Spherical associated homogeneous distributions on R^n

Ghislain R. Franssens

Abstract

A structure theorem for spherically symmetric associated homogeneous distributions (SAHDs) based on R^n is given. It is shown that any SAHD is the pullback, along the function $|\mathbf{x}|^{\lambda}$, $\lambda \in \mathbf{C}$, of an associated homogeneous distribution (AHD) on R. The pullback operator is found not to be injective and its kernel is derived (for $\lambda = 1$). Special attention is given to the basis SAHDs, $D_z^m |\mathbf{x}|^z$, which become singular when their degree of homogeneity z = -n - 2p, $\forall p \in \mathbb{N}$. It is shown that $(D_z^m |\mathbf{x}|^z)_{z=-n-2p}$ are partial distributions which can be non-uniquely extended to distributions $((D_z^m |\mathbf{x}|^z)_e)_{z=-n-2p}$ and explicit expressions for their evaluation are derived. These results serve to rigorously justify distributional potential theory in R^n .

1 Introduction

We present a construction of spherical (i.e., O(n)-invariant) associated homogeneous distributions (SAHDs) based on \mathbb{R}^n , as pullbacks of associated homogeneous distributions (AHDs) based on \mathbb{R} . It is shown that any SAHD on \mathbb{R}^n can be obtained as the pullback, along the function $|\mathbf{x}|^{\lambda}$, $\lambda \in \mathbb{C}$, of an AHD on \mathbb{R} .

Homogeneous distributions (HDs) on *R* generalize the concept of homogeneous functions, such as $|x|^z : R \setminus \{0\} \to \mathbb{C}$, which is homogeneous of complex degree *z*. Associated to homogeneous functions are power-log functions, which arise when taking the derivative with respect to the degree of homogeneity *z*.

Bull. Belg. Math. Soc. Simon Stevin 17 (2010), 781-806

Received by the editors July 2009.

Communicated by F. Brackx.

²⁰⁰⁰ Mathematics Subject Classification : 46F05, 46F10, 31B99.

Key words and phrases : Spherical associated homogeneous distribution, Pullback, Potential theory.

The set of associated homogeneous distributions with support in (or based on) R, denoted by $\mathcal{H}'(R)$, generalizes these power-log functions, [7], [2], [11]. The set $\mathcal{H}'(R)$ is a subset of the tempered distributions, [14], [15], and is of practical importance because $\mathcal{H}'(R)$ contains the majority of the (1-dimensional) distributions one encounters in physical applications, such as the delta distribution δ , the step distributions 1_{\pm} , several so called pseudo-functions generated by taking Hadamard's finite part of certain divergent integrals (among which is Cauchy's principal value x^{-1}), Riesz kernels, Heisenberg distributions and many familiar others, [12].

We denote the set of AHDs based on \mathbb{R}^n by $\mathcal{H}'(\mathbb{R}^n)$. An important subset of $\mathcal{H}'(\mathbb{R}^n)$ are the O(n)-invariant AHDs on \mathbb{R}^n , called SAHDs and of which r^z , $z \in \mathbb{C}$, is a well-known example, having degree of homogeneity z and order of association 0, see e.g., [11, p. 71, p. 98, p. 192]. AHDs based on \mathbb{R}^n are important mathematical tools, used in physics and engineering for solving distributional potential (i.e., static field) problems in n-dimensions. SAHDs based on \mathbb{R}^n arise in spherically symmetric problems, such as the construction of a fundamental solution (i.e., a Green's distribution) for Poisson's equation and its complex degree generalizations (i.e., involving complex powers of the Laplacian in \mathbb{R}^n). We denote the set of SAHDs on \mathbb{R}^n by $S\mathcal{H}'(\mathbb{R}^n)$. We have the inclusions $S\mathcal{H}'(\mathbb{R}^n) \subset \mathcal{H}'(\mathbb{R}^n) \subset S'(\mathbb{R}^n) \subset \mathcal{D}'(\mathbb{R}^n)$.

Consider the scalar function $T^{\lambda} : X = R^n \setminus \{0\} \to Y = R_+$ such that $\mathbf{x} \mapsto y = |\mathbf{x}|^{\lambda}$ with $\lambda \in \mathbb{C}$. The aim of this paper is to show that any SAHD on R^n can be obtained as the pullback $(T^{\lambda})^*$ along T^{λ} of an AHD on R. This is an interesting result, as it opens a route to extend the properties of the simple and well-understood 1-dimensional AHDs to their O(n)-invariant generalizations on R^n . In particular, recent work done by the author showed that the set of AHDs on R can be given the structure of both a convolution algebra and a multiplication algebra over \mathbb{C} , see [3], [4], [5] ([8]), [6] ([9]). These algebraic properties of AHDs on R can be extended, under the O(n)-invariant function T^{λ} above, to SAHDs on R^n and the key to this higher dimensional extension of the aforementioned algebras is the here considered pullback relation.

The concept of the pullback of a distribution generalizes the classical concept of a change of variables for a function. Any map $f : Y \to Z$ can be pulled back to a space X by precomposition with a map $T : X \to Y$ as $f \circ T : X \to Y$ Z. Any smooth T represents a homomorphism T^* between the set $C^{\infty}(Y)$ of smooth functions defined on Y and the set $C^{\infty}(X)$ of smooth functions defined on X, such that $f \mapsto T^* f = f \circ T$ (for functions this is usually written as $T^* f =$ f(T(x))). The homomorphism T^* is called the pullback along the function T. The concept of pullback is more general than that of a change of variables. The latter can not be applied to distributions since they are not functions of the base space, but functionals on a space of (test) functions defined on the base space, here $\mathcal{D}(Y)$. However, it is possible to define the pullback $T^*f \in \mathcal{D}'(X)$ of any distribution $f \in \mathcal{D}'(Y)$ (under certain restrictions on *T*) in terms of an operation on $\mathcal{D}(Y)$. This results in an indirect definition, such as the one recalled in section 2, to perform a "change of variables" for distributions. One uses the fact that $C^{\infty}(Y)$ is dense in $\mathcal{D}'(Y)$ (since $\mathcal{D}(Y) \subset C^{\infty}(Y)$ is) to show that the pullback T^*f exists if precomposition with T maps sequences of smooth functions converging

in $\mathcal{D}'(Y)$ to sequences of smooth functions converging in $\mathcal{D}'(X)$. A necessary and sufficient condition for the pullback T^*f to be unique, is that T^* is a sequentially continuous operator, [10, Chapter 7]. Although the pullback of a distribution can be defined along general submersions, see e.g., [10, Theorem 7.2.2], we will only need here the pullback along scalar functions.

We show that the pullback T^* , along the particular scalar function $T \triangleq T^1$, of any AHD on R generates a distribution on R^n that is a linear combination of distributions of the form $D_z^m |\mathbf{x}|^z$, called basis SAHDs. We properly define the distributions $D_z^m |\mathbf{x}|^z$, which are only briefly considered in [11, p. 99], and investigate their properties. Careful attention is given to the cases when the degree of homogeneity z is such that $z + n = -2p \in \mathbb{Z}_{e,-1}$ (even non-positive integers), since the functionals $D_z^m |\mathbf{x}|^z$ possess (m + 1)-th order poles at z = -n - 2p, $\forall p \in \mathbb{N}$.

The here presented study of the distributions $D_z^m |\mathbf{x}|^z$ is placed in the more modern context of pullbacks and extensions, compared to the more classical approach which defines singular distributions as regularizations of certain divergent integrals, e.g., as in [11]. We especially draw attention to the fact that any $(D_z^m |\mathbf{x}|^z)_{z=-n-2p}$ is a (unique) partial distribution. A partial distribution is a fruitful concept, introduced earlier by the author in [7, Section 3.3], to designate generalized functions that are only defined on a proper subset $\mathcal{D}_r \subset \mathcal{D}$. By definition, a distribution is defined on the whole of \mathcal{D} , [15, p. 6]. Our approach to singular distributions is basically a functional extension process that extends a partial distribution to a distribution. Since \mathcal{D} is locally convex, [13, p. 152], [1, pp. 427–431], the (continuous extension version of the) Hahn-Banach theorem applies to \mathcal{D} , [13, p. 56]. This theorem guarantees that an extension of a partial distribution defined on any $\mathcal{D}_r \subset \mathcal{D}$ exists as a continuous linear functional on \mathcal{D} , hence as a distribution, and that both coincide on \mathcal{D}_r , [13, p. 61]. It is natural to use such an extension, denoted $((D_z^m |\mathbf{x}|^z)_e)_{z=-n-2p}$, to define $D_z^m |\mathbf{x}|^z$ at the degree of homogeneity -n - 2p. We call $\left(\left(D_z^m |\mathbf{x}|^z \right)_e \right)_{z=-n-2p}^{\prime}$ an extension of the partial distribution $(D_z^m |\mathbf{x}|^z)_{z=-n-2p}$ from \mathcal{D}_r to \mathcal{D} .

The Hahn-Banach theorem does not tell how such an extension is to be constructed. We apply a straightforward method to produce a distribution $((D_z^m |\mathbf{x}|^z)_e)_{z=-n-2p}$ on $\mathcal{D}(R^n)$ that is a SAHD and coincides with the partial distribution $(D_z^m |\mathbf{x}|^z)_{z=-n-2p}$ on $\mathcal{D}_r(R^n)$. This method, first introduced in [7, Section 3.3, eq. (33)] and here applied to SAHDs on R^n , leads to more general results than those found in the classical literature, since the obtained extensions are in general uncountably multi-valued. Any classical regularization is recovered as the unique extension corresponding to a particular branch of this multi-valued spectrum. For (complex) AHDs, the spectrum of multi-valuedness is parametrized by \mathbb{C} , hence each value of an extension $((D_z^m |\mathbf{x}|^z)_e)_{z=-n-2p}$ corresponds to a constant $c \in \mathbb{C}$.

We derive explicit expressions for the evaluation of the so constructed multivalued distributions $((D_z^m |\mathbf{x}|^z)_e)_{z=-n-2p}$. It is found that $((D_z^m |\mathbf{x}|^z)_e)_{z=-n-2p}$ are homogeneous distributions of degree -n - 2p and order of association m + 1. In [11, p. 99] it is incorrectly stated that the particular extension, corresponding to Hadamard's finite part $((D_z^m |\mathbf{x}|^z)_0)_{z=-n-2p}$ (and corresponding to c = 0), is associated of order *m*. That this can not be true is also seen from the result [11, p.195] and by invoking the fact that the Fourier transformation preserves the order of association, [7].

This work extends and generalizes the treatment of SAHDs on \mathbb{R}^n in [11]. New results presented here are (i) the concepts of partial distribution and functional extension for defining the occurring singular distributions, (ii) the representation of SAHDs on \mathbb{R}^n as pullbacks of AHDs on \mathbb{R} , (iii) the kernel of the pullback operator T^* , ker $T^* \subset \mathcal{H}'(\mathbb{R})$ and (iv) a structure theorem for $\mathcal{SH}'(\mathbb{R}^n)$.

The outline of the paper is as follows. We recall the pullback T^* of a distribution along a scalar function $T : X \to Y$ in section 2. We apply this in section 3 to AHDs based on R. In section 4 we investigate the pullback of any distribution along the function T defined above. In section 5, the results from sections 3 and 4 are combined to generate SAHDs on R^n . There, the basis distributions $D_z^m |\mathbf{x}|^z$ are discussed, the general form of an SAHDs on R^n is given and the ker T^* is derived. In the last section 6, the structure theorem of SAHDs on R^n is proved.

We use the notations introduced in [7]. For convenience, some practical but non-standard notations are repeated here. Define $1_p \triangleq 1$ if p is true, else $1_p \triangleq 0$. Further, $e_m \triangleq 1_{m \in \mathbb{Z}_e}$, hence $e_m = 1$ if m is even, else $e_m = 0$ and similarly $o_m \triangleq 1_{m \in \mathbb{Z}_o}$, hence $o_m = 1$ if m is odd, else $o_m = 0$.

