Spherical associated homogeneous distributions on R^{n}

Ghislain R. Franssens

Abstract

A structure theorem for spherically symmetric associated homogeneous distributions (SAHDs) based on R^{n} is given. It is shown that any SAHD is the pullback, along the function $|\mathbf{x}|^{\lambda}, \lambda \in \mathbf{C}$, of an associated homogeneous distribution (AHD) on R. The pullback operator is found not to be injective and its kernel is derived (for $\lambda=1$). Special attention is given to the basis SAHDs, $D_{z}^{m}|\mathbf{x}|^{z}$, which become singular when their degree of homogeneity $z=-n-2 p, \forall p \in \mathbb{N}$. It is shown that $\left(D_{z}^{m}|\mathbf{x}|^{z}\right)_{z=-n-2 p}$ are partial distributions which can be non-uniquely extended to distributions $\left(\left(D_{z}^{m}|\mathbf{x}|^{z}\right)_{e}\right)_{z=-n-2 p}$ and explicit expressions for their evaluation are derived. These results serve to rigorously justify distributional potential theory in R^{n}.

1 Introduction

We present a construction of spherical (i.e., $O(n)$-invariant) associated homogeneous distributions (SAHDs) based on R^{n}, as pullbacks of associated homogeneous distributions (AHDs) based on R. It is shown that any SAHD on R^{n} can be obtained as the pullback, along the function $|\mathbf{x}|^{\lambda}, \lambda \in \mathbb{C}$, of an AHD on R.

Homogeneous distributions (HDs) on R generalize the concept of homogeneous functions, such as $|x|^{z}: R \backslash\{0\} \rightarrow \mathbb{C}$, which is homogeneous of complex degree z. Associated to homogeneous functions are power-log functions, which arise when taking the derivative with respect to the degree of homogeneity z.

[^0]The set of associated homogeneous distributions with support in (or based on) R, denoted by $\mathcal{H}^{\prime}(R)$, generalizes these power-log functions, [7], [2], [11]. The set $\mathcal{H}^{\prime}(R)$ is a subset of the tempered distributions, [14], [15], and is of practical importance because $\mathcal{H}^{\prime}(R)$ contains the majority of the (1-dimensional) distributions one encounters in physical applications, such as the delta distribution δ, the step distributions $1_{ \pm}$, several so called pseudo-functions generated by taking Hadamard's finite part of certain divergent integrals (among which is Cauchy's principal value x^{-1}), Riesz kernels, Heisenberg distributions and many familiar others, [12].

We denote the set of AHDs based on R^{n} by $\mathcal{H}^{\prime}\left(R^{n}\right)$. An important subset of $\mathcal{H}^{\prime}\left(R^{n}\right)$ are the $O(n)$-invariant AHDs on R^{n}, called SAHDs and of which r^{z}, $z \in \mathbb{C}$, is a well-known example, having degree of homogeneity z and order of association 0, see e.g., [11, p. 71, p. 98, p. 192]. AHDs based on R^{n} are important mathematical tools, used in physics and engineering for solving distributional potential (i.e., static field) problems in n-dimensions. SAHDs based on R^{n} arise in spherically symmetric problems, such as the construction of a fundamental solution (i.e., a Green's distribution) for Poisson's equation and its complex degree generalizations (i.e., involving complex powers of the Laplacian in $\left.R^{n}\right)$. We denote the set of SAHDs on R^{n} by $\mathcal{S} \mathcal{H}^{\prime}\left(R^{n}\right)$. We have the inclusions $\mathcal{S} \mathcal{H}^{\prime}\left(R^{n}\right) \subset \mathcal{H}^{\prime}\left(R^{n}\right) \subset \mathcal{S}^{\prime}\left(R^{n}\right) \subset \mathcal{D}^{\prime}\left(R^{n}\right)$.

