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Abstract

A structure theorem for spherically symmetric associated homogeneous
distributions (SAHDs) based on Rn is given. It is shown that any SAHD

is the pullback, along the function |x|λ, λ ∈ C, of an associated homoge-
neous distribution (AHD) on R. The pullback operator is found not to be
injective and its kernel is derived (for λ = 1). Special attention is given to
the basis SAHDs, Dm

z |x|z, which become singular when their degree of ho-
mogeneity z = −n − 2p, ∀p ∈ N. It is shown that

(

Dm
z |x|z

)

z=−n−2p
are

partial distributions which can be non-uniquely extended to distributions
((

Dm
z |x|z

)

e

)

z=−n−2p
and explicit expressions for their evaluation are derived.

These results serve to rigorously justify distributional potential theory in Rn.

1 Introduction

We present a construction of spherical (i.e., O (n)-invariant) associated homoge-
neous distributions (SAHDs) based on Rn, as pullbacks of associated homoge-
neous distributions (AHDs) based on R. It is shown that any SAHD on Rn can be

obtained as the pullback, along the function |x|λ, λ ∈ C, of an AHD on R.
Homogeneous distributions (HDs) on R generalize the concept of homoge-

neous functions, such as |x|z : R\ {0} → C, which is homogeneous of complex
degree z. Associated to homogeneous functions are power-log functions, which
arise when taking the derivative with respect to the degree of homogeneity z.

Received by the editors July 2009.
Communicated by F. Brackx.
2000 Mathematics Subject Classification : 46F05, 46F10, 31B99.
Key words and phrases : Spherical associated homogeneous distribution, Pullback, Potential

theory.

Bull. Belg. Math. Soc. Simon Stevin 17 (2010), 781–806



782 G. R. Franssens

The set of associated homogeneous distributions with support in (or based on)
R, denoted by H′ (R), generalizes these power-log functions, [7], [2], [11]. The
set H′ (R) is a subset of the tempered distributions, [14], [15], and is of practical
importance because H′ (R) contains the majority of the (1-dimensional) distri-
butions one encounters in physical applications, such as the delta distribution δ,
the step distributions 1±, several so called pseudo-functions generated by taking
Hadamard’s finite part of certain divergent integrals (among which is Cauchy’s
principal value x−1), Riesz kernels, Heisenberg distributions and many familiar
others, [12].

We denote the set of AHDs based on Rn by H′ (Rn). An important subset
of H′ (Rn) are the O (n)-invariant AHDs on Rn, called SAHDs and of which rz,
z ∈ C, is a well-known example, having degree of homogeneity z and order of
association 0, see e.g., [11, p. 71, p. 98, p. 192]. AHDs based on Rn are im-
portant mathematical tools, used in physics and engineering for solving distri-
butional potential (i.e., static field) problems in n-dimensions. SAHDs based on
Rn arise in spherically symmetric problems, such as the construction of a funda-
mental solution (i.e., a Green’s distribution) for Poisson’s equation and its com-
plex degree generalizations (i.e., involving complex powers of the Laplacian in
Rn). We denote the set of SAHDs on Rn by SH′ (Rn). We have the inclusions
SH′ (Rn) ⊂ H′ (Rn) ⊂ S ′ (Rn) ⊂ D′ (Rn).

Consider the scalar function Tλ : X = Rn\ {0} → Y = R+ such that x 7→

y = |x|λ with λ ∈ C. The aim of this paper is to show that any SAHD on Rn

can be obtained as the pullback
(

Tλ
)∗

along Tλ of an AHD on R. This is an
interesting result, as it opens a route to extend the properties of the simple and
well-understood 1-dimensional AHDs to their O (n)-invariant generalizations on
Rn. In particular, recent work done by the author showed that the set of AHDs on
R can be given the structure of both a convolution algebra and a multiplication
algebra over C, see [3], [4], [5] ([8]), [6] ([9]). These algebraic properties of AHDs
on R can be extended, under the O (n)-invariant function Tλ above, to SAHDs
on Rn and the key to this higher dimensional extension of the aforementioned
algebras is the here considered pullback relation.

The concept of the pullback of a distribution generalizes the classical concept
of a change of variables for a function. Any map f : Y → Z can be pulled
back to a space X by precomposition with a map T : X → Y as f ◦ T : X →
Z. Any smooth T represents a homomorphism T∗ between the set C∞ (Y) of
smooth functions defined on Y and the set C∞ (X) of smooth functions defined
on X, such that f 7→ T∗ f = f ◦ T (for functions this is usually written as T∗ f =
f (T (x))). The homomorphism T∗ is called the pullback along the function T.
The concept of pullback is more general than that of a change of variables. The
latter can not be applied to distributions since they are not functions of the base
space, but functionals on a space of (test) functions defined on the base space,
here D (Y). However, it is possible to define the pullback T∗ f ∈ D′ (X) of any
distribution f ∈ D′ (Y) (under certain restrictions on T) in terms of an operation
on D (Y). This results in an indirect definition, such as the one recalled in section
2, to perform a “change of variables” for distributions. One uses the fact that
C∞ (Y) is dense in D′ (Y) (since D (Y) ⊂ C∞ (Y) is) to show that the pullback T∗ f
exists if precomposition with T maps sequences of smooth functions converging
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in D′ (Y) to sequences of smooth functions converging in D′ (X). A necessary and
sufficient condition for the pullback T∗ f to be unique, is that T∗ is a sequentially
continuous operator, [10, Chapter 7]. Although the pullback of a distribution can
be defined along general submersions, see e.g., [10, Theorem 7.2.2], we will only
need here the pullback along scalar functions.

We show that the pullback T∗, along the particular scalar function T , T1,
of any AHD on R generates a distribution on Rn that is a linear combination of
distributions of the form Dm

z |x|z, called basis SAHDs. We properly define the dis-
tributions Dm

z |x|z, which are only briefly considered in [11, p. 99], and investigate
their properties. Careful attention is given to the cases when the degree of homo-
geneity z is such that z + n = −2p ∈ Ze,−] (even non-positive integers), since the

functionals Dm
z |x|z possess (m + 1)-th order poles at z = −n − 2p, ∀p ∈ N.

The here presented study of the distributions Dm
z |x|z is placed in the more

modern context of pullbacks and extensions, compared to the more classical ap-
proach which defines singular distributions as regularizations of certain diver-
gent integrals, e.g., as in [11]. We especially draw attention to the fact that any
(

Dm
z |x|z

)

z=−n−2p
is a (unique) partial distribution. A partial distribution is a

fruitful concept, introduced earlier by the author in [7, Section 3.3], to designate
generalized functions that are only defined on a proper subset Dr ⊂ D. By def-
inition, a distribution is defined on the whole of D, [15, p. 6]. Our approach
to singular distributions is basically a functional extension process that extends
a partial distribution to a distribution. Since D is locally convex, [13, p. 152],
[1, pp. 427–431], the (continuous extension version of the) Hahn-Banach theorem
applies to D, [13, p. 56]. This theorem guarantees that an extension of a partial
distribution defined on any Dr ⊂ D exists as a continuous linear functional on
D, hence as a distribution, and that both coincide on Dr, [13, p. 61]. It is natural
to use such an extension, denoted

((

Dm
z |x|z

)

e

)

z=−n−2p
, to define Dm

z |x|z at the

degree of homogeneity −n − 2p. We call
((

Dm
z |x|z

)

e

)

z=−n−2p
an extension of the

partial distribution
(

Dm
z |x|z

)

z=−n−2p
from Dr to D.

The Hahn-Banach theorem does not tell how such an extension is to be con-
structed. We apply a straightforward method to produce a distribution
((

Dm
z |x|z

)

e

)

z=−n−2p
on D (Rn) that is a SAHD and coincides with the partial dis-

tribution
(

Dm
z |x|z

)

z=−n−2p
on Dr (Rn). This method, first introduced in

[7, Section 3.3, eq. (33)] and here applied to SAHDs on Rn, leads to more gen-
eral results than those found in the classical literature, since the obtained exten-
sions are in general uncountably multi-valued. Any classical regularization is
recovered as the unique extension corresponding to a particular branch of this
multi-valued spectrum. For (complex) AHDs, the spectrum of multi-valuedness
is parametrized by C, hence each value of an extension

((

Dm
z |x|z

)

e

)

z=−n−2p
cor-

responds to a constant c ∈ C.
We derive explicit expressions for the evaluation of the so constructed multi-

valued distributions
((

Dm
z |x|z

)

e

)

z=−n−2p
. It is found that

((

Dm
z |x|z

)

e

)

z=−n−2p

are homogeneous distributions of degree −n − 2p and order of association m+ 1.
In [11, p. 99] it is incorrectly stated that the particular extension, corresponding
to Hadamard’s finite part

((

Dm
z |x|z

)

0

)

z=−n−2p
(and corresponding to c = 0), is
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associated of order m. That this can not be true is also seen from the result [11,
p.195] and by invoking the fact that the Fourier transformation preserves the or-
der of association, [7].

