannelis and N. D. Prabhakar, Existence of maximal elements and equilibria in linear topological spaces, J. Math. Econom. 12 (1983), 233-245.

Department of Mathematics, University of Oradea, 410087 Oradea, Romania; email:mbalaj@uoradea.ro