Consider the scalar function $T^{\lambda}: X=R^{n} \backslash\{\mathbf{0}\} \rightarrow Y=R_{+}$such that $\mathbf{x} \mapsto$ $y=|\mathbf{x}|^{\lambda}$ with $\lambda \in \mathbb{C}$. The aim of this paper is to show that any SAHD on R^{n} can be obtained as the pullback $\left(T^{\lambda}\right)^{*}$ along T^{λ} of an AHD on R. This is an interesting result, as it opens a route to extend the properties of the simple and well-understood 1-dimensional AHDs to their $O(n)$-invariant generalizations on R^{n}. In particular, recent work done by the author showed that the set of AHDs on R can be given the structure of both a convolution algebra and a multiplication algebra over C, see [3], [4], [5] ([8]), [6] ([9]). These algebraic properties of AHDs on R can be extended, under the $O(n)$-invariant function T^{λ} above, to SAHDs on R^{n} and the key to this higher dimensional extension of the aforementioned algebras is the here considered pullback relation.

The concept of the pullback of a distribution generalizes the classical concept of a change of variables for a function. Any map $f: Y \rightarrow Z$ can be pulled back to a space X by precomposition with a map $T: X \rightarrow Y$ as $f \circ T: X \rightarrow$ Z. Any smooth T represents a homomorphism T^{*} between the set $C^{\infty}(Y)$ of smooth functions defined on Y and the set $C^{\infty}(X)$ of smooth functions defined on X, such that $f \mapsto T^{*} f=f \circ T$ (for functions this is usually written as $T^{*} f=$ $f(T(x))$). The homomorphism T^{*} is called the pullback along the function T. The concept of pullback is more general than that of a change of variables. The latter can not be applied to distributions since they are not functions of the base space, but functionals on a space of (test) functions defined on the base space, here $\mathcal{D}(Y)$. However, it is possible to define the pullback $T^{*} f \in \mathcal{D}^{\prime}(X)$ of any distribution $f \in \mathcal{D}^{\prime}(Y)$ (under certain restrictions on T) in terms of an operation on $\mathcal{D}(Y)$. This results in an indirect definition, such as the one recalled in section 2 , to perform a "change of variables" for distributions. One uses the fact that $C^{\infty}(Y)$ is dense in $\mathcal{D}^{\prime}(Y)$ (since $\mathcal{D}(Y) \subset C^{\infty}(Y)$ is) to show that the pullback $T^{*} f$ exists if precomposition with T maps sequences of smooth functions converging
in $\mathcal{D}^{\prime}(Y)$ to sequences of smooth functions converging in $\mathcal{D}^{\prime}(X)$. A necessary and sufficient condition for the pullback $T^{*} f$ to be unique, is that T^{*} is a sequentially continuous operator, [10, Chapter 7]. Although the pullback of a distribution can be defined along general submersions, see e.g., [10, Theorem 7.2.2], we will only need here the pullback along scalar functions.

We show that the pullback T^{*}, along the particular scalar function $T \triangleq T^{1}$, of any AHD on R generates a distribution on R^{n} that is a linear combination of distributions of the form $D_{z}^{m}|\mathbf{x}|^{z}$, called basis SAHDs. We properly define the distributions $D_{z}^{m}|\mathbf{x}|^{z}$, which are only briefly considered in [11, p. 99], and investigate their properties. Careful attention is given to the cases when the degree of homogeneity z is such that $z+n=-2 p \in \mathbb{Z}_{e,-]}$ (even non-positive integers), since the functionals $D_{z}^{m}|\mathbf{x}|^{z}$ possess $(m+1)$-th order poles at $z=-n-2 p, \forall p \in \mathbb{N}$.