This work extends and generalizes the treatment of SAHDs on Rn in [11]. New
results presented here are (i) the concepts of partial distribution and functional ex-
tension for defining the occurring singular distributions, (ii) the representation of
SAHDs on Rn as pullbacks of AHDs on R, (iii) the kernel of the pullback operator
T∗, ker T∗ ⊂ H′ (R) and (iv) a structure theorem for SH′ (Rn).

The outline of the paper is as follows. We recall the pullback T∗ of a distribu-
tion along a scalar function T : X → Y in section 2. We apply this in section 3
to AHDs based on R. In section 4 we investigate the pullback of any distribution
along the function T defined above. In section 5, the results from sections 3 and 4
are combined to generate SAHDs on Rn. There, the basis distributions Dm

z |x|z are
discussed, the general form of an SAHDs on Rn is given and the ker T∗ is derived.
In the last section 6, the structure theorem of SAHDs on Rn is proved.

We use the notations introduced in [7]. For convenience, some practical but

non-standard notations are repeated here. Define 1p , 1 if p is true, else 1p , 0.

Further, em , 1m∈Ze , hence em = 1 if m is even, else em = 0 and similarly om ,

1m∈Zo , hence om = 1 if m is odd, else om = 0.

2 Pullback of a distribution on R along a scalar function

Definition 1. Let n ∈ N : 2 ≤ n, X ⊆ Rn, Y = R and δy ∈ D′ (Y) with
〈

δy, ψ
〉

,

ψ (y), ∀ψ ∈ D (Y). Let f ∈ D′ (Y) and T : X → Y such that x 7→ y = T (x) be a C∞

function with (dT) (x) 6= 0, ∀x ∈ Σy , {x ∈ X : T (x) = y} and ∀y ∈ supp f . The
pullback T∗ f of f along T is defined ∀ϕ ∈ D (X) as

〈T∗ f , ϕ〉 , 〈 f , ΣT ϕ〉 , (1)

with

(ΣT ϕ) (y) =
〈

T∗δy, ϕ
〉

, (2)

,

∫

Σy

ϕωT. (3)

In (3) is ωT the Leray form of Σy, such that ωX = dT ∧ ωT, with ωX the volume form
on X.

The condition on dT is necessary and sufficient for the Leray form to exist
on Σy. Moreover, although ωX = dT ∧ ωT does not specify ωT uniquely in a
neighborhood of Σy, ωT is unique on Σy, [11, pp. 220-221].

The distribution δΣy , T∗δy ∈ D′ (X) represents a delta distribution having
as support the level set surface Σy of T with level parameter y. We can not speak
of the delta distribution with support Σy since the pullback T∗δy, as defined by
Definition 1, depends on the equation used to represent the surface Σy, through
the Leray form, [11, p. 222], [1, p. 439]. It is clear that the delta distribution δΣy , as
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defined by (2) and (3), is fundamental to define the pullback of any distribution
along T.

It is shown in e.g., [10, p. 82, Theorem 7.2.1] that, under the conditions given
in Definition 1, ΣT ϕ ∈ D (Y), T∗ f ∈ D′ (X) and T∗ is a sequentially continuous
linear operator.

Theorem 2. Let f z ∈ D′ (Y), depending on a complex parameter z and being complex
analytic in a domain Ω ⊆ C. Let T∗ be the pullback from Y to X along a C∞ function
T : X ⊆ Rn → Y = R. Then T∗ f z is complex analytic and moreover

T∗ (Dm
z f z) = Dm

z (T∗ f z) , (4)

∀m ∈ Z+ and ∀z ∈ Ω.

Proof. (i) Let m = 1. Since it is given that f z is complex analytic in Ω, this means
by definition that dz 〈 f z, ψ〉 exists. This is a necessary and sufficient condition for
the existence of a distribution Dz f z given by 〈Dz f z, ψ〉 = dz 〈 f z, ψ〉, ∀ψ ∈ D (Y)
and ∀z ∈ Ω, [11, pp. 147-151]. On the other hand, applying (1) to the left-hand
side of (4) gives, ∀ϕ ∈ D (X),

〈T∗Dz f z, ϕ〉 = 〈Dz f z, ΣT ϕ〉 .

Combining both results yields

〈T∗Dz f z, ϕ〉 = dz 〈 f z, ΣT ϕ〉 .

Applying (1) to the right-hand side of this equation gives

〈T∗Dz f z, ϕ〉 = dz 〈T
∗ f z, ϕ〉 .

Hence dz 〈T∗ f z, ϕ〉 exists, which implies by definition that T∗ f z is complex an-
alytic in Ω. This is a necessary and sufficient condition for the existence of a
distribution Dz (T∗ f z) given by 〈Dz (T∗ f z) , ϕ〉 = dz 〈T∗ f z, ϕ〉, so that

〈T∗ (Dz f z) , ϕ〉 = 〈Dz (T
∗ f z) , ϕ〉 ,

which implies (4) for m = 1.
(ii) Since f z is complex analytic in Ω, Dm

z f z is also complex analytic in Ω,
∀m ∈ Z+. Combining this with (i) and using induction, (4) follows ∀m ∈ Z+.

This theorem enables to generate the Taylor series of a pullback distribution
T∗ f z ∈ D (Rn) directly from the Taylor series of the distribution f z ∈ D (R). In
particular, (4) simplifies the calculation of pullbacks of AHDs.

3 Pullback of an AHD on R along a scalar function

Let X · D denote the generalized Euler operator and Xz , X · D − z Id the gen-
eralized homogeneity operator of degree z ∈ C defined on D′ (Rn) (with Id the
identity operator), and Yz the generalized homogeneity operator of degree z de-
fined on D′ (R).
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Theorem 3. Let T∗ be the pullback from Y to X along a C∞ function T : X ⊆ Rn →
Y = R such that x 7→ y = T (x), with (dT) (x) 6= 0, ∀x ∈ X. Let f z

0 be a homoge-
neous distribution based on Y with degree of homogeneity z. Then holds, ∀m ∈ Z+ and
∀λ ∈ C,

Xm
λz (T

∗ f z
0 ) =

m

∑
l=1

pm
l (x0, xλT)

(

T∗
(

Dl f z
0

))

, (5)

with xλ , x · d − λ Id the ordinary homogeneity operator of degree λ and pm
l bivariate

polynomials of degree m, satisfying the recursion relations

p1
1 (x0, h) = h, (6)

pm+1
k (x0, h) = x0pm

k (x0, h) + hpm
k−1 (x0, h) . (7)

Proof. (i) Under the given conditions, the generalized chain rule is valid so we
have for the i-th generalized partial derivative, ∀ f ∈ D′ (Y), ∀ϕ ∈ D (X) and
∀i ∈ Z[1,n],

〈Di (T
∗ f ) , ϕ〉 = 〈T∗ (D f ) , (diT) ϕ〉 .

Applying this to xi ϕ ∈ D (X), we obtain
〈

Di (T
∗ f ) , xi ϕ

〉

=
〈

T∗ (D f ) , (diT) xi ϕ
〉

.

Using the definition of the multiplication of a distribution with a smooth function,

writing the result in terms of the multiplication operator Xi , xi. and summing
over all values of i gives

〈(X · D) (T∗ f ) , ϕ〉 = 〈T∗ (D f ) , ((x · d) T) ϕ〉 .

This is equivalent to, ∀λ ∈ C,

〈(X · D) (T∗ f ) , ϕ〉 − λ 〈T∗ (D f ) , Tϕ〉 = 〈T∗ (D f ) , (xλT) ϕ〉 . (8)

Applying the definition of the pullback T∗, the fact that T is a scalar function

mapping x 7→ y and also introducing the multiplication operator Y , y., we have

〈T∗ (D f ) , Tϕ〉 = 〈D f , ΣT (Tϕ)〉 ,

= 〈D f , yΣT ϕ〉 ,

= 〈YD f , ΣT ϕ〉 ,

= 〈T∗ (YD f ) , ϕ〉 . (9)

In (8) choose f = f z
0 , use YD f z

0 = z f z
0 in (9), substitute (9) in (8) and use

the operator Xλz in the left-hand side of (8). Since XλT is a smooth function, we
obtain (5) for m = 1.

(ii) The result for m > 1 follows by induction.

Corollary 4. Let f z
m ∈ H′ (Y). If T is not homogeneous, then T∗ f z

m /∈ H′ (X).