2 Pullback of a distribution on *R* along a scalar function

Definition 1. Let $n \in \mathbb{N} : 2 \leq n, X \subseteq \mathbb{R}^n$, $Y = \mathbb{R}$ and $\delta_y \in \mathcal{D}'(Y)$ with $\langle \delta_y, \psi \rangle \triangleq \psi(y), \forall \psi \in \mathcal{D}(Y)$. Let $f \in \mathcal{D}'(Y)$ and $T : X \to Y$ such that $\mathbf{x} \mapsto y = T(\mathbf{x})$ be a \mathbb{C}^{∞} function with $(dT)(\mathbf{x}) \neq 0$, $\forall \mathbf{x} \in \Sigma_y \triangleq \{\mathbf{x} \in X : T(\mathbf{x}) = y\}$ and $\forall y \in \text{supp } f$. The pullback T^*f of f along T is defined $\forall \varphi \in \mathcal{D}(X)$ as

$$\langle T^*f, \varphi \rangle \triangleq \langle f, \Sigma_T \varphi \rangle,$$
 (1)

with

$$(\Sigma_T \varphi)(y) = \langle T^* \delta_y, \varphi \rangle, \qquad (2)$$

$$\triangleq \int_{\Sigma_y} \varphi \omega_T. \tag{3}$$

In (3) is ω_T the Leray form of Σ_y , such that $\omega_X = dT \wedge \omega_T$, with ω_X the volume form on X.

The condition on dT is necessary and sufficient for the Leray form to exist on Σ_y . Moreover, although $\omega_X = dT \wedge \omega_T$ does not specify ω_T uniquely in a neighborhood of Σ_y , ω_T is unique on Σ_y , [11, pp. 220-221].

The distribution $\delta_{\Sigma_y} \triangleq T^* \delta_y \in \mathcal{D}'(X)$ represents a delta distribution having as support the level set surface Σ_y of T with level parameter y. We can not speak of *the* delta distribution with support Σ_y since the pullback $T^* \delta_y$, as defined by Definition 1, depends on the equation used to represent the surface Σ_y , through the Leray form, [11, p. 222], [1, p. 439]. It is clear that the delta distribution δ_{Σ_y} , as defined by (2) and (3), is fundamental to define the pullback of any distribution along *T*.

It is shown in e.g., [10, p. 82, Theorem 7.2.1] that, under the conditions given in Definition 1, $\Sigma_T \varphi \in \mathcal{D}(Y)$, $T^* f \in \mathcal{D}'(X)$ and T^* is a sequentially continuous linear operator.

Theorem 2. Let $f^z \in \mathcal{D}'(Y)$, depending on a complex parameter z and being complex analytic in a domain $\Omega \subseteq \mathbb{C}$. Let T^* be the pullback from Y to X along a \mathbb{C}^{∞} function $T: X \subseteq \mathbb{R}^n \to Y = \mathbb{R}$. Then T^*f^z is complex analytic and moreover

$$T^* (D_z^m f^z) = D_z^m (T^* f^z),$$
(4)

 $\forall m \in \mathbb{Z}_+ \text{ and } \forall z \in \Omega.$

Proof. (i) Let m = 1. Since it is given that f^z is complex analytic in Ω , this means by definition that $d_z \langle f^z, \psi \rangle$ exists. This is a necessary and sufficient condition for the existence of a distribution $D_z f^z$ given by $\langle D_z f^z, \psi \rangle = d_z \langle f^z, \psi \rangle$, $\forall \psi \in \mathcal{D}(Y)$ and $\forall z \in \Omega$, [11, pp. 147-151]. On the other hand, applying (1) to the left-hand side of (4) gives, $\forall \varphi \in \mathcal{D}(X)$,

$$\langle T^*D_z f^z, arphi
angle = \langle D_z f^z, \Sigma_T arphi
angle.$$

Combining both results yields

$$\langle T^*D_z f^z, \varphi \rangle = d_z \langle f^z, \Sigma_T \varphi \rangle.$$

Applying (1) to the right-hand side of this equation gives

$$\langle T^*D_z f^z, \varphi \rangle = d_z \langle T^*f^z, \varphi \rangle.$$

Hence $d_z \langle T^* f^z, \varphi \rangle$ exists, which implies by definition that $T^* f^z$ is complex analytic in Ω . This is a necessary and sufficient condition for the existence of a distribution $D_z (T^* f^z)$ given by $\langle D_z (T^* f^z), \varphi \rangle = d_z \langle T^* f^z, \varphi \rangle$, so that

$$\left\langle T^{*}\left(D_{z}f^{z}
ight)$$
 , $arphi
ight
angle =\left\langle D_{z}\left(T^{*}f^{z}
ight)$, $arphi
ight
angle$,

which implies (4) for m = 1.

(ii) Since f^z is complex analytic in Ω , $D_z^m f^z$ is also complex analytic in Ω , $\forall m \in \mathbb{Z}_+$. Combining this with (i) and using induction, (4) follows $\forall m \in \mathbb{Z}_+$.

This theorem enables to generate the Taylor series of a pullback distribution $T^*f^z \in \mathcal{D}(\mathbb{R}^n)$ directly from the Taylor series of the distribution $f^z \in \mathcal{D}(\mathbb{R})$. In particular, (4) simplifies the calculation of pullbacks of AHDs.

3 Pullback of an AHD on *R* along a scalar function

Let $\mathbf{X} \cdot \mathbf{D}$ denote the generalized Euler operator and $X_z \triangleq \mathbf{X} \cdot \mathbf{D} - z$ Id the generalized homogeneity operator of degree $z \in \mathbb{C}$ defined on $\mathcal{D}'(\mathbb{R}^n)$ (with Id the identity operator), and Y_z the generalized homogeneity operator of degree z defined on $\mathcal{D}'(\mathbb{R})$.

Theorem 3. Let T^* be the pullback from Y to X along a C^{∞} function $T : X \subseteq \mathbb{R}^n \to Y = \mathbb{R}$ such that $\mathbf{x} \mapsto y = T(\mathbf{x})$, with $(dT)(\mathbf{x}) \neq 0$, $\forall \mathbf{x} \in X$. Let f_0^z be a homogeneous distribution based on Y with degree of homogeneity z. Then holds, $\forall m \in \mathbb{Z}_+$ and $\forall \lambda \in \mathbb{C}$,

$$X_{\lambda z}^{m}\left(T^{*}f_{0}^{z}\right) = \sum_{l=1}^{m} p_{l}^{m}\left(x_{0}, x_{\lambda}T\right)\left(T^{*}\left(D^{l}f_{0}^{z}\right)\right),$$
(5)

with $x_{\lambda} \triangleq \mathbf{x} \cdot \mathbf{d} - \lambda$ Id the ordinary homogeneity operator of degree λ and p_{l}^{m} bivariate polynomials of degree *m*, satisfying the recursion relations

$$p_1^1(x_0,h) = h, (6)$$

$$p_k^{m+1}(x_0,h) = x_0 p_k^m(x_0,h) + h p_{k-1}^m(x_0,h).$$
(7)

Proof. (i) Under the given conditions, the generalized chain rule is valid so we have for the *i*-th generalized partial derivative, $\forall f \in \mathcal{D}'(Y), \forall \varphi \in \mathcal{D}(X)$ and $\forall i \in \mathbb{Z}_{[1,n]}$,

$$\langle D_{i}\left(T^{*}f\right),\varphi
angle = \langle T^{*}\left(Df\right),\left(d_{i}T\right)\varphi
angle$$

Applying this to $x^{i}\varphi \in \mathcal{D}(X)$, we obtain

$$\left\langle D_{i}\left(T^{*}f\right),x^{i}\varphi\right\rangle =\left\langle T^{*}\left(Df\right),\left(d_{i}T\right)x^{i}\varphi\right\rangle$$

Using the definition of the multiplication of a distribution with a smooth function, writing the result in terms of the multiplication operator $X^i \triangleq x^i$. and summing over all values of *i* gives

$$\langle (\mathbf{X} \cdot \mathbf{D}) (T^* f), \varphi \rangle = \langle T^* (Df), ((\mathbf{x} \cdot \mathbf{d}) T) \varphi \rangle$$

This is equivalent to, $\forall \lambda \in \mathbb{C}$,

$$\langle (\mathbf{X} \cdot \mathbf{D}) (T^*f), \varphi \rangle - \lambda \langle T^* (Df), T\varphi \rangle = \langle T^* (Df), (x_{\lambda}T) \varphi \rangle.$$
(8)

Applying the definition of the pullback T^* , the fact that T is a scalar function mapping $\mathbf{x} \mapsto y$ and also introducing the multiplication operator $Y \triangleq y$, we have

$$\begin{array}{ll} \langle T^* \left(Df \right), T\varphi \rangle &=& \langle Df, \Sigma_T \left(T\varphi \right) \rangle , \\ &=& \langle Df, y\Sigma_T\varphi \rangle , \\ &=& \langle YDf, \Sigma_T\varphi \rangle , \\ &=& \langle T^* \left(YDf \right), \varphi \rangle . \end{array}$$
(9)

In (8) choose $f = f_0^z$, use $YDf_0^z = zf_0^z$ in (9), substitute (9) in (8) and use the operator $X_{\lambda z}$ in the left-hand side of (8). Since $X_{\lambda}T$ is a smooth function, we obtain (5) for m = 1.

(ii) The result for m > 1 follows by induction.

Corollary 4. Let $f_m^z \in \mathcal{H}'(Y)$. If T is not homogeneous, then $T^* f_m^z \notin \mathcal{H}'(X)$.

Proof. Let f_0^z be a HD on Y. If T is not homogeneous, then $x_\lambda T \neq 0, \forall \lambda \in \mathbb{C}$. From Theorem 3 follows that then all $p_k^m \neq 0$, so $X_{\lambda z}^m (T^* f_0^z) \neq 0, \forall m \in \mathbb{N}$. This result, together with Theorem 2 and the structure theorem for AHDs on R [2, Theorem 4] (see also (98)), implies that $T^* f_m^z, \forall f_m^z \in \mathcal{H}'(Y)$, is not an AHD on X.

Corollary 4 will be needed in Theorem 14.

Theorem 5. Let T^* be the pullback along the function T as defined in Theorem 3 and let in addition T be homogeneous of degree $\lambda \in \mathbb{C}$. Then,

(*i*) the homogeneity operators X_z and Y_z are related by

$$X_{\lambda z}T^* = \lambda T^* Y_z; \tag{10}$$

(ii) the pullback $T^* f_m^z$ of an AHD f_m^z , of degree of homogeneity z and order of association m based on Y, is again an AHD of the same order of association m and of degree of homogeneity λz , based on X.

Proof. (i) Recalling (8) and using $x_{\lambda}T = 0$, we get

$$\langle (\mathbf{X} \cdot \mathbf{D}) (T^*f), \varphi
angle = \lambda \langle T^* (Df), T\varphi
angle.$$

Using (9) and introducing the homogeneity operators $X_{\lambda z}$ and Y_z , this is equivalently to

$$\langle X_{\lambda z} \left(T^* f \right), \varphi \rangle = \lambda \left\langle T^* \left(Y_z f \right), \varphi \right\rangle.$$

Since *f* and φ are arbitrary, this implies (10).

(ii) Let $m \in \mathbb{N}$ and f_m^z be any AHD with degree of homogeneity z and order of association m based on Y. By definition, f_m^z satisfies $Y_z f_m^z = f_{m-1}^z$ for some AHD f_{m-1}^z with degree of homogeneity z and order of association m - 1 based on Y and we define $f_{-1}^z \triangleq 0$. Applying (10) to f_m^z gives

$$X_{\lambda z}\left(T^*f_m^z\right) = \lambda T^*f_{m-1}^z.$$
(11)

From this follows, by induction over *m*, that $T^* f_m^z$ is an AHD with degree of homogeneity λz and order of association *m* based on *X*.

Hence, the pullback T^* of an AHD on R along a homogeneous scalar function T is an order of association preserving homomorphism.

Corollary 6. If T in Theorem 5 has degree of homogeneity 1, its pullback T^* from Y to X is in addition a homogeneity preserving homomorphism,

$$X_z T^* = T^* Y_z. \tag{12}$$

Corollary 7. If T in Theorem 5 has degree of homogeneity 0, $T^*f_m^z$, $\forall f_m^z \in \mathcal{H}'(Y)$, is a homogeneous distribution based on X with degree of homogeneity 0.