Proof. Let f z
0 be a HD on Y. If T is not homogeneous, then xλT 6= 0, ∀λ ∈ C. From

Theorem 3 follows that then all pm
k 6= 0, so Xm

λz (T
∗ f z

0 ) 6= 0, ∀m ∈ N. This result,
together with Theorem 2 and the structure theorem for AHDs on R [2, Theorem 4]
(see also (98)), implies that T∗ f z

m, ∀ f z
m ∈ H′ (Y), is not an AHD on X.
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Corollary 4 will be needed in Theorem 14.

Theorem 5. Let T∗ be the pullback along the function T as defined in Theorem 3 and let
in addition T be homogeneous of degree λ ∈ C. Then,

(i) the homogeneity operators Xz and Yz are related by

XλzT∗ = λT∗Yz; (10)

(ii) the pullback T∗ f z
m of an AHD f z

m, of degree of homogeneity z and order of associ-
ation m based on Y, is again an AHD of the same order of association m and of degree of
homogeneity λz, based on X.

Proof. (i) Recalling (8) and using xλT = 0, we get

〈(X · D) (T∗ f ) , ϕ〉 = λ 〈T∗ (D f ) , Tϕ〉 .

Using (9) and introducing the homogeneity operators Xλz and Yz, this is equiva-
lently to

〈Xλz (T
∗ f ) , ϕ〉 = λ 〈T∗ (Yz f ) , ϕ〉 .

Since f and ϕ are arbitrary, this implies (10).
(ii) Let m ∈ N and f z

m be any AHD with degree of homogeneity z and order of
association m based on Y. By definition, f z

m satisfies Yz f z
m = f z

m−1 for some AHD
f z
m−1 with degree of homogeneity z and order of association m − 1 based on Y

and we define f z
−1 , 0. Applying (10) to f z

m gives

Xλz (T
∗ f z

m) = λT∗ f z
m−1. (11)

From this follows, by induction over m, that T∗ f z
m is an AHD with degree of

homogeneity λz and order of association m based on X.

Hence, the pullback T∗ of an AHD on R along a homogeneous scalar function
T is an order of association preserving homomorphism.

Corollary 6. If T in Theorem 5 has degree of homogeneity 1, its pullback T∗ from Y to
X is in addition a homogeneity preserving homomorphism,

XzT∗ = T∗Yz. (12)

Corollary 7. If T in Theorem 5 has degree of homogeneity 0, T∗ f z
m, ∀ f z

m ∈ H′ (Y), is a
homogeneous distribution based on X with degree of homogeneity 0.

4 Pullback of a distribution on R along the function |x|

Define the function T : X = Rn\ {0} → Y = R+ such that x 7→ r = T (x) , |x|

with |x| ,
(

(

x1
)2

+ ... + (xn)2
)1/2

> 0. We have |dT| (x) = 1, ∀x ∈ X, hence dT

is surjective and T is a (scalar) submersion. For y ∈ R+, Σy , {x ∈ X : |x| = y} ⊂
X, while for y ∈ R−], Σy = ∅. By (3) holds, ∀ϕ ∈ D (X) and ∀y ∈ R+,

(ΣT ϕ) (y) =
∫

Σy

ϕωT. (13)
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We want to extend ΣT ϕ so that it is defined ∀ϕ ∈ D (Rn) and ∀y ∈ R. To this end,
we change from Cartesian coordinates to spherical coordinates in the integral in
(13) (see also Appendix 7.1). We get, ∀ϕ ∈ D (Rn) and ∀y ∈ R+,

(ΣT ϕ) (y) = An−1yn−1 (Sϕ) (y) , (14)

wherein we defined the spherical mean operator S, defined on D (Rn), by

(Sϕ) (y) ,
1

An−1

∫

Sn−1
ϕ (yω) ωSn−1 , (15)

with ωSn−1 the volume form on the (n − 1)-dimensional unit sphere Sn−1 and
An−1 its surface area, given by (120). Clearly, the integral in (15) also exists
∀y ∈ R−], and it is shown in [11, pp. 72–73] that, ∀p ∈ N, (i)

(

d2pSϕ
)

(0) ex-
ists and (ii)

(

d2p+1Sϕ
)

(0) = 0, (16)

so Sϕ is an even function. Then, eqs. (14)–(15) define Sϕ and ΣT ϕ, ∀y ∈ R.

The function Sϕ is of compact support, since ϕ is. Since ϕ (yω) in (15) is
obviously jointly continuous in (y, ω) ∈ I×Sn−1, is Sϕ uniformly continuous in
any compact interval I. By induction it follows that Sϕ is smooth in I. Hence
the operator S maps from D (Rn) → D (R). Consequently, ΣT ϕ ∈ D (R), ∀ϕ ∈
D (Rn).

We can now define T∗ f , in agreement with (1), ∀ f ∈ D′ (R) and ∀ϕ ∈ D (Rn),
by

〈T∗ f , ϕ〉 ,

〈

f , yn−1
∫

Sn−1
ϕ (yω) ωSn−1

〉

. (17)

We still have to verify that T∗ f , as defined by (17), is a distribution based on Rn,
∀ f ∈ D′ (R). Theorem 7.2.1 in [10] only guarantees that T∗ f ∈ D′ (Rn\ {0}) for
those distributions f ∈ D′ (R) such that supp ( f ) has a pre-image in Rn under
T for which |dT| (x) 6= 0. For any other f , i.e., for which either the pre-image
of supp ( f ) under T contains the origin (where (dT) (0) does not exist) or either
supp ( f ) ⊂ R−] (since then the pre-image of T is not defined) we need to check

the linearity and sequential continuity of T∗ f , ∀ϕ ∈ D (Rn).
The linearity of T∗ f , as defined by (17), is obvious. Further, any sequence

ϕν ∈ D (Rn) converging to 0 generates a sequence (ΣT ϕ)ν ∈ D (R) also converg-
ing to 0, due to the uniform continuity of Sϕ in any compact interval. Then, the
sequential continuity of f implies the sequential continuity of T∗ f , showing that
T∗ is a sequentially continuous operator. Hence, T∗ f ∈ D′ (Rn).

Remarks.

(i) The form (14) for ΣT ϕ and the property (16) of Sϕ imply that the pullback
T∗ f , as defined by (17), is a distribution, even if f itself is only a partial distri-
bution defined on that subset of test functions DZ1

(R) having (i) a zero of order
n − 1 at the origin and (ii) which, for n odd, are even (then Z1 = Z[−n,−1] ∪ Zo,−)

or, for n even, are odd (then Z1 = Z[−n,−1] ∪ Ze,−) (for the notation DZ1
(R), see

[7, Section 2.1, 5]).
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(ii) The pullback T∗ along the above function T is not injective. Indeed,
eq. (17) and the property (16) of Sϕ imply that

{

n−2

∑
l=0

alδ
(l) +

P

∑
p=0

bpδ(n+2p), ∀al , bp ∈ C, ∀P ∈ N

}

⊂ ker T∗. (18)

(iii) The distribution T∗δy in (2) represents a delta distribution having as sup-
port the sphere Σy with radius y. From (14) follows that

δΣy = T∗δy = δy ⊗ 1(ω), (19)

with 1(ω) the one distribution based on Sn−1. We can not speak of the delta distri-
bution having as support the sphere with radius y, since δΣy = T∗δy depends on

the equation used to represent the surface Σy, here |x| = y. The equation |x|2 = y2

defines the same sphere, but now the function T2 : X = Rn\ {0} → Y = R+ such

that x 7→ r = |x|2 leads to the pullback δΣ
y2
, T∗

2 δy = 1
2δy ⊗ 1(ω) 6= δΣy .

The pullback T∗ along the function T thus performs two actions: (i) possibly
an extension from DZ1

(R) to D (R), and (ii) a “change of variables” from y 7→ x.
This can be illustrated more explicitly with the following example.