4 Pullback of a distribution on R along the function $|\mathbf{x}|$

Define the function $T : X = R^n \setminus \{\mathbf{0}\} \to Y = R_+$ such that $\mathbf{x} \mapsto r = T(\mathbf{x}) \triangleq |\mathbf{x}|$ with $|\mathbf{x}| \triangleq ((x^1)^2 + ... + (x^n)^2)^{1/2} > 0$. We have $|dT|(\mathbf{x}) = 1$, $\forall \mathbf{x} \in X$, hence dTis surjective and T is a (scalar) submersion. For $y \in R_+$, $\Sigma_y \triangleq \{\mathbf{x} \in X : |\mathbf{x}| = y\} \subset X$, while for $y \in R_-$, $\Sigma_y = \emptyset$. By (3) holds, $\forall \varphi \in \mathcal{D}(X)$ and $\forall y \in R_+$,

$$(\Sigma_T \varphi)(y) = \int_{\Sigma_y} \varphi \omega_T.$$
(13)

We want to extend $\Sigma_T \varphi$ so that it is defined $\forall \varphi \in \mathcal{D}(\mathbb{R}^n)$ and $\forall y \in \mathbb{R}$. To this end, we change from Cartesian coordinates to spherical coordinates in the integral in (13) (see also Appendix 7.1). We get, $\forall \varphi \in \mathcal{D}(\mathbb{R}^n)$ and $\forall y \in \mathbb{R}_+$,

$$\left(\Sigma_{T}\varphi\right)\left(y\right) = A_{n-1}y^{n-1}\left(S\varphi\right)\left(y\right),\tag{14}$$

wherein we defined the spherical mean operator *S*, defined on $\mathcal{D}(\mathbb{R}^n)$, by

$$(S\varphi)(y) \triangleq \frac{1}{A_{n-1}} \int_{S^{n-1}} \varphi(y\omega) \,\omega_{S^{n-1}},\tag{15}$$

with $\omega_{S^{n-1}}$ the volume form on the (n-1)-dimensional unit sphere S^{n-1} and A_{n-1} its surface area, given by (120). Clearly, the integral in (15) also exists $\forall y \in R_{-}$, and it is shown in [11, pp. 72–73] that, $\forall p \in \mathbb{N}$, (i) $(d^{2p}S\varphi)(0)$ exists and (ii)

$$\left(d^{2p+1}S\varphi\right)(0) = 0,\tag{16}$$

so $S\varphi$ is an even function. Then, eqs. (14)–(15) define $S\varphi$ and $\Sigma_T\varphi$, $\forall y \in R$.

The function $S\varphi$ is of compact support, since φ is. Since $\varphi(y\omega)$ in (15) is obviously jointly continuous in $(y, \omega) \in I \times S^{n-1}$, is $S\varphi$ uniformly continuous in any compact interval *I*. By induction it follows that $S\varphi$ is smooth in *I*. Hence the operator *S* maps from $\mathcal{D}(\mathbb{R}^n) \to \mathcal{D}(\mathbb{R})$. Consequently, $\Sigma_T \varphi \in \mathcal{D}(\mathbb{R}), \forall \varphi \in$ $\mathcal{D}(\mathbb{R}^n)$.

We can now define T^*f , in agreement with (1), $\forall f \in \mathcal{D}'(R)$ and $\forall \varphi \in \mathcal{D}(R^n)$, by

$$\langle T^*f, \varphi \rangle \triangleq \left\langle f, y^{n-1} \int_{S^{n-1}} \varphi(y\omega) \,\omega_{S^{n-1}} \right\rangle.$$
 (17)

We still have to verify that T^*f , as defined by (17), is a distribution based on \mathbb{R}^n , $\forall f \in \mathcal{D}'(\mathbb{R})$. Theorem 7.2.1 in [10] only guarantees that $T^*f \in \mathcal{D}'(\mathbb{R}^n \setminus \{\mathbf{0}\})$ for those distributions $f \in \mathcal{D}'(\mathbb{R})$ such that supp (f) has a pre-image in \mathbb{R}^n under T for which $|dT|(\mathbf{x}) \neq 0$. For any other f, i.e., for which either the pre-image of supp (f) under T contains the origin (where $(dT)(\mathbf{0})$ does not exist) or either supp $(f) \subset \mathbb{R}_{-]}$ (since then the pre-image of T is not defined) we need to check the linearity and sequential continuity of T^*f , $\forall \varphi \in \mathcal{D}(\mathbb{R}^n)$.

The linearity of T^*f , as defined by (17), is obvious. Further, any sequence $\varphi_{\nu} \in \mathcal{D}(\mathbb{R}^n)$ converging to 0 generates a sequence $(\Sigma_T \varphi)_{\nu} \in \mathcal{D}(\mathbb{R})$ also converging to 0, due to the uniform continuity of $S\varphi$ in any compact interval. Then, the sequential continuity of f implies the sequential continuity of T^*f , showing that T^* is a sequentially continuous operator. Hence, $T^*f \in \mathcal{D}'(\mathbb{R}^n)$.

Remarks.

(i) The form (14) for $\Sigma_T \varphi$ and the property (16) of $S\varphi$ imply that the pullback T^*f , as defined by (17), is a distribution, even if f itself is only a partial distribution defined on that subset of test functions $\mathcal{D}_{\mathbb{Z}_1}(R)$ having (i) a zero of order n-1 at the origin and (ii) which, for n odd, are even (then $\mathbb{Z}_1 = \mathbb{Z}_{[-n,-1]} \cup \mathbb{Z}_{0,-})$ or, for n even, are odd (then $\mathbb{Z}_1 = \mathbb{Z}_{[-n,-1]} \cup \mathbb{Z}_{e,-}$) (for the notation $\mathcal{D}_{\mathbb{Z}_1}(R)$, see [7, Section 2.1, 5]).

(ii) The pullback T^* along the above function T is not injective. Indeed, eq. (17) and the property (16) of $S\varphi$ imply that

$$\left\{\sum_{l=0}^{n-2}a_l\delta^{(l)} + \sum_{p=0}^{P}b_p\delta^{(n+2p)}, \forall a_l, b_p \in \mathbb{C}, \forall P \in \mathbb{N}\right\} \subset \ker T^*.$$
 (18)

(iii) The distribution $T^* \delta_y$ in (2) represents a delta distribution having as support the sphere Σ_y with radius *y*. From (14) follows that

$$\delta_{\Sigma_y} = T^* \delta_y = \delta_y \otimes 1_{(\omega)},\tag{19}$$

with $1_{(\omega)}$ the one distribution based on S^{n-1} . We can not speak of *the* delta distribution having as support the sphere with radius y, since $\delta_{\Sigma_y} = T^* \delta_y$ depends on the equation used to represent the surface Σ_y , here $|\mathbf{x}| = y$. The equation $|\mathbf{x}|^2 = y^2$ defines the same sphere, but now the function $T_2 : X = R^n \setminus \{\mathbf{0}\} \to Y = R_+$ such that $\mathbf{x} \mapsto r = |\mathbf{x}|^2$ leads to the pullback $\delta_{\Sigma_{y^2}} \triangleq T_2^* \delta_y = \frac{1}{2} \delta_y \otimes 1_{(\omega)} \neq \delta_{\Sigma_y}$.

The pullback T^* along the function T thus performs two actions: (i) possibly an extension from $\mathcal{D}_{\mathbb{Z}_1}(R)$ to $\mathcal{D}(R)$, and (ii) a "change of variables" from $y \mapsto \mathbf{x}$. This can be illustrated more explicitly with the following example.

First, let

$$\Delta \triangleq D_1^2 + D_2^2 + \dots + D_n^2 \tag{20}$$

denote the generalized Laplacian defined on $\mathcal{D}'(\mathbb{R}^n)$. Define distributions $\Delta^p \delta$, $\forall p \in \mathbb{N}$, based on \mathbb{R}^n by

$$\langle \Delta^p \delta, \varphi \rangle \triangleq (\Delta^p \varphi) (\mathbf{0}),$$
 (21)

where in the right-hand side of (21) Δ denotes the ordinary Laplacian defined on $\mathcal{D}(\mathbb{R}^n)$. It is shown in [11, p. 73, eq. (6)] that (Pizetti's formula), $\forall p \in \mathbb{N}$,

$$A_{n-1}\frac{(d^{2p}S\varphi)(0)}{(2p)!} = \frac{A_{n+2p-1}}{(4\pi)^p} \frac{(\Delta^p \varphi)(\mathbf{0})}{p!}.$$
 (22)

Now, let $\mathcal{D}_{\mathbb{Z}_{[-k,-1]}}(R)$ stand for the subset of test functions having a zero of order k - 1 at the origin, $\forall k \in \mathbb{Z}_+$. For any distribution $f \in \mathcal{D}'(R)$ and functions $y^{-k} : R \setminus \{0\} \to R$, the multiplication $y^{-k} \cdot f$ can be defined, $\forall \psi \in \mathcal{D}_{\mathbb{Z}_{[-k,-1]}}(R)$, by

$$\left\langle y^{-k}.f,\psi\right\rangle \triangleq \left\langle f,y^{-k}\psi\right\rangle,$$
 (23)

since $y^{-k}\psi \in \mathcal{D}(R)$. Hence, $y^{-k}f \triangleq y^{-k}$. *f* is a partial distribution defined on $\mathcal{D}_{\mathbb{Z}_{[-k,-1]}}(R)$. For the particular partial distributions $y^{-(n-1)}\delta^{(m)}$, $\forall m \in \mathbb{N}$, (see also Appendix 7.2) (23) gives, $\forall \psi \in \mathcal{D}_{\mathbb{Z}_{[-(n-1),-1]}}(R)$,

$$\left\langle y^{-(n-1)}\delta^{(m)},\psi\right\rangle = (-1)^m \left(d_y^m \left(y^{-(n-1)}\psi\right)\right)(0).$$
 (24)

A. Let m = 2p, $\forall p \in \mathbb{N}$. On the one hand, using (14), (21), (24) and (22), eq. (17) with $f = y^{-(n-1)}\delta^{(2p)}$ implies that, $\forall p \in \mathbb{N}$,

$$T^* \frac{y^{-(n-1)} \delta^{(2p)}}{(2p)!} = \frac{A_{n+2p-1}}{(4\pi)^p} \frac{\Delta^p \delta}{p!}.$$
 (25)

Eq. (25) shows that the distributions $\Delta^p \delta$ are proportional to the pullback T^* from Y to X of the partial distributions $y^{-(n-1)}\delta^{(2p)}$, defined on $\mathcal{D}_{Z_{[-(n-1),-1]}}(R)$.

On the other hand, taking the (n - 1 + 2p)-th derivative with respect to y of (14), gives

$$\frac{\left(d^{n-1+2p}\Sigma_T\varphi\right)(0)}{(n-1+2p)!} = A_{n-1}\frac{d^{2p}\left(S\varphi\right)(0)}{(2p)!}.$$
(26)

Substituting in the right-hand side of (26) the expression (22), using the definition of $\delta^{(m)}$ and applying definition (1), we get, $\forall p \in \mathbb{N}$,

$$T^* \frac{(-1)^{n-1+2p} \,\delta^{(n-1+2p)}}{(n-1+2p)!} = \frac{A_{n+2p-1}}{(4\pi)^p} \frac{\Delta^p \delta}{p!}.$$
(27)

Eq. (27) shows that the distributions $\Delta^p \delta$ are also proportional to the pullback T^* from *Y* to *X* of the distributions $\delta^{(n-1+2p)}$.

Eqs. (25) and (27) can be summarized as, $\forall p \in \mathbb{N}$,

$$T^*\left(y^{-(n-1)}\frac{\delta^{(2p)}}{(2p)!}\right) = \frac{A_{n+2p-1}}{(4\pi)^p}\frac{\Delta^p\delta}{p!} = T^*\left(\frac{(-1)^{n-1}\delta^{(n-1+2p)}}{(n-1+2p)!}\right).$$
 (28)

B. Let m = 2p + 1, $\forall p \in \mathbb{N}$. In a similar way as under A we find that

$$T^*\left(y^{-(n-1)}\delta^{(2p+1)}\right) = 0 = T^*\delta^{(n+2p)}.$$
(29)

Eqs. (28), (29) and (126) illustrate again that T^* is not injective.

Further, due to (14) holds that $\langle T^*\delta^{(l)}, \varphi \rangle = 0$, $\forall l \in \mathbb{Z}_{[0,n-2]}$. This result, together with the right equations in (28) and (29), can be summarized as

$$T^*\delta^{(l)} = 0, \forall l \in \mathbb{Z}_{[0,n-2]},$$
(30)

$$T^* \frac{\delta^{(n-1+k)}}{(n-1+k)!} = e_k (-1)^{n-1} \frac{A_{n+k-1}}{(4\pi)^{k/2}} \frac{\Delta^{k/2} \delta}{(k/2)!}, \forall k \in \mathbb{N}.$$
 (31)

The distributions $\delta^{(p)}$ in the left-hand sides of (30)–(31) are based on *R* and the distributions $\Delta^p \delta$ in the right-hand side of (31) are based on R^n . The distributions $\delta^{(p)}_{\Sigma_0} \triangleq T^* \delta^{(p)}$ can be interpreted as spherical multiplet (or *p*-fold) layers, [11, p. 237], concentrated at an (n - 1)-dimensional sphere of radius y = 0.

5 Pullback of an AHD on *R* along the function $|\mathbf{x}|$

5.1 The distributions $D_z^m |\mathbf{x}|^2$

Let $m \in \mathbb{N}$.

5.1.1 Pullback of $y_+^z \ln^m |y|$

Regular distributions The distributions $y_+^z \ln^m |y|$ are defined in [11, p. 84], [7, Section 5.2.3]. For -1 < Re(z), $y_+^z \ln^m |y| = D_z^m y_+^z$ is a regular distribution, so we obtain from (1), $\forall \varphi \in \mathcal{D}(\mathbb{R}^n)$,

$$\langle T^* (y_+^z \ln^m |y|), \varphi \rangle = \langle y_+^z \ln^m |y|, \Sigma_T \varphi \rangle, = \int_0^{+\infty} (y^z \ln^m y) \Sigma_T \varphi (y) \, dy.$$
 (32)

Substituting herein the expression (14) for $\Sigma_T \varphi$ yields

$$\langle T^* (y_+^z \ln^m |y|), \varphi \rangle = A_{n-1} \int_0^{+\infty} \left(y^{z+n-1} \ln^m y \right) (S\varphi) (y) \, dy,$$

= $\left\langle y_+^{z+n-1} \ln^m |y|, A_{n-1} S\varphi \right\rangle.$ (33)

As was shown in the previous section, $S\varphi \in \mathcal{D}(R)$. Thus, the right-hand side of (33) can be regarded as the functional value of the regular distribution $y_+^{z+n-1} \ln^m |y|$ for the test function $A_{n-1}S\varphi$. Expression (43) below, for the Laurent series of the function $y_+^w \ln^m y$ about $w = -k \in \mathbb{Z}_-$, shows that $y_+^w \ln^m |y|$ has poles of order m + 1 at $w = -k \in \mathbb{Z}_-$. However, due to property (16) of the test function $S\varphi$ and the expression for the principal part of the Laurent series of the function $y_+^w \ln^m y$ about w = -k, the poles of $y_+^w \ln^m y$ at $w = -k \in \mathbb{Z}_{e,-}$ do not occur in (33). Consequently, the distribution $T^*(y_+^z \ln^m |y|)$ has poles of order m + 1 only at $z \in \mathbb{Z}_p \triangleq \{-n - 2p, \forall p \in \mathbb{N}\}$.

Substituting (15) in (33) gives

$$\langle T^*\left(y_+^z\ln^m|y|\right),\varphi\rangle = \int_0^{+\infty} \int_{S^{n-1}} \left(y^z\ln^m y\right)\varphi\left(y\omega\right)y^{n-1}\omega_{S^{n-1}}dy.$$
(34)

Changing back to Cartesian coordinates in the right-hand side double integral in (34), we get

$$\langle T^* (y_+^z \ln^m |y|), \varphi \rangle = \int_{\mathbb{R}^n} (|\mathbf{x}|^z \ln^m |\mathbf{x}|) \varphi \omega_{\mathbb{R}^n},$$

= $\langle |\mathbf{x}|^z \ln^m |\mathbf{x}|, \varphi \rangle.$ (35)

Combining (35) with (33) shows that $|\mathbf{x}|^{z} \ln^{m} |\mathbf{x}|$ are regular distributions for $-n < \operatorname{Re}(z)$. Since $y_{+}^{z} \ln^{m} |y| = D_{z}^{m} y_{+}^{z}$ for $-1 < \operatorname{Re}(z)$, is due to (4) $|\mathbf{x}|^{z} \ln^{m} |\mathbf{x}| = D_{z}^{m} |\mathbf{x}|^{z}$ for $-n < \operatorname{Re}(z)$.

In particular for z = 0, follows from (35) that, $\forall m \in \mathbb{N}$,

$$\ln^{m} |\mathbf{x}| = T^{*} \left(1_{+} \ln^{m} |y| \right).$$
(36)

Analytic continuations The complex analyticity of the distribution $y_+^z \ln^m |y|$ for -1 < Re(z) together with the principle of analytic continuation makes that (35) continues to hold, $\forall z \in \mathbb{C} \setminus \mathbb{Z}_p$,

$$|\mathbf{x}|^{z} \ln^{m} |\mathbf{x}| = T^{*} \left(y_{+}^{z} \ln^{m} |y| \right).$$
(37)

Similarly we get, $\forall z \in \mathbb{C} \setminus \mathbb{Z}_p$ and $\forall \varphi \in \mathcal{D}(\mathbb{R}^n)$, from (33),

$$\left\langle T^{*}\left(y_{+}^{z}\ln^{m}|y|\right),\varphi\right\rangle = \left\langle y_{+}^{z+n-1}\ln^{m}|y|,A_{n-1}S\varphi\right\rangle,\tag{38}$$

and from (32),

$$\langle T^* \left(y_+^z \ln^m |y| \right), \varphi \rangle = \langle y_+^z \ln^m |y|, \Sigma_T \varphi \rangle.$$
(39)

Invoking (4) and using (37) with m = 0, it follows that also $\forall z \in \mathbb{C} \setminus \mathbb{Z}_p$,

$$\mathbf{x}|^{z}\ln^{m}|\mathbf{x}| = D_{z}^{m}|\mathbf{x}|^{z}.$$
(40)

Using (37) in (38) further yields, $\forall z \in \mathbb{C} \setminus \mathbb{Z}_{e,-}$,

$$\left\langle |\mathbf{x}|^{z-n} \ln^{m} |\mathbf{x}|, \varphi \right\rangle = \left\langle y_{+}^{z-1} \ln^{m} |y|, \int_{S^{n-1}} \varphi \left(y\omega \right) \omega_{S^{n-1}} \right\rangle.$$
(41)

We will now derive a more explicit expression in order to evaluate the righthand side of (41) after analytic continuation. To this end, we first need the following *n*-dimensional projection operator $T_{p,q}^n$: $\mathcal{D}(\mathbb{R}^n) \to \mathcal{D}(\mathbb{R}^n)$ such that $\varphi \mapsto T_{p,q}^n \varphi$, defined by

$$\left(T_{p,q}^{n}\varphi\right)(\mathbf{x}) \triangleq \varphi(\mathbf{x}) - \sum_{l=0}^{p+q} \left(\sum_{l_{1}=0}^{l} \dots \sum_{l_{n}=0}^{l} \mathbf{1}_{L=l} \left(\left(\frac{\partial^{L}\varphi}{(\partial x)^{L}}\right)(\mathbf{0})\right) \left(\prod_{i=1}^{n} \frac{(x^{i})^{l_{i}}}{l_{i}!}\right)\right)$$

$$\left(\mathbf{1}_{l< p} + \mathbf{1}_{p\leq l}\mathbf{1}_{[+}(1-|\mathbf{x}|^{2})\right),$$

$$(42)$$

wherein *L* is a shorthand for $\sum_{i=1}^{n} l_i$, $(\partial x)^L$ a shorthand for $(\partial x^1)^{l_1} \dots (\partial x^n)^{l_n}$ and the step function $1_{[+}(x) = 1$ iff $x \ge 0$.

In order to evaluate the right-hand side of (41) after analytic continuation, e.g. for 0 < |z - 1 + k| < 1 and for any $k \in \mathbb{Z}_+$, we recall the Laurent series of $y_{\pm}^{z-1} \ln^m |x|$ about z - 1 = -k, [7, eq. (117)],

$$\left\langle y_{\pm}^{z-1} \ln^{m} |x|, \psi \right\rangle$$

$$= (-1)^{m} \frac{\left\langle \frac{(\pm 1)^{k-1}}{(k-1)!} \delta^{(k-1)}, \psi \right\rangle}{(z-1+k)^{m+1}} + 1_{0 \le p \le k-2} (-1)^{m} \sum_{l=p}^{k-2} \frac{\left\langle \frac{(\pm 1)^{l}}{l!} \delta^{(l)}, \psi \right\rangle}{(z-1+l)^{m+1}}$$

$$+ \int_{-\infty}^{+\infty} \left(|y|^{z-1} 1_{\pm}(y) \ln^{m} |y| \right) \left(T_{p,q} \psi \right) (y) dy, \quad (43)$$

wherein $p, q \in \mathbb{N}$: p + q = k - 1, $\psi = A_{n-1}S\varphi$ and $T_{p,q} \triangleq T^1_{p,q}$. For the particular choice p = k - 1, q = 0, (43) reduces to

$$\left\langle y_{\pm}^{z-1}\ln^{m}|x|,\psi\right\rangle = (-1)^{m} \frac{\left\langle \frac{(\pm 1)^{k-1}}{(k-1)!}\delta^{(k-1)},\psi\right\rangle}{(z-1+k)^{m+1}} + \left\langle y_{\pm,0}^{z-1}\ln^{m}|x|,\psi\right\rangle, \quad (44)$$

wherein

$$\left\langle y_{\pm,0}^{z-1}\ln^{m}|x|,\psi\right\rangle = \int_{-\infty}^{+\infty} \left(\left|y\right|^{z-1}\mathbf{1}_{\pm}(y)\ln^{m}|y|\right) \left(T_{k-1,0}\psi\right)(y)\,dy.$$
 (45)

Take k = 2p + 2, $\forall p \in \mathbb{N}$, in (44)–(45). Then, for 0 < |z + (2p + 1)| < 1, and due to (16), (41) becomes

$$\left\langle \left| \mathbf{x} \right|^{z-n} \ln^{m} \left| \mathbf{x} \right|, \varphi \right\rangle = \int_{0}^{+\infty} \left(y^{z-1} \ln^{m} \left| y \right| \right) \left(T_{2p+1,0} \left(A_{n-1} S \varphi \right) \right) \left(y \right) dy,$$

$$= \int_{0}^{+\infty} \int_{S^{n-1}} \left(y^{z-n} \ln^{m} y \right) \left(T_{2p+1,0}^{n} \varphi \right) \left(y \omega \right) y^{n-1} \omega_{S^{n-1}} dy,$$

$$= \int_{\mathbb{R}^{n}} \left(\left| \mathbf{x} \right|^{z-n} \ln^{m} \left| \mathbf{x} \right| \right) \left(T_{2p+1,0}^{n} \varphi \right) \omega_{\mathbb{R}^{n}}.$$

$$(46)$$

In particular at z = -(2p+1), (46) allows to calculate the functional value of $|\mathbf{x}|^{z-n} \ln^m |\mathbf{x}|$ at the ordinary points z = -(2p+1). The right-hand side of (46) shows that the analytic continuation of the regular distribution $|\mathbf{x}|^z \ln^m |\mathbf{x}|$ is no longer a regular distribution.

Example 8. *In particular for* p = 0*, (46) gives,* $\forall m \in \mathbb{N}$ *and* $\forall \phi \in \mathcal{D}(\mathbb{R}^n)$ *,*

$$\left\langle |\mathbf{x}|^{-n-1} \ln^{m} |\mathbf{x}|, \varphi \right\rangle$$

$$= A_{n-1} \int_{0}^{+\infty} \frac{1}{y^{2}} \left(\begin{array}{c} (S\varphi) (y) - (S\varphi) (0) \\ -1_{[+}(1-y^{2}) ((d(S\varphi)) (0)) y \end{array} \right) \ln^{m} |y| \, dy,$$

$$= \int_{\mathbb{R}^{n}} |\mathbf{x}|^{-n-1} \left(\begin{array}{c} \varphi(\mathbf{x}) - \varphi (\mathbf{0}) \\ -1_{[+}(1-|\mathbf{x}|^{2}) \left(\sum_{i=1}^{n} \left(\left(\frac{\partial \varphi}{\partial x^{i}} \right) (\mathbf{0}) \right) x^{i} \right) \end{array} \right) \ln^{m} |\mathbf{x}| \, \omega_{\mathbb{R}^{n}}.$$

$$(47)$$

Remarks.