First, let
∆ , D2

1 + D2
2 + ... + D2

n (20)

denote the generalized Laplacian defined on D′ (Rn). Define distributions ∆pδ,
∀p ∈ N, based on Rn by

〈∆pδ, ϕ〉 , (∆p ϕ) (0) , (21)

where in the right-hand side of (21) ∆ denotes the ordinary Laplacian defined on
D (Rn). It is shown in [11, p. 73, eq. (6)] that (Pizetti’s formula), ∀p ∈ N,

An−1

(

d2pSϕ
)

(0)

(2p)!
=

An+2p−1

(4π)p
(∆p ϕ) (0)

p!
. (22)

Now, let DZ[−k,−1]
(R) stand for the subset of test functions having a zero of

order k − 1 at the origin, ∀k ∈ Z+. For any distribution f ∈ D′ (R) and functions
y−k : R\ {0} → R, the multiplication y−k. f can be defined, ∀ψ ∈ DZ[−k,−1]

(R), by

〈

y−k. f , ψ
〉

,
〈

f , y−kψ
〉

, (23)

since y−kψ ∈ D (R). Hence, y−k f , y−k. f is a partial distribution defined on

DZ[−k,−1]
(R). For the particular partial distributions y−(n−1)δ(m), ∀m ∈ N, (see

also Appendix 7.2) (23) gives, ∀ψ ∈ DZ[−(n−1),−1]
(R),

〈

y−(n−1)δ(m), ψ
〉

= (−1)m
(

dm
y

(

y−(n−1)ψ
))

(0) . (24)

A. Let m = 2p, ∀p ∈ N. On the one hand, using (14), (21), (24) and (22), eq.

(17) with f = y−(n−1)δ(2p) implies that, ∀p ∈ N,

T∗ y−(n−1)δ(2p)

(2p)!
=

An+2p−1

(4π)p
∆pδ

p!
. (25)
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Eq. (25) shows that the distributions ∆pδ are proportional to the pullback T∗ from

Y to X of the partial distributions y−(n−1)δ(2p), defined on DZ[−(n−1),−1]
(R).

On the other hand, taking the (n − 1 + 2p)-th derivative with respect to y of
(14), gives

(

dn−1+2pΣT ϕ
)

(0)

(n − 1 + 2p)!
= An−1

d2p (Sϕ) (0)

(2p)!
. (26)

Substituting in the right-hand side of (26) the expression (22), using the definition

of δ(m) and applying definition (1), we get, ∀p ∈ N,

T∗ (−1)n−1+2p δ(n−1+2p)

(n − 1 + 2p)!
=

An+2p−1

(4π)p
∆pδ

p!
. (27)

Eq. (27) shows that the distributions ∆pδ are also proportional to the pullback T∗

from Y to X of the distributions δ(n−1+2p).
Eqs. (25) and (27) can be summarized as, ∀p ∈ N,

T∗

(

y−(n−1) δ(2p)

(2p)!

)

=
An+2p−1

(4π)p
∆pδ

p!
= T∗

(

(−1)n−1 δ(n−1+2p)

(n − 1 + 2p)!

)

. (28)

B. Let m = 2p + 1, ∀p ∈ N. In a similar way as under A we find that

T∗
(

y−(n−1)δ(2p+1)
)

= 0 = T∗δ(n+2p). (29)

Eqs. (28), (29) and (126) illustrate again that T∗ is not injective.

Further, due to (14) holds that
〈

T∗δ(l), ϕ
〉

= 0, ∀l ∈ Z[0,n−2]. This result,

together with the right equations in (28) and (29), can be summarized as

T∗δ(l) = 0, ∀l ∈ Z[0,n−2], (30)

T∗ δ(n−1+k)

(n − 1 + k)!
= ek (−1)n−1 An+k−1

(4π)k/2

∆k/2δ

(k/2)!
, ∀k ∈ N. (31)

The distributions δ(p) in the left-hand sides of (30)–(31) are based on R and the
distributions ∆pδ in the right-hand side of (31) are based on Rn. The distribu-

tions δ
(p)
Σ0

, T∗δ(p) can be interpreted as spherical multiplet (or p-fold) layers,

[11, p. 237], concentrated at an (n − 1)-dimensional sphere of radius y = 0.
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5 Pullback of an AHD on R along the function |x|

5.1 The distributions Dm
z |x|z

Let m ∈ N.

5.1.1 Pullback of yz
+ lnm |y|

Regular distributions The distributions yz
+ lnm |y| are defined in [11, p. 84],

[7, Section 5.2.3]. For −1 < Re (z), yz
+ lnm |y| = Dm

z yz
+ is a regular distribution, so

we obtain from (1), ∀ϕ ∈ D (Rn),

〈T∗ (yz
+ lnm |y|) , ϕ〉 = 〈yz

+ lnm |y| , ΣT ϕ〉 ,

=
∫ +∞

0
(yz lnm y) ΣT ϕ (y) dy. (32)

Substituting herein the expression (14) for ΣT ϕ yields

〈T∗ (yz
+ lnm |y|) , ϕ〉 = An−1

∫ +∞

0

(

yz+n−1 lnm y
)

(Sϕ) (y) dy,

=
〈

yz+n−1
+ lnm |y| , An−1Sϕ

〉

. (33)

As was shown in the previous section, Sϕ ∈ D (R). Thus, the right-hand
side of (33) can be regarded as the functional value of the regular distribution

yz+n−1
+ lnm |y| for the test function An−1Sϕ. Expression (43) below, for the Laurent

series of the function yw
+ lnm y about w = −k ∈ Z−, shows that yw

+ lnm |y| has
poles of order m + 1 at w = −k ∈ Z−. However, due to property (16) of the
test function Sϕ and the expression for the principal part of the Laurent series of
the function yw

+ lnm y about w = −k, the poles of yw
+ lnm y at w = −k ∈ Ze,− do

not occur in (33). Consequently, the distribution T∗ (yz
+ lnm |y|) has poles of order

m + 1 only at z ∈ Zp , {−n − 2p, ∀p ∈ N}.
Substituting (15) in (33) gives

〈T∗ (yz
+ lnm |y|) , ϕ〉 =

∫ +∞

0

∫

Sn−1
(yz lnm y) ϕ (yω) yn−1ωSn−1dy. (34)

Changing back to Cartesian coordinates in the right-hand side double integral in
(34), we get

〈T∗ (yz
+ lnm |y|) , ϕ〉 =

∫

Rn

(

|x|z lnm |x|
)

ϕωRn ,

=
〈

|x|z lnm |x| , ϕ
〉

. (35)

Combining (35) with (33) shows that |x|z lnm |x| are regular distributions for
−n < Re (z). Since yz

+ lnm |y| = Dm
z yz

+ for −1 < Re (z), is due to (4) |x|z lnm |x| =
Dm

z |x|z for −n < Re (z).
In particular for z = 0, follows from (35) that, ∀m ∈ N,

lnm |x| = T∗ (1+ lnm |y|) . (36)
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Analytic continuations The complex analyticity of the distribution yz
+ lnm |y|

for −1 < Re (z) together with the principle of analytic continuation makes that
(35) continues to hold, ∀z ∈ C\Zp,

|x|z lnm |x| = T∗ (yz
+ lnm |y|) . (37)

Similarly we get, ∀z ∈ C\Zp and ∀ϕ ∈ D (Rn), from (33),

〈T∗ (yz
+ lnm |y|) , ϕ〉 =

〈

yz+n−1
+ lnm |y| , An−1Sϕ

〉

, (38)

and from (32),
〈T∗ (yz

+ lnm |y|) , ϕ〉 = 〈yz
+ lnm |y| , ΣT ϕ〉 . (39)

Invoking (4) and using (37) with m = 0, it follows that also ∀z ∈ C\Zp,

|x|z lnm |x| = Dm
z |x|z . (40)

Using (37) in (38) further yields, ∀z ∈ C\Ze,−],

〈

|x|z−n lnm |x| , ϕ
〉

=

〈

yz−1
+ lnm |y| ,

∫

Sn−1
ϕ (yω) ωSn−1

〉

. (41)

We will now derive a more explicit expression in order to evaluate the right-
hand side of (41) after analytic continuation. To this end, we first need the fol-
lowing n-dimensional projection operator Tn

p,q : D (Rn) → D (Rn) such that
ϕ 7→ Tn

p,qϕ, defined by

(

Tn
p,qϕ

)

(x) , ϕ(x)−
p+q

∑
l=0

(

l

∑
l1=0

. . .
l

∑
ln=0

1L=l

((

∂L ϕ

(∂x)L

)

(0)

)(

n

∏
i=1

(

xi
)li

li!

))

(

1l<p + 1p≤l1[+(1 − |x|2)
)

, (42)

wherein L is a shorthand for ∑
n
i=1 li, (∂x)L a shorthand for

(

∂x1
)l1 . . . (∂xn)ln and

the step function 1[+(x) = 1 iff x ≥ 0.
In order to evaluate the right-hand side of (41) after analytic continuation,

e.g. for 0 < |z − 1 + k| < 1 and for any k ∈ Z+, we recall the Laurent series of

yz−1
± lnm |x| about z − 1 = −k, [7, eq. (117)],

〈

yz−1
± lnm |x| , ψ

〉

= (−1)m

〈

(∓1)k−1

(k−1)!
δ(k−1), ψ

〉

(z − 1 + k)m+1
+ 10≤p≤k−2 (−1)m

k−2

∑
l=p

〈

(∓1)l

l! δ(l), ψ
〉

(z − 1 + l)m+1

+
∫ +∞

−∞

(

|y|z−1 1±(y) lnm |y|
)

(

Tp,qψ
)

(y)dy, (43)

wherein p, q ∈ N : p + q = k − 1, ψ = An−1Sϕ and Tp,q , T1
p,q. For the particular

choice p = k − 1, q = 0, (43) reduces to

〈

yz−1
± lnm |x| , ψ

〉

= (−1)m

〈

(∓1)k−1

(k−1)!
δ(k−1), ψ

〉

(z − 1 + k)m+1
+
〈

yz−1
±,0 lnm |x| , ψ

〉

, (44)
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wherein
〈

yz−1
±,0 lnm |x| , ψ

〉

=
∫ +∞

−∞

(

|y|z−1 1±(y) lnm |y|
)

(Tk−1,0ψ) (y) dy. (45)

Take k = 2p + 2, ∀p ∈ N, in (44)–(45). Then, for 0 < |z + (2p + 1)| < 1, and due
to (16), (41) becomes

〈

|x|z−n lnm |x| , ϕ
〉

=
∫ +∞

0

(

yz−1 lnm |y|
)

(

T2p+1,0 (An−1Sϕ)
)

(y) dy,

=
∫ +∞

0

∫

Sn−1

(

yz−n lnm y
)

(

Tn
2p+1,0ϕ

)

(yω) yn−1 ωSn−1 dy,

=
∫

Rn

(

|x|z−n lnm |x|
) (

Tn
2p+1,0ϕ

)

ωRn . (46)

In particular at z = − (2p + 1), (46) allows to calculate the functional value of

|x|z−n lnm |x| at the ordinary points z = − (2p + 1). The right-hand side of (46)
shows that the analytic continuation of the regular distribution |x|z lnm |x| is no
longer a regular distribution.

Example 8. In particular for p = 0, (46) gives, ∀m ∈ N and ∀ϕ ∈ D (Rn),
〈

|x|−n−1 lnm |x| , ϕ
〉

= An−1

∫ +∞

0

1

y2

(

(Sϕ) (y)− (Sϕ) (0)
−1[+(1 − y2) ((d (Sϕ)) (0)) y

)

lnm |y| dy, (47)

=
∫

Rn
|x|−n−1

(

ϕ(x)− ϕ (0)

−1[+(1 − |x|2)
(

∑
n
i=1

((

∂ϕ

∂xi

)

(0)
)

xi
)

)

lnm |x| ωRn . (48)

Remarks.
(i) For −1 < Re (z), |x|z lnm |x| can be regarded as the multiplication product

|x|z . lnm |x| of the regular distributions |x|z and lnm |x|. By analytic continuation
this product is uniquely extended to all z ∈ C\Zp. This justifies our use of the
notation |x|z lnm |x| in the right-hand side of (35).

(ii) It follows from (39) that, ∀z ∈ C\Ze,−], the distribution |x|z lnm |x| is the

pullback of the partial distribution yz
+ lnm |y|, defined on that set of test functions

DZ1
(R) having (i) a zero of order n − 1 at the origin and (ii) which, for n odd,

are even (i.e., Z1 = Z[−n,−1] ∪ Zo,−) or, for n even, are odd (i.e., Z1 = Z[−n,−1] ∪
Ze,−).

(iii) The analytically continued distributions |x|z lnm |x| are homogeneous of
degree z and have order of association m. This follows from the properties of the
analytically continued distributions yz

± lnm |x|, [7, Section 5.2.2], and Theorem 5.

Extensions We now consider the cases z+ n = −2p ∈ Ze,−] in (38). The Laurent
series of yz

± about z = −k ∈ Z− and holding in 0 < |z + k| < 1 are given by,
[11, p. 87], [7, Section 4.2.3],

yz
± =

(∓1)k−1

(k−1)!
δ(k−1)

z + k
+

+∞

∑
m=0

(

y−k
±,0 lnm |y|

) (z + k)m

m!
, (49)
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wherein the distributions y−k
±,0 lnm |y|, given by (45), are particular extensions of

yz
± lnm |y| at the pole z = −k, in the sense of [7, Section 3.3, eq. (33)]. Using the

sequential continuity of T∗, (37) with m = 0, (27) and letting k = n + 2p, we
obtain the Laurent series of |x|z about z + n = −2p ∈ Ze,−] as

|x|z =

An+2p−1

(4π)p p!
∆pδ

z + n + 2p
+

+∞

∑
m=0

(

T∗
(

y
−(n+2p)
+,0 lnm |y|

)) (z + n + 2p)m

m!
. (50)

Due to the uniform continuity of this series, the Laurent series of Dm
z |x|z about

z + n = −2p ∈ Ze,−] is obtained as

Dm
z |x|z = (−1)m

An+2p−1

(4π)p p!
∆pδ

(z + n + 2p)m+1
+

+∞

∑
l=m

T∗
(

y
−(n+2p)
+,0 lnl |y|

) (z + n + 2p)l−m

(l − m)!
.

(51)

We can now give a meaning to Dm
z |x|z at z+ n = −2p ∈ Ze,−]. Expression (51)

shows that
(

Dm
z |x|z

)

z=−n−2p
is a partial AHD, i.e., a generalized function only de-

fined for test functions ψ ∈ Dr (Rn) , {ϕ ∈ D (Rn) : (∆p ϕ) (0) = 0}. The Hahn-
Banach theorem ensures the existence of a distribution

((

Dm
z |x|z

)

ε

)

z=−n−2p
, de-

fined ∀ϕ ∈ D (Rn) and which coincides with
(

Dm
z |x|z

)

z=−n−2p
on Dr (Rn) ⊂

D (Rn), called an extension of the partial distribution
(

Dm
z |x|z

)

z=−n−2p
from

Dr (Rn) to D (Rn). This extension is generally not unique and not necessarily
an AHD. Here we are only interested in constructing AHDs based on Rn, so we
restrict our attention to extensions

((

Dm
z |x|z

)

e

)

z=−n−2p
which are again an AHD

(we indicate extensions which are an AHD by the subscript e and use the sub-
script ε for a general extension). The subset of distributions which maps Dr(U)
to zero is called the annihilator of Dr(U) and denoted by D′⊥

r (U). Any two ex-
tensions differ by a generalized function g ∈ D′⊥

r (U). Applied to our case here,
we find that associated homogeneous extensions are of the form

((

Dm
z |x|z

)

e

)

z=−n−2p
=
((

Dm
z |x|z

)

0

)

z=−n−2p
+ c′∆pδ, (52)

with arbitrary c′ ∈ C. This way, we have extended the partial distributions
(

Dm
z |x|z

)

z=−n−2p
, defined on Dr (Rn), to the non-unique singular distributions

((

Dm
z |x|z

)

e

)

z=−n−2p
, defined on the whole of D (Rn).

The finite part

((

Dm
z |x|z

)

0

)

z=−n−2p
, T∗

(

y
−(n+2p)
+,0 lnm |y|

)

, (53)

is given by (41), (15) and [7, eq. (118)] as
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〈

((

Dm
z |x|z

)

0

)

z=−n−2p
, ϕ
〉

=
〈

y
−1−2p
+,0 lnm |y| , An−1Sϕ

〉

,

=
∫ +∞

0

(

y−1−2p lnm y
)

(

T2p,0 (An−1Sϕ)
)

(y) dy,

=
∫ +∞

0

∫

Sn−1

(

y−n−2p lnm y
) (

Tn
2p,0ϕ

)

(yω) yn−1ωSn−1 dy,

=
∫

Rn

(

|x|−n−2p lnm |x|
) (

Tn
2p,0ϕ

)

ωRn . (54)

Example 9. In particular for p = 0, (54) gives, ∀m ∈ N and ∀ϕ ∈ D (Rn),
〈

((

Dm
z |x|z

)

0

)

z=−n
, ϕ
〉

= An−1

∫ +∞

0

1

y

(

(Sϕ) (y)− 1[+(1 − y2) (Sϕ) (0)
)

lnm y dy, (55)

=
∫

Rn
|x|−n

(

ϕ(x)− 1[+(1 − |x|2)ϕ (0)
)

lnm |x| ωRn . (56)

Remarks.
(i) The extension

((

Dm
z |x|z

)

e

)

z=−n−2p
is of degree −n − 2p and associated of

order m + 1, for the same reasons as explained in [7, eq. (121)], but now applied

to the distribution y
−(n+2p)
+,e lnm |y|.