(i) For -1 < Re(z), $|\mathbf{x}|^{z} \ln^{m} |\mathbf{x}|$ can be regarded as the multiplication product $|\mathbf{x}|^{z} . \ln^{m} |\mathbf{x}|$ of the regular distributions $|\mathbf{x}|^{z}$ and $\ln^{m} |\mathbf{x}|$. By analytic continuation this product is uniquely extended to all $z \in \mathbb{C} \setminus \mathbb{Z}_{p}$. This justifies our use of the notation $|\mathbf{x}|^{z} \ln^{m} |\mathbf{x}|$ in the right-hand side of (35).

(ii) It follows from (39) that, $\forall z \in \mathbb{C} \setminus \mathbb{Z}_{e,-}$, the distribution $|\mathbf{x}|^z \ln^m |\mathbf{x}|$ is the pullback of the partial distribution $y_+^z \ln^m |y|$, defined on that set of test functions $\mathcal{D}_{\mathbb{Z}_1}(R)$ having (i) a zero of order n-1 at the origin and (ii) which, for n odd, are even (i.e., $\mathbb{Z}_1 = \mathbb{Z}_{[-n,-1]} \cup \mathbb{Z}_{o,-}$) or, for n even, are odd (i.e., $\mathbb{Z}_1 = \mathbb{Z}_{[-n,-1]} \cup \mathbb{Z}_{e,-}$).

(iii) The analytically continued distributions $|\mathbf{x}|^{z} \ln^{m} |\mathbf{x}|$ are homogeneous of degree *z* and have order of association *m*. This follows from the properties of the analytically continued distributions $y_{\pm}^{z} \ln^{m} |x|$, [7, Section 5.2.2], and Theorem 5.

Extensions We now consider the cases $z + n = -2p \in \mathbb{Z}_{e,-]}$ in (38). The Laurent series of y_{\pm}^z about $z = -k \in \mathbb{Z}_-$ and holding in 0 < |z+k| < 1 are given by, [11, p. 87], [7, Section 4.2.3],

$$y_{\pm}^{z} = \frac{\frac{(\pm 1)^{k-1}}{(k-1)!}\delta^{(k-1)}}{z+k} + \sum_{m=0}^{+\infty} \left(y_{\pm,0}^{-k}\ln^{m}|y| \right) \frac{(z+k)^{m}}{m!},\tag{49}$$

wherein the distributions $y_{\pm,0}^{-k} \ln^m |y|$, given by (45), are particular extensions of $y_{\pm}^z \ln^m |y|$ at the pole z = -k, in the sense of [7, Section 3.3, eq. (33)]. Using the sequential continuity of T^* , (37) with m = 0, (27) and letting k = n + 2p, we obtain the Laurent series of $|\mathbf{x}|^z$ about $z + n = -2p \in \mathbb{Z}_{e,-1}$ as

$$|\mathbf{x}|^{z} = \frac{\frac{A_{n+2p-1}}{(4\pi)^{p}p!}\Delta^{p}\delta}{z+n+2p} + \sum_{m=0}^{+\infty} \left(T^{*}\left(y_{+,0}^{-(n+2p)}\ln^{m}|y|\right)\right)\frac{(z+n+2p)^{m}}{m!}.$$
 (50)

Due to the uniform continuity of this series, the Laurent series of $D_z^m |\mathbf{x}|^z$ about $z + n = -2p \in \mathbb{Z}_{e,-}$ is obtained as

$$D_{z}^{m} |\mathbf{x}|^{z} = (-1)^{m} \frac{\frac{A_{n+2p-1}}{(4\pi)^{p} p!} \Delta^{p} \delta}{(z+n+2p)^{m+1}} + \sum_{l=m}^{+\infty} T^{*} \left(y_{+,0}^{-(n+2p)} \ln^{l} |y| \right) \frac{(z+n+2p)^{l-m}}{(l-m)!}.$$
(51)

We can now give a meaning to $D_z^m |\mathbf{x}|^z \operatorname{at} z + n = -2p \in \mathbb{Z}_{e,-]}$. Expression (51) shows that $(D_z^m |\mathbf{x}|^z)_{z=-n-2p}$ is a partial AHD, i.e., a generalized function only defined for test functions $\psi \in \mathcal{D}_r(\mathbb{R}^n) \triangleq \{\varphi \in \mathcal{D}(\mathbb{R}^n) : (\Delta^p \varphi) (0) = 0\}$. The Hahn-Banach theorem ensures the existence of a distribution $((D_z^m |\mathbf{x}|^z)_{\varepsilon})_{z=-n-2p'}$ defined $\forall \varphi \in \mathcal{D}(\mathbb{R}^n)$ and which coincides with $(D_z^m |\mathbf{x}|^z)_{z=-n-2p}$ on $\mathcal{D}_r(\mathbb{R}^n) \subset \mathcal{D}(\mathbb{R}^n)$, called an extension of the partial distribution $(D_z^m |\mathbf{x}|^z)_{z=-n-2p}$ from $\mathcal{D}_r(\mathbb{R}^n)$ to $\mathcal{D}(\mathbb{R}^n)$. This extension is generally not unique and not necessarily an AHD. Here we are only interested in constructing AHDs based on \mathbb{R}^n , so we restrict our attention to extensions $((D_z^m |\mathbf{x}|^z)_e)_{z=-n-2p}$ which are again an AHD (we indicate extensions which are an AHD by the subscript e and use the subscript ε for a general extension). The subset of distributions which maps $\mathcal{D}_r(U)$ to zero is called the annihilator of $\mathcal{D}_r(U)$ and denoted by $\mathcal{D}_r^{\prime\perp}(U)$. Any two extensions differ by a generalized function $g \in \mathcal{D}_r^{\prime\perp}(U)$. Applied to our case here, we find that associated homogeneous extensions are of the form

$$\left(\left(D_{z}^{m}\left|\mathbf{x}\right|^{z}\right)_{e}\right)_{z=-n-2p} = \left(\left(D_{z}^{m}\left|\mathbf{x}\right|^{z}\right)_{0}\right)_{z=-n-2p} + c'\Delta^{p}\delta,\tag{52}$$

with arbitrary $c' \in \mathbb{C}$. This way, we have extended the partial distributions $(D_z^m |\mathbf{x}|^z)_{z=-n-2p}$, defined on $\mathcal{D}_r(\mathbb{R}^n)$, to the non-unique singular distributions $((D_z^m |\mathbf{x}|^z)_e)_{z=-n-2p}$, defined on the whole of $\mathcal{D}(\mathbb{R}^n)$.

The finite part

$$\left(\left(D_{z}^{m}\left|\mathbf{x}\right|^{z}\right)_{0}\right)_{z=-n-2p} \triangleq T^{*}\left(y_{+,0}^{-(n+2p)}\ln^{m}\left|y\right|\right),$$
(53)

is given by (41), (15) and [7, eq. (118)] as

$$\left\langle \left(\left(D_{z}^{m} \left| \mathbf{x} \right|^{z} \right)_{0} \right)_{z=-n-2p}, \varphi \right\rangle$$

$$= \left\langle y_{+,0}^{-1-2p} \ln^{m} \left| y \right|, A_{n-1} S \varphi \right\rangle,$$

$$= \int_{0}^{+\infty} \left(y^{-1-2p} \ln^{m} y \right) \left(T_{2p,0} \left(A_{n-1} S \varphi \right) \right) \left(y \right) dy,$$

$$= \int_{0}^{+\infty} \int_{S^{n-1}} \left(y^{-n-2p} \ln^{m} y \right) \left(T_{2p,0}^{n} \varphi \right) \left(y \omega \right) y^{n-1} \omega_{S^{n-1}} dy,$$

$$= \int_{R^{n}} \left(\left| \mathbf{x} \right|^{-n-2p} \ln^{m} \left| \mathbf{x} \right| \right) \left(T_{2p,0}^{n} \varphi \right) \omega_{R^{n}}.$$

$$(54)$$

Example 9. In particular for p = 0, (54) gives, $\forall m \in \mathbb{N}$ and $\forall \varphi \in \mathcal{D}(\mathbb{R}^n)$, $\left\langle \left(\left(D_z^m |\mathbf{x}|^z \right)_0 \right)_{z=-n}, \varphi \right\rangle$

$$= A_{n-1} \int_{0}^{+\infty} \frac{1}{y} \left((S\varphi) (y) - \mathbb{1}_{[+} (1 - y^2) (S\varphi) (0) \right) \ln^m y \, dy, \tag{55}$$

$$= \int_{\mathbb{R}^n} |\mathbf{x}|^{-n} \left(\varphi(\mathbf{x}) - \mathbf{1}_{[+} (1 - |\mathbf{x}|^2) \varphi(\mathbf{0}) \right) \ln^m |\mathbf{x}| \ \omega_{\mathbb{R}^n}.$$
(56)

Remarks.

(i) The extension $((D_z^m |\mathbf{x}|^z)_e)_{z=-n-2p}$ is of degree -n - 2p and associated of order m + 1, for the same reasons as explained in [7, eq. (121)], but now applied to the distribution $y_{+,e}^{-(n+2p)} \ln^m |y|$.

(ii) Due to [6, eq. (20)] ([9, eq. (20)]) is $y_{+,e}^{-(n+2p)} \ln^m |y| = y_{+,0}^{-(n+2p)} \ln^m |y| + c_+ \delta^{(n+2p-1)}, c_+ \in \mathbb{C}$ arbitrary. Then, using (52), (53) and (31) we obtain

$$T^{*}\left(y_{+,e}^{-(n+2p)}\ln^{m}|y|\right) = \left(\left(D_{z}^{m}|\mathbf{x}|^{z}\right)_{0}\right)_{z=-n-2p} + c_{+}^{\prime}\Delta^{p}\delta,$$
(57)

with the branches of both extensions related by

$$c'_{+} = c_{+} (-1)^{n-1} (n+2p-1)! \frac{A_{n+2p-1}}{(4\pi)^{p} p!}.$$
(58)

(iii) We use the notation $((D_z^m |\mathbf{x}|^z)_e)_{z=-n-2p}$ instead of $|\mathbf{x}|_e^{-n-2p} \ln^m |\mathbf{x}|$, because it is not yet clear if $((D_z^m |\mathbf{x}|^z)_e)_{z=-n-2p}$ is equal to the multiplication of $|\mathbf{x}|_e^{-n-2p}$ by $\ln^m |\mathbf{x}|$. This matter can be resolved after the multiplication algebra constructed for AHDs on *R* in [6] ([9]) is extended to a multiplication algebra for SAHDs on *R*ⁿ.

Spherical form From (37), (51), (30) and (52) it thus follows that, $\forall z \in \mathbb{C}$,

$$T^* (y_+^z \ln^m |y|) = D_z^m |\mathbf{x}|^z,$$
(59)

with $y_{+}^{z} \ln^{m} |y|$ replaced by $y_{+,e}^{z} \ln^{m} |y|$ for $z \in \mathbb{Z}_{-}$ and $D_{z}^{m} |\mathbf{x}|^{z}$ replaced by $(D_{z}^{m} |\mathbf{x}|^{z})_{e}$ for $z + n \in \mathbb{Z}_{e,-}$.

From (34) and for -1 < Re(z), we can read off the pullback $T^*_{S \to C}$ along the diffeomorphism from spherical to Cartesian coordinates $T_{S \to C}$, defined in Appendix 7.1, of $T^*(y^z_+ \ln^m |y|)$ as

$$\langle T^* \left(y_+^z \ln^m |y| \right), \varphi \rangle = \int_0^{+\infty} \int_{S^{n-1}} \left(r^z \ln^m r \otimes 1_{(\omega)} \right) \varphi \left(r\omega \right) r^{n-1} \omega_{S^{n-1}} dr.$$
(60)

After analytic continuation we get the distributions $T^*(y_+^z \ln^m |y|), \forall z + n \in \mathbb{C} \setminus \mathbb{Z}_{e,-1}$, in spherical coordinates as

$$T^*\left(y_+^z \ln^m |y|\right) = r^z \ln^m r \otimes 1_{(\omega)},\tag{61}$$

or equivalently

$$|\mathbf{x}|^{z}\ln^{m}|\mathbf{x}| = r^{z}\ln^{m}r \otimes \mathbf{1}_{(\omega)}.$$
(62)

At the poles $z + n = -2p \in \mathbb{Z}_{e,-]}$, we mean by $(r^{-n-2p} \ln^m r)_e$ the distribution defined by

$$\left(r^{-n-2p}\ln^{m}r\right)_{e}\otimes 1_{(\omega)}\triangleq\left(\left(D_{z}^{m}\left|\mathbf{x}\right|^{z}\right)_{e}\right)_{z=-n-2p},$$
(63)

with the right-hand side of (63) given by (52).