(ii) Due to [6, eq. (20)] ([9, eq. (20)]) is y
−(n+2p)
+,e lnm |y| = y

−(n+2p)
+,0 lnm |y| +

c+δ(n+2p−1), c+ ∈ C arbitrary. Then, using (52), (53) and (31) we obtain

T∗
(

y
−(n+2p)
+,e lnm |y|

)

=
((

Dm
z |x|z

)

0

)

z=−n−2p
+ c′+∆pδ, (57)

with the branches of both extensions related by

c′+ = c+ (−1)n−1 (n + 2p − 1)!
An+2p−1

(4π)p p!
. (58)

(iii) We use the notation
((

Dm
z |x|z

)

e

)

z=−n−2p
instead of |x|−n−2p

e lnm |x|, be-

cause it is not yet clear if
((

Dm
z |x|z

)

e

)

z=−n−2p
is equal to the multiplication of

|x|−n−2p
e by lnm |x|. This matter can be resolved after the multiplication algebra

constructed for AHDs on R in [6] ([9]) is extended to a multiplication algebra for
SAHDs on Rn.

Spherical form From (37), (51), (30) and (52) it thus follows that, ∀z ∈ C,

T∗ (yz
+ lnm |y|) = Dm

z |x|z , (59)

with yz
+ lnm |y| replaced by yz

+,e lnm |y| for z ∈ Z− and Dm
z |x|z replaced by

(

Dm
z |x|z

)

e
for z + n ∈ Ze,−].
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From (34) and for −1 < Re (z), we can read off the pullback T∗
S→C along the

diffeomorphism from spherical to Cartesian coordinates TS→C, defined in Ap-
pendix 7.1, of T∗ (yz

+ lnm |y|) as

〈T∗ (yz
+ lnm |y|) , ϕ〉 =

∫ +∞

0

∫

Sn−1

(

rz lnm r ⊗ 1(ω)

)

ϕ (rω) rn−1 ωSn−1 dr. (60)

After analytic continuation we get the distributions T∗ (yz
+ lnm |y|), ∀z + n ∈

C\Ze,−], in spherical coordinates as

T∗ (yz
+ lnm |y|) = rz lnm r ⊗ 1(ω), (61)

or equivalently
|x|z lnm |x| = rz lnm r ⊗ 1(ω). (62)

At the poles z+ n = −2p ∈ Ze,−], we mean by
(

r−n−2p lnm r
)

e
the distribution

defined by
(

r−n−2p lnm r
)

e
⊗ 1(ω) ,

((

Dm
z |x|z

)

e

)

z=−n−2p
, (63)

with the right-hand side of (63) given by (52).

Example 10. For instance in R3, the familiar functional r−1 (more precisely, r−1 ⊗ 1(ω))
is thus a regular distribution, whose functional value is read off from (41) for z = 2 and
m = 0 as

〈

r−1 ⊗ 1(ω), ϕ
〉

=

〈

y+,
∫

S2
ϕ (yω) ωS2

〉

,

= 4π
∫ +∞

0
y (Sϕ) (y) dy. (64)

Further, r−2 (more precisely, r−2 ⊗ 1(ω)) is also a regular distribution determined by

〈

r−2 ⊗ 1(ω), ϕ
〉

=

〈

1+,
∫

S2
ϕ (yω) ωS2

〉

,

= 4π
∫ +∞

0
(Sϕ) (y) dy. (65)

By contrast, r−3 ⊗ 1(ω) is a partial distribution only defined on Dr

(

R3
)

=
{

ϕ ∈ D
(

R3
)

:

ϕ (0) = 0}, but which can be non-uniquely extended to a first order AHD r−3
e ⊗ 1(ω) =

|x|−3
e , now defined on all of D

(

R3
)

, for which
〈

r−3
e ⊗ 1(ω), ψ

〉

=
〈

r−3 ⊗ 1(ω), ψ
〉

,

∀ψ ∈ Dr

(

R3
)

, and whose functional value is given by, ∀ϕ ∈ D
(

R3
)

,
〈

r−3
e ⊗ 1(ω), ϕ

〉

=
〈

|x|−3
e , ϕ

〉

,

=
〈

|x|−3
0 , ϕ

〉

+ c 〈δ, ϕ〉 . (66)

More explicitly,
〈

|x|−3
e , ϕ

〉

= 4π

(

∫ 1

0

(Sϕ) (y)− (Sϕ) (0)

y
dy +

∫ +∞

1

(Sϕ) (y)

y
dy

)

+ c (Sϕ) (0) , (67)

=
∫

B3

ϕ(x)− ϕ (0)

|x|3
ωR3 +

∫

R3\B3

ϕ(x)

|x|3
ωR3 + cϕ (0) , (68)
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with Bn , {x ∈Rn : |x| ≤ 1} the closed unit n-dimensional ball and c ∈ C arbitrary.

Example 11. The delta distribution on Rn in spherical coordinates. It is not possible
to define the delta distribution δ on Rn in spherical coordinates by a straightforward
application of the formula for the pullback along the diffeomorphism TS→C of Appendix
7.1. The reason being that in order to make TS→C a diffeomorphism, we must (at least)
exclude 0 ∈ Rn, but then TS→C is no longer a diffeomorphism of a neighborhood of the
supp δ = {0} and [10, Theorem 7.1.1] does not apply. However, from (27) follows for
p = 0 and ∀ϕ ∈ D (Rn) that

〈

T∗

(

1

An−1
y−(n−1)δ

)

, ϕ

〉

= ϕ (0) , (69)

which by (1) and (14) is equivalent to

〈

1

An−1
y−(n−1)δ,

∫

Sn−1
ϕ (yω) yn−1ωSn−1

〉

= ϕ (0) . (70)

In spherical coordinates (70) becomes

〈

1

An−1
r−(n−1)δ ⊗ 1(ω), ϕ

〉

= ϕ (0) . (71)

From (71) we can read off δ on Rn in spherical coordinates. Notice that its radial part

r−(n−1)δ/An−1 is a distribution defined on D (R+), while y−(n−1)δ/An−1, in the equiv-
alent functional (70), is a partial distribution only defined on DZ[−n,−1]

(R).

5.1.2 Pullback of yz
− lnm |y|

For −1 < Re (z), T∗ (yz
− lnm |y|) is a regular distribution, so we have using (1),

∀ϕ ∈ D (R),

〈T∗ (yz
− lnm |y|) , ϕ〉 = 〈yz

− lnm |y| , ΣT ϕ〉 ,

=
∫ +∞

−∞
(yz

− lnm |y|) ΣT ϕ (y) dy,

=
∫ +∞

−∞
(yz

+ lnm |y|) ΣT ϕ (−y) dy.

Since Sϕ is an even function, it follows from (14) that (ΣT ϕ) (−y) = (−1)n−1

(ΣT ϕ) (y). Hence,

〈T∗ (yz
− lnm |y|) , ϕ〉 = (−1)n−1

∫ +∞

−∞
(yz

+ lnm |y|)ΣT ϕ (y) dy,

= (−1)n−1 〈yz
+ lnm |y| , ΣT ϕ〉 ,

= (−1)n−1 〈T∗ (yz
+ lnm |y|) , ϕ〉 ,

or
T∗ (yz

− lnm |y|) = (−1)n−1 T∗ (yz
+ lnm |y|) . (72)
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After analytic continuation we find that (72) continues to hold so that,
∀z ∈ C\Zp,

T∗ (yz
− lnm |y|) = (−1)n−1 Dm

z |x|z . (73)

At z + n = −2p ∈ Ze,−], we find that

T∗
(

y
−(n+2p)
−,0 lnm |y|

)

= (−1)n−1 ((Dm
z |x|z

)

0

)

z=−n−2p
, (74)

so that, with y
−(n+2p)
−,e lnm |y| = y

−(n+2p)
−,0 lnm |y|+ c−δ(n+2p−1),

T∗
(

y
−(n+2p)
−,e lnm |y|

)

= (−1)n−1 ((Dm
z |x|z

)

0

)

z=−n−2p
+ c′−∆pδ, (75)

with the branches of both extensions related by

c′− = c− (−1)n−1 (n + 2p − 1)!
An+2p−1

(4π)p p!
. (76)

In the process of analytic continuation and the extension process we used the
fact that the operator Tn

p,q, given by (42), preserves the parity of test functions.

Example 12. The pullback along T of the distributions (y ± i0)z ∈ D′ (R), defined in
[11, p. 59], [7] as

(y ± i0)z , yz
+ + e±iπzyz

−, (77)

are obtained as, ∀z ∈ C\Zp,

T∗(y ± i0)z =
(

1 − (−1)n e±iπz
) (

rz ⊗ 1(ω)

)

. (78)

Recall the generalized Sokhotskii-Plemelj equations, [12, p. 28 and p. 84], [7, eq. (217)],
∀k ∈ Z+,

(x ± i0)−k = ∓iπ
(−1)k−1

(k − 1)!

(

δ(k−1) ± iη(k−1)
)

, (79)

with the distributions η(l) , Dlη and η , 1
π x−1, (see also [7, eq. (176)]). The

distributions in (79) are higher degree generalizations of the Heisenberg distributions
∓ 1

2πi (x ± i0)−1. At z = −k ∈ Z[−(n−1),−1], we get, using (79) and (30),

T∗η(k−1) = (−1)n 2

π
(k − 1)!on+k

(

r−k ⊗ 1(ω)

)

. (80)

At z = −n − (2p + 1), ∀p ∈ N, we have, now by using (79) and (31),

T∗η(n+2p) = (−1)n 2

π
(n + 2p)!

(

r−n−(2p+1) ⊗ 1(ω)

)

. (81)

At z = −n − 2p, ∀p ∈ N, we obtain, using (57), (75), (53), (63) and (31),

T∗ (−1)n−1η(n+2p−1)

(n + 2p − 1)!
=

1

π

(

c′+ + (−1)nc′− ± iπ
An+2p−1

(4π)p p!

)

∆pδ, (82)

with the primed constants given by (58) and (76). Eq. (82) can be restated as

T∗η(n+2p−1) = c ∆pδ, (83)

with c ∈ C arbitrary.
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5.2 The normalized distribution Ψz

It is convenient to define the normalized distribution, [12, p. 93], [11, p. 74],

Ψz ,
2

An−1

|x|−n+z

Γ (z/2)
, (84)

which is entire in z by construction. From (59) follows that Ψz is related to the

normalized distribution Φz
+ , x−1+z

+ /Γ(z) as

Ψz =
2

An−1

Γ (z − n + 1)

Γ (z/2)
T∗Φz−n+1

+ . (85)

The normalized distribution Ψz reduces to the following special values at in-
teger values of z.

(i.1) At z = −2p, ∀p ∈ N,

Ψ−2p =
1

An−1

(−1)p An+2p−1

(4π)p ∆pδ. (86)

(i.2) At z = − (2p + 1), ∀p ∈ N,

Ψ−(2p+1) =
1

An−1

(−1)p+1 (2p + 1)!

π1/222p p!
|x|−n−(2p+1) . (87)

(ii.1) At z = 2p + 1, ∀p ∈ N,

Ψ2p+1 =
1

An−1

22p+1p!

π1/2(2p)!
|x|−n+2p+1 . (88)

(ii.2) At z = 2p + 2, ∀p ∈ N,

Ψ2p+2 =
1

An−1

2

p!
|x|−n+2p+2 . (89)

The functional Ψ−2p, given by (86), is trivially evaluated using (21). The func-
tionals, given by eqs. (88) and (89), can be directly evaluated using (35) and (33).

To evaluate the functionals Ψ−(2p+1), we use the analytic continuation given by
(46).

5.3 Kernel of the pullback

Combining (59) with (73) we find that, ∀p, m ∈ N and ∀z ∈ C,

T∗
(

|y|z−n lnm |y|
)

= 1z=−2pc∆pδ, n ∈ Ze,+, (90)

T∗
(

|y|z−n sgn lnm |y|
)

= 1z=−2pc∆pδ, n ∈ Zo,+. (91)
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with c ∈ C arbitrary and

T∗
(

|y|z−n lnm |y|
)

= 2Dm
z |x|z−n , n ∈ Zo,+, (92)

T∗
(

|y|z−n sgn lnm |y|
)

= 2Dm
z |x|z−n , n ∈ Ze,+, (93)

wherein for z ∈ Ze,−] it is understood that the distributions are extensions.

Define

E ′
0,L (R) ,

{

L

∑
l=0

al δ(l), ∀al ∈ C

}

⊂ E ′
0 (R) (94)

and

H′
e (R) ,

{

m

∑
l=0

pl,e(z)
(

|y|z−n lnl |y|
)

, ∀m ∈ N, ∀z ∈ C\Ze,−]

}

, (95)

H′
o (R) ,

{

m

∑
l=0

pl,o(z)
(

|y|z−n sgn lnl |y|
)

, ∀m ∈ N, ∀z ∈ C\Ze,−]

}

. (96)

From (30) and (90)–(93) follows that the pullback T∗ along the function
T : X = Rn\ {0} → Y = R such that x 7→ y = |x|, restricted to H′ (R), has
as kernel

ker T∗ = E ′
0,n−2 (R) ∪

{

H′
o (R) iff n ∈ Zo,+

H′
e (R) iff n ∈ Ze,+

. (97)

6 SAHDs on Rn

6.1 General form

Let m ∈ N and k ∈ Z+. Let Ω ⊆ C be a neighborhood of z = −k and pl,e, pl,o ∈
A (Ω, C), ∀l ∈ Z[0,m], complex analytic coefficient functions, independent of y.
Denote by f z

m a general AHD based on R, complex analytic in its degree z in Ω

and of order m. From [2, Theorem 4] follows that any f z
m can be represented in Ω

as

f z
m =

m

∑
l=0

(

pl,e(z)
(

|y|z lnl |y|
)

+ pl,o(z)
(

|y|z sgn lnl |y|
))

, (98)

with the coefficient functions satisfying, ∀j ∈ Z[0,m],

m

∑
q=j

(−1)q (q
j)
(

dq−jpq,e

)

(l) = 0, ∀l ∈ (Zo,− ∩ Ω) , (99)

m

∑
q=j

(−1)q (q
j)
(

dq−jpq,o

)

(l) = 0, ∀l ∈ (Ze,− ∩ Ω) . (100)
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At z = −k ∈ Z−, the distribution f−k
m takes the form

f−k
m =

(

m

∑
l=0

(−1)l

l + 1

(

ok

(

dl+1pl,e

)

(−k) − ek

(

dl+1pl,o

)

(−k)
)

)

2
δ(k−1)

(k − 1)!

+
m

∑
l=0

(

pl,e(−k)
(

|y|−k
0 lnl |y|

)

+ pl,o(−k)
((

|y|−k sgn
)

0
lnl |y|

))

. (101)

For Tλ : X = Rn\ {0} → Y = R such that x 7→ y = |x|λ, λ ∈ C, we obtain
from Theorem 5, linearity, (98), (101), (62), (63), (52) and (90)–(93) that:

(i) ∀z + n ∈ C\Ze,−],

T∗ f z
m = 2

m

∑
l=0

(on pl,e(λz) + enpl,o(λz))
(

rλz lnl r ⊗ 1(ω)

)

, (102)

(ii) if λz + n = −2p ∈ Ze,−],

T∗ f z
m = 2

m

∑
l=0

(on pl,e(−n − 2p) + enpl,o(−n − 2p))
((

r−n−2p lnl r
)

e
⊗ 1(ω)

)

.

(103)
This shows that the radial part of the pullback along Tλ of any AHD f z

m of
degree z, ∀z + n ∈ C\Ze,−], and order of association m based on R, is the mul-

tiplication of the distribution rλz with a polynomial of degree m in the regular
distribution ln r.

6.2 Structure theorem

Let R : Rn → Rn such that x 7→ Ox with O ∈ O (n), the orthogonal group of
degree n over R. Then, any f ∈ D′ (Rn) has a pullback R∗ f along the diffeomor-
phism R given by, [10, Chapter 7],

〈R∗ f , ϕ〉 ,

〈

f ,

∣

∣

∣

∣

det
(

R−1
)′
∣

∣

∣

∣

(

R−1
)∗

ϕ

〉

, (104)

with det
(

R−1
)′
= ±1.

A distribution f is called spherically symmetric iff R∗ f = f . Hence, for any
spherically symmetric distribution f holds that

〈 f , ϕ〉 =
〈

f ,
(

R−1
)∗

ϕ
〉

. (105)

Theorem 13. For a distribution f to be a spherically symmetric distribution it is neces-
sary and sufficient that f is of the form

f = fr ⊗ 1(ω), (106)

with fr ∈ D′ (R+) and 1(ω) the one distribution based on Sn−1, satisfying R∗1(ω) =
1(ω).
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Proof. (i) Sufficiency. Assume (106) and calculate, ∀O ∈ O (n) and ∀ϕ ∈ D (Rn),

〈

R∗
(

fr ⊗ 1(ω)

)

, ϕ
〉

=

〈

fr ⊗ 1(ω),

∣

∣

∣

∣

det
(

R−1
)′
∣

∣

∣

∣

(

R−1
)∗

ϕ

〉

,

=

〈

fr,

〈

1(ω),

∣

∣

∣

∣

det
(

R−1
)′
∣

∣

∣

∣

(

R−1
)∗

ϕ

〉〉

,

=
〈

fr,
〈

R∗1(ω), ϕ
〉〉

,

=
〈

fr,
〈

1(ω), ϕ
〉〉

,

=
〈

fr ⊗ 1(ω), ϕ
〉

,

hence, R∗ f = f .
(ii) Necessity. Assume (105). Then, ∀O ∈ O (n) and ∀ϕ ∈ D (Rn),

〈

f(r,θ), ϕ (r, `)
〉

=
〈

f(r,θ),
(

R−1
)∗

ϕ (r, θ)
〉

,

=
〈

f(r,θ), ϕ
(

r, θ′
)

〉

.