Example 10. For instance in \mathbb{R}^3 , the familiar functional r^{-1} (more precisely, $r^{-1} \otimes \mathbb{1}_{(\omega)}$) is thus a regular distribution, whose functional value is read off from (41) for z = 2 and m = 0 as

$$\left\langle r^{-1} \otimes 1_{(\omega)}, \varphi \right\rangle = \left\langle y_{+}, \int_{S^{2}} \varphi \left(y\omega \right) \omega_{S^{2}} \right\rangle,$$

= $4\pi \int_{0}^{+\infty} y \left(S\varphi \right) \left(y \right) dy.$ (64)

Further, r^{-2} (more precisely, $r^{-2} \otimes 1_{(\omega)}$) is also a regular distribution determined by

$$\left\langle r^{-2} \otimes \mathbb{1}_{(\omega)}, \varphi \right\rangle = \left\langle \mathbb{1}_{+}, \int_{S^2} \varphi \left(y \omega \right) \omega_{S^2} \right\rangle,$$

= $4\pi \int_0^{+\infty} (S\varphi) \left(y \right) dy.$ (65)

By contrast, $r^{-3} \otimes 1_{(\omega)}$ is a partial distribution only defined on $\mathcal{D}_r(\mathbb{R}^3) = \{\varphi \in \mathcal{D}(\mathbb{R}^3): \varphi(\mathbf{0}) = 0\}$, but which can be non-uniquely extended to a first order AHD $r_e^{-3} \otimes 1_{(\omega)} = |\mathbf{x}|_e^{-3}$, now defined on all of $\mathcal{D}(\mathbb{R}^3)$, for which $\langle r_e^{-3} \otimes 1_{(\omega)}, \psi \rangle = \langle r^{-3} \otimes 1_{(\omega)}, \psi \rangle$, $\forall \psi \in \mathcal{D}_r(\mathbb{R}^3)$, and whose functional value is given by, $\forall \varphi \in \mathcal{D}(\mathbb{R}^3)$,

$$\left\langle r_e^{-3} \otimes \mathbf{1}_{(\omega)}, \varphi \right\rangle = \left\langle |\mathbf{x}|_e^{-3}, \varphi \right\rangle,$$

$$= \left\langle |\mathbf{x}|_0^{-3}, \varphi \right\rangle + c \left\langle \delta, \varphi \right\rangle.$$
(66)

More explicitly, $\left\langle |\mathbf{x}|_{e}^{-3}, \varphi \right\rangle$ $= 4\pi \left(\int_{0}^{1} \frac{(S\varphi)(y) - (S\varphi)(0)}{y} dy + \int_{1}^{+\infty} \frac{(S\varphi)(y)}{y} dy \right) + c(S\varphi)(0), \quad (67)$ $= \int_{B^{3}} \frac{\varphi(\mathbf{x}) - \varphi(\mathbf{0})}{|\mathbf{x}|^{3}} \omega_{R^{3}} + \int_{R^{3} \setminus B^{3}} \frac{\varphi(\mathbf{x})}{|\mathbf{x}|^{3}} \omega_{R^{3}} + c\varphi(\mathbf{0}), \quad (68)$ with $B^n \triangleq \{\mathbf{x} \in \mathbb{R}^n : |\mathbf{x}| \leq 1\}$ the closed unit *n*-dimensional ball and $c \in \mathbb{C}$ arbitrary.

Example 11. The delta distribution on \mathbb{R}^n in spherical coordinates. It is not possible to define the delta distribution δ on \mathbb{R}^n in spherical coordinates by a straightforward application of the formula for the pullback along the diffeomorphism $T_{S\to C}$ of Appendix 7.1. The reason being that in order to make $T_{S\to C}$ a diffeomorphism, we must (at least) exclude $\mathbf{0} \in \mathbb{R}^n$, but then $T_{S\to C}$ is no longer a diffeomorphism of a neighborhood of the supp $\delta = \{\mathbf{0}\}$ and [10, Theorem 7.1.1] does not apply. However, from (27) follows for p = 0 and $\forall \varphi \in \mathcal{D}(\mathbb{R}^n)$ that

$$\left\langle T^*\left(\frac{1}{A_{n-1}}y^{-(n-1)}\delta\right),\varphi\right\rangle = \varphi\left(\mathbf{0}\right),$$
(69)

which by (1) and (14) is equivalent to

$$\left\langle \frac{1}{A_{n-1}} y^{-(n-1)} \delta, \int_{S^{n-1}} \varphi\left(y\omega\right) \, y^{n-1} \omega_{S^{n-1}} \right\rangle = \varphi\left(\mathbf{0}\right). \tag{70}$$

In spherical coordinates (70) becomes

$$\left\langle \frac{1}{A_{n-1}} r^{-(n-1)} \delta \otimes \mathbf{1}_{(\omega)}, \varphi \right\rangle = \varphi \left(\mathbf{0} \right).$$
(71)

From (71) we can read off δ on \mathbb{R}^n in spherical coordinates. Notice that its radial part $r^{-(n-1)}\delta/A_{n-1}$ is a distribution defined on $\mathcal{D}(\mathbb{R}_+)$, while $y^{-(n-1)}\delta/A_{n-1}$, in the equivalent functional (70), is a partial distribution only defined on $\mathcal{D}_{\mathbb{Z}_{[-n,-1]}}(\mathbb{R})$.

5.1.2 Pullback of $y_{-}^{z} \ln^{m} |y|$

For $-1 < \operatorname{Re}(z)$, $T^*(y_-^z \ln^m |y|)$ is a regular distribution, so we have using (1), $\forall \varphi \in \mathcal{D}(R)$,

$$\begin{aligned} \langle T^* \left(y_-^z \ln^m |y| \right), \varphi \rangle &= \langle y_-^z \ln^m |y|, \Sigma_T \varphi \rangle, \\ &= \int_{-\infty}^{+\infty} \left(y_-^z \ln^m |y| \right) \Sigma_T \varphi \left(y \right) \, dy, \\ &= \int_{-\infty}^{+\infty} \left(y_+^z \ln^m |y| \right) \Sigma_T \varphi \left(-y \right) \, dy. \end{aligned}$$

Since $S\varphi$ is an even function, it follows from (14) that $(\Sigma_T \varphi)(-y) = (-1)^{n-1}$ $(\Sigma_T \varphi)(y)$. Hence,

$$\begin{array}{ll} \langle T^* \left(y_-^z \ln^m |y| \right), \varphi \rangle &= (-1)^{n-1} \int_{-\infty}^{+\infty} \left(y_+^z \ln^m |y| \right) \Sigma_T \varphi \left(y \right) \, dy, \\ &= (-1)^{n-1} \left\langle y_+^z \ln^m |y| \right\rangle, \Sigma_T \varphi \rangle, \\ &= (-1)^{n-1} \left\langle T^* \left(y_+^z \ln^m |y| \right), \varphi \right\rangle, \end{array}$$

or

$$T^* \left(y_{-}^z \ln^m |y| \right) = (-1)^{n-1} T^* \left(y_{+}^z \ln^m |y| \right).$$
(72)

After analytic continuation we find that (72) continues to hold so that, $\forall z \in \mathbb{C} \setminus \mathbb{Z}_p$,

$$\Gamma^* \left(y_{-}^z \ln^m |y| \right) = (-1)^{n-1} D_z^m |\mathbf{x}|^z.$$
(73)

At $z + n = -2p \in \mathbb{Z}_{e,-}$, we find that

$$T^* \left(y_{-,0}^{-(n+2p)} \ln^m |y| \right) = (-1)^{n-1} \left(\left(D_z^m |\mathbf{x}|^z \right)_0 \right)_{z=-n-2p},$$
(74)

so that, with $y_{-,e}^{-(n+2p)} \ln^m |y| = y_{-,0}^{-(n+2p)} \ln^m |y| + c_- \delta^{(n+2p-1)}$,

$$T^*\left(y_{-,e}^{-(n+2p)}\ln^m|y|\right) = (-1)^{n-1}\left(\left(D_z^m|\mathbf{x}|^z\right)_0\right)_{z=-n-2p} + c'_-\Delta^p\delta,$$
(75)

with the branches of both extensions related by

$$c'_{-} = c_{-} (-1)^{n-1} (n+2p-1)! \frac{A_{n+2p-1}}{(4\pi)^{p} p!}.$$
(76)

In the process of analytic continuation and the extension process we used the fact that the operator $T_{p,q}^n$, given by (42), preserves the parity of test functions.

Example 12. The pullback along T of the distributions $(y \pm i0)^z \in \mathcal{D}'(R)$, defined in [11, p. 59], [7] as

$$(y \pm i0)^z \triangleq y_+^z + e^{\pm i\pi z} y_-^z,$$
 (77)

are obtained as, $\forall z \in \mathbb{C} \setminus \mathbb{Z}_p$,

$$T^{*}(y \pm i0)^{z} = \left(1 - (-1)^{n} e^{\pm i\pi z}\right) \left(r^{z} \otimes 1_{(\omega)}\right).$$
(78)

Recall the generalized Sokhotskii-Plemelj equations, [12, p. 28 and p. 84], [7, eq. (217)], $\forall k \in \mathbb{Z}_+$,

$$(x \pm i0)^{-k} = \mp i\pi \frac{(-1)^{k-1}}{(k-1)!} \left(\delta^{(k-1)} \pm i\eta^{(k-1)}\right),\tag{79}$$

with the distributions $\eta^{(l)} \triangleq D^l \eta$ and $\eta \triangleq \frac{1}{\pi}x^{-1}$, (see also [7, eq. (176)]). The distributions in (79) are higher degree generalizations of the Heisenberg distributions $\mp \frac{1}{2\pi i}(x \pm i0)^{-1}$. At $z = -k \in \mathbb{Z}_{[-(n-1),-1]}$, we get, using (79) and (30),

$$T^*\eta^{(k-1)} = (-1)^n \frac{2}{\pi} (k-1)! o_{n+k} \left(r^{-k} \otimes 1_{(\omega)} \right).$$
(80)

At z = -n - (2p + 1), $\forall p \in \mathbb{N}$, we have, now by using (79) and (31),

$$T^*\eta^{(n+2p)} = (-1)^n \frac{2}{\pi} (n+2p)! \left(r^{-n-(2p+1)} \otimes 1_{(\omega)} \right).$$
(81)

At z = -n - 2p, $\forall p \in \mathbb{N}$, we obtain, using (57), (75), (53), (63) and (31),

$$T^* \frac{(-1)^{n-1} \eta^{(n+2p-1)}}{(n+2p-1)!} = \frac{1}{\pi} \left(c'_+ + (-1)^n c'_- \pm i\pi \frac{A_{n+2p-1}}{(4\pi)^p p!} \right) \Delta^p \delta, \tag{82}$$

with the primed constants given by (58) and (76). Eq. (82) can be restated as

$$T^*\eta^{(n+2p-1)} = c\,\Delta^p\delta,\tag{83}$$

with $c \in \mathbb{C}$ arbitrary.

5.2 The normalized distribution Ψ^z

It is convenient to define the normalized distribution, [12, p. 93], [11, p. 74],

$$\Psi^{z} \triangleq \frac{2}{A_{n-1}} \frac{|\mathbf{x}|^{-n+z}}{\Gamma(z/2)},\tag{84}$$

which is entire in *z* by construction. From (59) follows that Ψ^z is related to the normalized distribution $\Phi_+^z \triangleq x_+^{-1+z}/\Gamma(z)$ as

$$\Psi^{z} = \frac{2}{A_{n-1}} \frac{\Gamma(z-n+1)}{\Gamma(z/2)} T^{*} \Phi_{+}^{z-n+1}.$$
(85)

The normalized distribution Ψ^z reduces to the following special values at integer values of *z*.

(i.1) At z = -2p, $\forall p \in \mathbb{N}$,

$$\Psi^{-2p} = \frac{1}{A_{n-1}} \frac{(-1)^p A_{n+2p-1}}{(4\pi)^p} \Delta^p \delta.$$
(86)

(i.2) At z = -(2p+1), $\forall p \in \mathbb{N}$,

$$\Psi^{-(2p+1)} = \frac{1}{A_{n-1}} \frac{(-1)^{p+1} (2p+1)!}{\pi^{1/2} 2^{2p} p!} |\mathbf{x}|^{-n-(2p+1)}.$$
(87)

(ii.1) At
$$z = 2p + 1, \forall p \in \mathbb{N}$$
,

$$\Psi^{2p+1} = \frac{1}{A_{n-1}} \frac{2^{2p+1} p!}{\pi^{1/2} (2p)!} |\mathbf{x}|^{-n+2p+1}.$$
(88)

(ii.2) At $z = 2p + 2, \forall p \in \mathbb{N}$,

$$\Psi^{2p+2} = \frac{1}{A_{n-1}} \frac{2}{p!} |\mathbf{x}|^{-n+2p+2}.$$
(89)

The functional Ψ^{-2p} , given by (86), is trivially evaluated using (21). The functionals, given by eqs. (88) and (89), can be directly evaluated using (35) and (33). To evaluate the functionals $\Psi^{-(2p+1)}$, we use the analytic continuation given by (46).

5.3 Kernel of the pullback

Combining (59) with (73) we find that, $\forall p, m \in \mathbb{N}$ and $\forall z \in \mathbb{C}$,

$$T^*\left(|y|^{z-n}\ln^m|y|\right) = 1_{z=-2p}c\Delta^p\delta, n \in \mathbb{Z}_{e,+},$$
(90)

$$T^*\left(|y|^{z-n}\operatorname{sgn} \ln^m |y|\right) = 1_{z=-2p}c\Delta^p\delta, n \in \mathbb{Z}_{o,+}.$$
(91)

with $c \in \mathbb{C}$ arbitrary and

$$T^*\left(|y|^{z-n}\ln^m |y|\right) = 2D_z^m |\mathbf{x}|^{z-n}, n \in \mathbb{Z}_{o,+},$$
(92)

$$T^*\left(|y|^{z-n}\operatorname{sgn}\ln^m|y|\right) = 2D_z^m |\mathbf{x}|^{z-n}, n \in \mathbb{Z}_{e,+},$$
(93)

wherein for $z \in \mathbb{Z}_{e,-}$ it is understood that the distributions are extensions. Define

$$\mathcal{E}_{0,L}'(R) \triangleq \left\{ \sum_{l=0}^{L} a_l \,\delta^{(l)}, \forall a_l \in \mathbb{C} \right\} \subset \mathcal{E}_0'(R) \tag{94}$$

and

$$\mathcal{H}'_{e}(R) \triangleq \left\{ \sum_{l=0}^{m} p_{l,e}(z) \left(|y|^{z-n} \ln^{l} |y| \right), \forall m \in \mathbb{N}, \forall z \in \mathbb{C} \setminus \mathbb{Z}_{e,-]} \right\},$$
(95)

$$\mathcal{H}'_{o}(R) \triangleq \left\{ \sum_{l=0}^{m} p_{l,o}(z) \left(|y|^{z-n} \operatorname{sgn} \ln^{l} |y| \right), \forall m \in \mathbb{N}, \forall z \in \mathbb{C} \setminus \mathbb{Z}_{e,-]} \right\}.$$
(96)

From (30) and (90)–(93) follows that the pullback T^* along the function $T : X = \mathbb{R}^n \setminus \{\mathbf{0}\} \to Y = \mathbb{R}$ such that $\mathbf{x} \mapsto y = |\mathbf{x}|$, restricted to $\mathcal{H}'(\mathbb{R})$, has as kernel

$$\ker T^* = \mathcal{E}'_{0,n-2}(R) \cup \begin{cases} \mathcal{H}'_o(R) & \text{iff} \quad n \in \mathbb{Z}_{o,+} \\ \mathcal{H}'_e(R) & \text{iff} \quad n \in \mathbb{Z}_{e,+} \end{cases}$$
(97)

6 SAHDs on \mathbb{R}^n

6.1 General form

Let $m \in \mathbb{N}$ and $k \in \mathbb{Z}_+$. Let $\Omega \subseteq \mathbb{C}$ be a neighborhood of z = -k and $p_{l,e}, p_{l,o} \in \mathcal{A}(\Omega, \mathbb{C}), \forall l \in \mathbb{Z}_{[0,m]}$, complex analytic coefficient functions, independent of y. Denote by f_m^z a general AHD based on R, complex analytic in its degree z in Ω and of order m. From [2, Theorem 4] follows that any f_m^z can be represented in Ω as

$$f_m^z = \sum_{l=0}^m \left(p_{l,e}(z) \left(|y|^z \ln^l |y| \right) + p_{l,o}(z) \left(|y|^z \operatorname{sgn} \ln^l |y| \right) \right),$$
(98)

with the coefficient functions satisfying, $\forall j \in \mathbb{Z}_{[0,m]}$,

$$\sum_{q=j}^{m} (-1)^{q} {q \choose j} \left(d^{q-j} p_{q,e} \right) (l) = 0, \forall l \in (\mathbb{Z}_{o,-} \cap \Omega),$$
(99)

$$\sum_{q=j}^{m} (-1)^{q} {q \choose j} \left(d^{q-j} p_{q,o} \right) (l) = 0, \forall l \in (\mathbb{Z}_{e,-} \cap \Omega).$$
(100)

At $z = -k \in \mathbb{Z}_{-}$, the distribution f_m^{-k} takes the form

$$f_m^{-k} = \left(\sum_{l=0}^m \frac{(-1)^l}{l+1} \left(o_k \left(d^{l+1} p_{l,e} \right) (-k) - e_k \left(d^{l+1} p_{l,o} \right) (-k) \right) \right) 2 \frac{\delta^{(k-1)}}{(k-1)!} + \sum_{l=0}^m \left(p_{l,e}(-k) \left(|y|_0^{-k} \ln^l |y| \right) + p_{l,o}(-k) \left(\left(|y|^{-k} \operatorname{sgn} \right)_0 \ln^l |y| \right) \right).$$
(101)

For T^{λ} : $X = R^n \setminus \{\mathbf{0}\} \to Y = R$ such that $\mathbf{x} \mapsto y = |\mathbf{x}|^{\lambda}$, $\lambda \in \mathbb{C}$, we obtain from Theorem 5, linearity, (98), (101), (62), (63), (52) and (90)–(93) that:

(i) $\forall z + n \in \mathbb{C} \setminus \mathbb{Z}_{e,-]}$,

$$T^* f_m^z = 2 \sum_{l=0}^m \left(o_n p_{l,e}(\lambda z) + e_n p_{l,o}(\lambda z) \right) \left(r^{\lambda z} \ln^l r \otimes 1_{(\omega)} \right),$$
(102)

(ii) if
$$\lambda z + n = -2p \in \mathbb{Z}_{e,-]}$$
,

$$T^* f_m^z = 2 \sum_{l=0}^m \left(o_n p_{l,e}(-n-2p) + e_n p_{l,o}(-n-2p) \right) \left(\left(r^{-n-2p} \ln^l r \right)_e \otimes 1_{(\omega)} \right).$$
(103)

This shows that the radial part of the pullback along T^{λ} of any AHD f_m^z of degree z, $\forall z + n \in \mathbb{C} \setminus \mathbb{Z}_{e,-]}$, and order of association m based on R, is the multiplication of the distribution $r^{\lambda z}$ with a polynomial of degree m in the regular distribution $\ln r$.

6.2 Structure theorem

Let $R : \mathbb{R}^n \to \mathbb{R}^n$ such that $\mathbf{x} \mapsto O\mathbf{x}$ with $O \in O(n)$, the orthogonal group of degree *n* over *R*. Then, any $f \in \mathcal{D}'(\mathbb{R}^n)$ has a pullback $\mathbb{R}^* f$ along the diffeomorphism *R* given by, [10, Chapter 7],

$$\langle R^*f,\varphi\rangle \triangleq \left\langle f,\left|\det\left(R^{-1}\right)'\right|\left(R^{-1}\right)^*\varphi\right\rangle,$$
(104)

with det $(R^{-1})' = \pm 1$.

A distribution f is called spherically symmetric iff $R^*f = f$. Hence, for any spherically symmetric distribution f holds that

$$\langle f, \varphi \rangle = \left\langle f, \left(R^{-1} \right)^* \varphi \right\rangle.$$
 (105)

Theorem 13. For a distribution *f* to be a spherically symmetric distribution it is necessary and sufficient that *f* is of the form

$$f = f_r \otimes 1_{(\omega)},\tag{106}$$

with $f_r \in \mathcal{D}'(R_+)$ and $1_{(\omega)}$ the one distribution based on S^{n-1} , satisfying $R^*1_{(\omega)} = 1_{(\omega)}$.

Proof. (i) Sufficiency. Assume (106) and calculate, $\forall O \in O(n)$ and $\forall \varphi \in \mathcal{D}(\mathbb{R}^n)$,

$$\begin{split} \left\langle R^* \left(f_r \otimes 1_{(\omega)} \right), \varphi \right\rangle &= \left\langle f_r \otimes 1_{(\omega)}, \left| \det \left(R^{-1} \right)' \right| \left(R^{-1} \right)^* \varphi \right\rangle, \\ &= \left\langle f_r, \left\langle 1_{(\omega)}, \left| \det \left(R^{-1} \right)' \right| \left(R^{-1} \right)^* \varphi \right\rangle \right\rangle, \\ &= \left\langle f_r, \left\langle R^* 1_{(\omega)}, \varphi \right\rangle \right\rangle, \\ &= \left\langle f_r, \left\langle 1_{(\omega)}, \varphi \right\rangle \right\rangle, \\ &= \left\langle f_r \otimes 1_{(\omega)}, \varphi \right\rangle, \end{split}$$

hence, $R^*f = f$.

(ii) Necessity. Assume (105). Then, $\forall O \in O(n)$ and $\forall \varphi \in \mathcal{D}(\mathbb{R}^n)$,

$$\left\langle f_{(r,\theta)}, \varphi(r, \hat{}) \right\rangle = \left\langle f_{(r,\theta)}, \left(R^{-1} \right)^* \varphi(r, \theta) \right\rangle, \\ = \left\langle f_{(r,\theta)}, \varphi(r, \theta') \right\rangle.$$

This shows that $\langle f_{(r,\theta)}, \varphi(r,\theta') \rangle$ must be independent of the angular dependence of φ , which requires that (106) holds.

Theorem 14. Structure theorem. Let $T^{\lambda} : X = R^n \setminus \{0\} \to Y = R$ such that $\mathbf{x} \mapsto y = |\mathbf{x}|^{\lambda}$, $\lambda \in \mathbb{C}$. A distribution based on R^n is a spherical associated homogeneous distribution iff it is the pullback along the function T^{λ} of an associated homogeneous distribution based on R.

Proof. (i) SAHD on $\mathbb{R}^n \Rightarrow (T^{\lambda})^*$ AHD on \mathbb{R} . Let f be a SAHD on \mathbb{R}^n . Being spherically symmetric, f must be of the form (106), due to Theorem 13. Being an AHD on \mathbb{R}^n , its radial part f_r in (106) must be an AHD based on \mathbb{R}_+ , due to the expression (119) of the Euler operator in \mathbb{R}^n . This distribution f_r must be of the form given by the right-hand side of (102), due to the structure theorem for one-dimensional AHDs [2, Theorem 4]. Eq. (102) together with Corollary 4, which requires T to be homogeneous, then shows that this form is the pullback along the function T^{λ} of an AHD based on \mathbb{R} .

(ii) $(T^{\lambda})^*$ AHD on $R \Rightarrow$ SAHD on R^n . Let f be an AHD on R. The pullback $(T^{\lambda})^* f$ of f along the function T^{λ} has a form as given by the right-hand side of eq. (102). By Theorem 13 such a distribution is spherically symmetric. Due to expression (119) for the Euler operator in R^n , $(T^{\lambda})^* f$ is an AHD based on R^n .

7 Appendix

7.1 Spherical coordinates

We define a diffeomorphism $T_{S \to C}$, mapping spherical coordinates to Cartesian coordinates, for a domain $\Omega \subset \mathbb{R}^n$ with $2 \leq n$, such that the range $T_{S \to C} = \Omega$.