This shows that
〈

f(r,θ), ϕ (r, θ′)
〉

must be independent of the angular dependence

of ϕ, which requires that (106) holds.

Theorem 14. Structure theorem. Let Tλ : X = Rn\ {0} → Y = R such that x 7→

y = |x|λ, λ ∈ C. A distribution based on Rn is a spherical associated homogeneous
distribution iff it is the pullback along the function Tλ of an associated homogeneous
distribution based on R.

Proof. (i) SAHD on Rn ⇒
(

Tλ
)∗

AHD on R. Let f be a SAHD on Rn. Being spher-
ically symmetric, f must be of the form (106), due to Theorem 13. Being an AHD
on Rn, its radial part fr in (106) must be an AHD based on R+, due to the ex-
pression (119) of the Euler operator in Rn. This distribution fr must be of the
form given by the right-hand side of (102), due to the structure theorem for one-
dimensional AHDs [2, Theorem 4]. Eq. (102) together with Corollary 4, which
requires T to be homogeneous, then shows that this form is the pullback along
the function Tλ of an AHD based on R.

(ii)
(

Tλ
)∗

AHD on R ⇒ SAHD on Rn. Let f be an AHD on R. The pullback
(

Tλ
)∗

f of f along the function Tλ has a form as given by the right-hand side of
eq. (102). By Theorem 13 such a distribution is spherically symmetric. Due to

expression (119) for the Euler operator in Rn,
(

Tλ
)∗

f is an AHD based on Rn.
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7 Appendix

7.1 Spherical coordinates

We define a diffeomorphism TS→C, mapping spherical coordinates to Cartesian
coordinates, for a domain Ω ⊂ Rn with 2 ≤ n, such that the range TS→C = Ω.

Let θ ,
(

θp, ∀p ∈ Z[2,n]

)

, x ,
(

xi, ∀i ∈ Z[1,n]

)

and

TS→C : Ξ , R+ × ]0, π[n−2 × [0, 2π[ ⊂ Rn → X = Rn, (107)

such that ξ =
(

ξi , ∀i ∈ Z[1,n]

)

= (r, θ) 7→ x = TS→C (ξ) =
(

rωi (θ) , ∀i ∈ Z[1,n]

)

,

r ω, with r ∈ R+, ω ∈ Sn−1, θp ∈ ]0, π[, ∀p ∈ Z[2,n−1], and θn ∈ [0, 2π[. Herein
are, ∀i ∈ Z[1,n] and ∀p ∈ Z[2,n],

ωi (θ) ,

(

1i=1 + 11<i

i

∏
p=2

sin (θp)

)

(

1i=n + 1i<n cos
(

θi+1
))

(108)

and

ω · ω =
n

∑
i=1

(

ωi
)2

= 1. (109)

The induced metric on the (n − 1)-dimensional unit sphere Sn−1 is given by (im-
plicit summation over i and j), ∀a, b ∈ Z[2,n],

gab =

(

δij
∂xi

∂ξa

∂xj

∂ξb

)
∣

∣

∣

∣

r=1

= 1a=b

(

1a=2 + 13≤a

a−1

∏
p=2

sin2 (θp)

)

. (110)

Then, with g (θ) , det [gab],

√

g (θ) = 1n=2 + 12<n

n−1

∏
p=2

sinn−p (θp) > 0. (111)

Hence,

|det dTS→C(ξ)| = rn−1
√

g (θ) > 0, (112)

∀ξ ∈ Ξ, so TS→C is a diffeomorphism from Ξ → Rn.
Define for 3 ≤ n the set of open half lines

L ,
{

x = r ω (θ) ∈ Rn : θp ∈ {0, π} , ∀p ∈ Z[2,n−1], ∀r ∈ R+

}

(113)

and the set Λ , {0} ∪ 13≤n L. In order for TS→C to be a diffeomorphism we had
to exclude from Rn the set Λ so that Ω = Rn\Λ.

Any integral over Rn, stated in Cartesian coordinates and to be converted into
spherical coordinates, first has to be restricted to Ω. Under the pullback T∗

S→C
this restricted integral transforms into an integral over Ξ. It is usually tacitly



804 G. R. Franssens

understood that Λ is a set of Lebesgue measure zero (which is true by Sard’s
theorem), so that the final integral is equivalent to the original integral over Rn.

The volume form ωRn on Rn becomes in spherical coordinates

ωRn = rn−1 (dr ∧ ωSn−1) , (114)

ωSn−1 ,

√

g (θ)
(

dθ2 ∧ dθ3 ∧ . . . ∧ dθn
)

, (115)

with ωSn−1 the nowhere vanishing volume form on Ω ∩ Sn−1. Notice that, since
ωSn−1 vanishes on Λ ∩ Sn−1, ωSn−1 is not a proper volume form on Sn−1.

With respect to a coordinate basis
{

dxi, ∀i ∈ Z[1,n]

}

for Rn, the operator

d ,
(

∂i, ∀i ∈ Z[1,n]

)

: C∞ (Rn) → C∞ (Rn) becomes in spherical coordinates

d = ω∂r +
1

r
∂!, (116)

with

∂ω ,
n

∑
p=2

∂ω
∂θp

∣

∣

∣

∂!
∂θp

∣

∣

∣

2
∂θp , (117)

∣

∣

∣

∣

∂ω

∂θp

∣

∣

∣

∣

2

= 1p=2 + 13≤p

p−1

∏
q=2

sin2 (θq) . (118)

The Euler operator x · d = xi∂i (implicit summation over i) then becomes in
spherical coordinates

x · d = r∂r. (119)

The operator ω · ∂ω is identically zero due to (117) and (109), while (∂ω · ω) =
n − 1. The operator ∂ωs · ∂ωs is the Laplace-Beltrami operator (acting on scalar
functions) on Sn−1.

The surface area of the unit sphere Sn−1 is given by, ∀n ∈ Z+,

An−1 ,

∫

Sn−1
ωSn−1 = 2

πn/2

Γ(n/2)
(120)

and the volume of the unit n-dimensional ball it bounds is

Vn =
An−1

n
=

πn/2

Γ(n/2 + 1)
. (121)

7.2 The partial distributions y−kδ(l)

Let l ∈ N and k ∈ Z+. Define functions y−k : R\ {0} → R such that y 7→ y−k and

products y−kδ(l) , y−k.δ(l) by, ∀ψ ∈ DZ[−k,−1]
(R),

〈

y−k.δ(l), ψ
〉

,
〈

δ(l), y−kψ
〉

. (122)
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This definition is legitimate since y−kψ ∈ D (R). However, (122) only defines

y−kδ(l) on DZ[−k,−1]
(R) ⊂ D (R), so y−kδ(l) is a partial distribution.

Define a new quantity
(

y−kδ(l)
)

0
, ∀ϕ ∈ D (R), by

〈(

y−kδ(l)
)

0
, ϕ
〉

,

〈

δ(l), y−k

(

ϕ(y)−
k−1

∑
j=0

ϕ(j)(0)
yj

j!

)〉

. (123)

Since (123) defines
(

y−kδ(l)
)

0
on the whole of D (R), and because it is a linear

and sequential continuous functional, it is a distribution. Using the definition for
the generalized derivative and the sifting property of δ, (123) can be converted to

〈(

y−kδ(l)
)

0
, ϕ
〉

=

〈

(−1)k l!

(k + l)!
δ(k+l), ϕ

〉

, (124)

so
(

y−kδ(l)
)

0
= (−1)k l!

(k + l)!
δ(k+l). (125)

It is easily verified that
〈(

y−kδ(l)
)

0
, ψ
〉

=
〈

δ(l), y−kψ
〉

, ∀ψ ∈ DZ[−k,−1]
(R), so

the distribution
(

y−kδ(l)
)

0
is an extension of the partial distribution y−kδ(l) from

DZ[−k,−1]
(R) to D (R). Such an extension is not unique. Any two extensions differ

by a distribution which maps DZ[−k,−1]
(R) to zero. Hence, the general extension

is
(

y−kδ(l)
)

ε
= (−1)k l!

(k + l)!
δ(k+l) +

k−1

∑
j=0

cjδ
(j), (126)

with arbitrary constants cj ∈ C, ∀j ∈ Z[0,k−1]. However, if we are only interested

in extensions
(

y−kδ(l)
)

e
which are homogeneous, we get the unique homoge-

neous extension

(

y−kδ(l)
)

e
=
(

y−kδ(l)
)

0
= (−1)k l!

(k + l)!
δ(k+l). (127)
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