Let
$$\theta \triangleq \left(\theta^{p}, \forall p \in \mathbb{Z}_{[2,n]}\right), \mathbf{x} \triangleq \left(x^{i}, \forall i \in \mathbb{Z}_{[1,n]}\right)$$
 and
 $T_{S \to C} : \Xi \triangleq R_{+} \times \left]0, \pi\right[^{n-2} \times \left[0, 2\pi\right] \subset \mathbb{R}^{n} \to X = \mathbb{R}^{n},$
(107)

such that $\xi = (\xi^i, \forall i \in \mathbb{Z}_{[1,n]}) = (r, \theta) \mapsto \mathbf{x} = T_{S \to C}(\xi) = (r\omega^i(\theta), \forall i \in \mathbb{Z}_{[1,n]}) \triangleq r\omega$, with $r \in R_+, \omega \in S^{n-1}, \theta^p \in [0, \pi[, \forall p \in \mathbb{Z}_{[2,n-1]}]$, and $\theta^n \in [0, 2\pi[$. Herein are, $\forall i \in \mathbb{Z}_{[1,n]}$ and $\forall p \in \mathbb{Z}_{[2,n]}$,

$$\omega^{i}(\theta) \triangleq \left(1_{i=1} + 1_{1 < i} \prod_{p=2}^{i} \sin\left(\theta^{p}\right)\right) \left(1_{i=n} + 1_{i < n} \cos\left(\theta^{i+1}\right)\right)$$
(108)

and

$$\omega \cdot \omega = \sum_{i=1}^{n} \left(\omega^{i} \right)^{2} = 1.$$
(109)

The induced metric on the (n-1)-dimensional unit sphere S^{n-1} is given by (implicit summation over *i* and *j*), $\forall a, b \in \mathbb{Z}_{[2,n]}$,

$$g_{ab} = \left(\delta_{ij} \frac{\partial x^i}{\partial \xi^a} \frac{\partial x^j}{\partial \xi^b} \right) \Big|_{r=1} = 1_{a=b} \left(1_{a=2} + 1_{3 \le a} \prod_{p=2}^{a-1} \sin^2\left(\theta^p\right) \right).$$
(110)

Then, with $g(\theta) \triangleq \det[g_{ab}]$,

$$\sqrt{g(\theta)} = 1_{n=2} + 1_{2 < n} \prod_{p=2}^{n-1} \sin^{n-p}(\theta^p) > 0.$$
(111)

Hence,

$$\left|\det dT_{S\to C}(\xi)\right| = r^{n-1}\sqrt{g\left(\theta\right)} > 0,\tag{112}$$

 $\forall \xi \in \Xi$, so $T_{S \to C}$ is a diffeomorphism from $\Xi \to R^n$.

Define for $3 \le n$ the set of open half lines

$$L \triangleq \left\{ \mathbf{x} = r \,\omega \left(\theta \right) \in \mathbb{R}^{n} : \theta^{p} \in \left\{ 0, \pi \right\}, \forall p \in \mathbb{Z}_{[2, n-1]}, \forall r \in \mathbb{R}_{+} \right\}$$
(113)

and the set $\Lambda \triangleq \{\mathbf{0}\} \cup \mathbb{1}_{3 \leq n} L$. In order for $T_{S \to C}$ to be a diffeomorphism we had to exclude from \mathbb{R}^n the set Λ so that $\Omega = \mathbb{R}^n \setminus \Lambda$.

Any integral over \mathbb{R}^n , stated in Cartesian coordinates and to be converted into spherical coordinates, first has to be restricted to Ω . Under the pullback $T^*_{S \to C}$ this restricted integral transforms into an integral over Ξ . It is usually tacitly understood that Λ is a set of Lebesgue measure zero (which is true by Sard's theorem), so that the final integral is equivalent to the original integral over \mathbb{R}^n .

The volume form ω_{R^n} on R^n becomes in spherical coordinates

$$\omega_{\mathbb{R}^n} = r^{n-1} \left(dr \wedge \omega_{S^{n-1}} \right), \qquad (114)$$

$$\omega_{S^{n-1}} \triangleq \sqrt{g(\theta)} \left(d\theta^2 \wedge d\theta^3 \wedge \ldots \wedge d\theta^n \right), \tag{115}$$

with $\omega_{S^{n-1}}$ the nowhere vanishing volume form on $\Omega \cap S^{n-1}$. Notice that, since $\omega_{S^{n-1}}$ vanishes on $\Lambda \cap S^{n-1}$, $\omega_{S^{n-1}}$ is not a proper volume form on S^{n-1} .

With respect to a coordinate basis $\left\{ dx^{i}, \forall i \in \mathbb{Z}_{[1,n]} \right\}$ for \mathbb{R}^{n} , the operator $\mathbf{d} \triangleq \left(\partial_{i}, \forall i \in \mathbb{Z}_{[1,n]} \right) : \mathbb{C}^{\infty}(\mathbb{R}^{n}) \to \mathbb{C}^{\infty}(\mathbb{R}^{n})$ becomes in spherical coordinates

$$\mathbf{d} = \omega \partial_r + \frac{1}{r} \partial_!, \tag{116}$$

with

$$\partial_{\omega} \triangleq \sum_{p=2}^{n} \frac{\frac{\partial \omega}{\partial \theta^{p}}}{\left|\frac{\partial !}{\partial \theta^{p}}\right|^{2}} \partial_{\theta^{p}}, \qquad (117)$$

$$\left|\frac{\partial\omega}{\partial\theta^{p}}\right|^{2} = 1_{p=2} + 1_{3\leq p} \prod_{q=2}^{p-1} \sin^{2}\left(\theta^{q}\right).$$
(118)

The Euler operator $\mathbf{x} \cdot \mathbf{d} = x^i \partial_i$ (implicit summation over *i*) then becomes in spherical coordinates

$$\mathbf{x} \cdot \mathbf{d} = r\partial_r. \tag{119}$$

The operator $\omega \cdot \partial_{\omega}$ is identically zero due to (117) and (109), while $(\partial_{\omega} \cdot \omega) = n - 1$. The operator $\partial_{\omega_s} \cdot \partial_{\omega_s}$ is the Laplace-Beltrami operator (acting on scalar functions) on S^{n-1} .

The surface area of the unit sphere S^{n-1} is given by, $\forall n \in \mathbb{Z}_+$,

$$A_{n-1} \triangleq \int_{S^{n-1}} \omega_{S^{n-1}} = 2 \frac{\pi^{n/2}}{\Gamma(n/2)}$$
(120)

and the volume of the unit *n*-dimensional ball it bounds is

$$V_n = \frac{A_{n-1}}{n} = \frac{\pi^{n/2}}{\Gamma(n/2+1)}.$$
(121)

7.2 The partial distributions $y^{-k}\delta^{(l)}$

Let $l \in \mathbb{N}$ and $k \in \mathbb{Z}_+$. Define functions $y^{-k} : R \setminus \{0\} \to R$ such that $y \mapsto y^{-k}$ and products $y^{-k} \delta^{(l)} \triangleq y^{-k} . \delta^{(l)}$ by, $\forall \psi \in \mathcal{D}_{\mathbb{Z}_{[-k,-1]}}(R)$,

$$\left\langle y^{-k} \delta^{(l)}, \psi \right\rangle \triangleq \left\langle \delta^{(l)}, y^{-k} \psi \right\rangle.$$
 (122)

This definition is legitimate since $y^{-k}\psi \in \mathcal{D}(R)$. However, (122) only defines $y^{-k}\delta^{(l)}$ on $\mathcal{D}_{\mathbb{Z}_{[-k,-1]}}(R) \subset \mathcal{D}(R)$, so $y^{-k}\delta^{(l)}$ is a partial distribution.

Define a new quantity $(y^{-k}\delta^{(l)})_0$, $\forall \varphi \in \mathcal{D}(R)$, by

$$\left\langle \left(y^{-k}\delta^{(l)}\right)_{0},\varphi\right\rangle \triangleq \left\langle \delta^{(l)},y^{-k}\left(\varphi(y)-\sum_{j=0}^{k-1}\varphi^{(j)}(0)\frac{y^{j}}{j!}\right)\right\rangle.$$
 (123)

Since (123) defines $(y^{-k}\delta^{(l)})_0$ on the whole of $\mathcal{D}(R)$, and because it is a linear and sequential continuous functional, it is a distribution. Using the definition for the generalized derivative and the sifting property of δ , (123) can be converted to

$$\left\langle \left(y^{-k}\delta^{(l)}\right)_{0},\varphi\right\rangle = \left\langle (-1)^{k}\frac{l!}{(k+l)!}\delta^{(k+l)},\varphi\right\rangle,$$
(124)

so

$$\left(y^{-k}\delta^{(l)}\right)_0 = (-1)^k \frac{l!}{(k+l)!} \delta^{(k+l)}.$$
(125)

It is easily verified that $\left\langle \left(y^{-k}\delta^{(l)}\right)_{0},\psi\right\rangle = \left\langle \delta^{(l)},y^{-k}\psi\right\rangle$, $\forall\psi\in\mathcal{D}_{\mathbb{Z}_{[-k,-1]}}(R)$, so the distribution $\left(y^{-k}\delta^{(l)}\right)_{0}$ is an extension of the partial distribution $y^{-k}\delta^{(l)}$ from $\mathcal{D}_{\mathbb{Z}_{[-k,-1]}}(R)$ to $\mathcal{D}(R)$. Such an extension is not unique. Any two extensions differ by a distribution which maps $\mathcal{D}_{\mathbb{Z}_{[-k,-1]}}(R)$ to zero. Hence, the general extension is

$$\left(y^{-k}\delta^{(l)}\right)_{\varepsilon} = (-1)^k \frac{l!}{(k+l)!} \delta^{(k+l)} + \sum_{j=0}^{k-1} c_j \delta^{(j)},$$
(126)

with arbitrary constants $c_j \in \mathbb{C}$, $\forall j \in \mathbb{Z}_{[0,k-1]}$. However, if we are only interested in extensions $(y^{-k}\delta^{(l)})_e$ which are homogeneous, we get the unique homogeneous extension

$$\left(y^{-k}\delta^{(l)}\right)_{e} = \left(y^{-k}\delta^{(l)}\right)_{0} = (-1)^{k}\frac{l!}{(k+l)!}\delta^{(k+l)}.$$
(127)

References

- [1] Y. Choquet-Bruhat, C. DeWitt-Morette, M. Dillard-Bleick, *Analysis, Manifolds and Physics* (2nd Ed.), Elsevier, Amsterdam, 1982.
- [2] G.R. Franssens, Structure theorems for associated homogeneous distributions based on the line, *Math. Methods Appl. Sci.*, 32, pp. 986–1010, 2009.
- [3] G.R. Franssens, The convolution of associated homogeneous distributions on *R* Part I, *Appl. Anal.*, 88, pp. 309–331, 2009.
- [4] G.R. Franssens, The convolution of associated homogeneous distributions on *R* Part II, *Appl. Anal.*, 88, pp. 333–356, 2009.

- [5] G.R. Franssens, Convolution product formula for associated homogeneous distributions on *R*, Accepted for publication in Math. Methods Appl. Sci., 2010.
- [6] G.R. Franssens, Multiplication product formula for associated homogeneous distributions on *R*, (submitted), 2010.
- [7] G.R. Franssens, "Algebras of AHDs based on the line I. Basics", (preprint: "http://www.aeronomie.be/dist/franssens/AHD_ALG_1.pdf"), 2009.
- [8] G.R. Franssens, "Algebras of AHDs based on the line V. Convolution product formula", (preprint: "http://www.aeronomie.be/dist/ franssens/AHD_ALG_5.pdf"), 2009.
- [9] G.R. Franssens, "Algebras of AHDs based on the line VI. Multiplication product formula", (preprint: "http://www.aeronomie.be/dist/ franssens/AHD_ALG_6.pdf"), 2009.
- [10] G. Friedlander, M. Joshi, Introduction to The Theory of Distributions (2nd Ed.), Cambridge Univ. Press, Cambridge, 1998.
- [11] I.M. Gel'fand, G.E. Shilov, Generalized Functions (Vol. I), Academic Press, New York, 1964.
- [12] R.P. Kanwal, *Generalized Functions, Theory and Technique* (2nd Ed.), Birkhauser, Boston, 1998.
- [13] W. Rudin, *Functional Analysis*, McGraw-Hill, New York, 1991.
- [14] L. Schwartz, Théorie des Distributions (Vols. I and II), Hermann, Paris, 1957.
- [15] A.H. Zemanian, *Distribution Theory and Transform Analysis*, Dover, New York, 1965.

Belgian Institute for Space Aeronomy Ringlaan 3, B-1180 Brussels, Belgium E-mail: ghislain.franssens@aeronomy.be