The here presented study of the distributions $D_{z}^{m}|\mathbf{x}|^{z}$ is placed in the more modern context of pullbacks and extensions, compared to the more classical approach which defines singular distributions as regularizations of certain divergent integrals, e.g., as in [11]. We especially draw attention to the fact that any $\left(D_{z}^{m}|\mathbf{x}|^{z}\right)_{z=-n-2 p}$ is a (unique) partial distribution. A partial distribution is a fruitful concept, introduced earlier by the author in [7, Section 3.3], to designate generalized functions that are only defined on a proper subset $\mathcal{D}_{r} \subset \mathcal{D}$. By definition, a distribution is defined on the whole of $\mathcal{D},[15, \mathrm{p}$. 6]. Our approach to singular distributions is basically a functional extension process that extends a partial distribution to a distribution. Since \mathcal{D} is locally convex, [13, p. 152], [1, pp. 427-431], the (continuous extension version of the) Hahn-Banach theorem applies to \mathcal{D}, [13, p. 56]. This theorem guarantees that an extension of a partial distribution defined on any $\mathcal{D}_{r} \subset \mathcal{D}$ exists as a continuous linear functional on \mathcal{D}, hence as a distribution, and that both coincide on $\mathcal{D}_{r},[13, \mathrm{p} .61]$. It is natural to use such an extension, denoted $\left(\left(D_{z}^{m}|\mathbf{x}|^{z}\right)_{e}\right)_{z=-n-2 p^{\prime}}$ to define $D_{z}^{m}|\mathbf{x}|^{z}$ at the degree of homogeneity $-n-2 p$. We call $\left(\left(D_{z}^{m}|\mathbf{x}|^{z}\right)_{e}\right)_{z=-n-2 p}$ an extension of the partial distribution $\left(D_{z}^{m}|\mathbf{x}|^{z}\right)_{z=-n-2 p}$ from \mathcal{D}_{r} to \mathcal{D}.

The Hahn-Banach theorem does not tell how such an extension is to be constructed. We apply a straightforward method to produce a distribution $\left(\left(D_{z}^{m}|\mathbf{x}|^{z}\right)_{e}\right)_{z=-n-2 p}$ on $\mathcal{D}\left(R^{n}\right)$ that is a SAHD and coincides with the partial distribution $\left(D_{z}^{m}|\mathbf{x}|^{z}\right)_{z=-n-2 p}$ on $\mathcal{D}_{r}\left(R^{n}\right)$. This method, first introduced in [7, Section 3.3, eq. (33)] and here applied to SAHDs on R^{n}, leads to more general results than those found in the classical literature, since the obtained extensions are in general uncountably multi-valued. Any classical regularization is recovered as the unique extension corresponding to a particular branch of this multi-valued spectrum. For (complex) AHDs, the spectrum of multi-valuedness is parametrized by \mathbb{C}, hence each value of an extension $\left(\left(D_{z}^{m}|\mathbf{x}|^{z}\right)_{e}\right)_{z=-n-2 p}$ corresponds to a constant $c \in \mathbb{C}$.

We derive explicit expressions for the evaluation of the so constructed multivalued distributions $\left(\left(D_{z}^{m}|\mathbf{x}|^{z}\right)_{e}\right)_{z=-n-2 p}$. It is found that $\left(\left(D_{z}^{m}|\mathbf{x}|^{z}\right)_{e}\right)_{z=-n-2 p}$ are homogeneous distributions of degree $-n-2 p$ and order of association $m+1$. In [11, p. 99] it is incorrectly stated that the particular extension, corresponding to Hadamard's finite part $\left(\left(D_{z}^{m}|\mathbf{x}|^{z}\right)_{0}\right)_{z=-n-2 p}$ (and corresponding to $c=0$), is
associated of order m. That this can not be true is also seen from the result [11, p.195] and by invoking the fact that the Fourier transformation preserves the order of association, [7].

This work extends and generalizes the treatment of SAHDs on R^{n} in [11]. New results presented here are (i) the concepts of partial distribution and functional extension for defining the occurring singular distributions, (ii) the representation of SAHDs on R^{n} as pullbacks of AHDs on R, (iii) the kernel of the pullback operator $T^{*}, \operatorname{ker} T^{*} \subset \mathcal{H}^{\prime}(R)$ and (iv) a structure theorem for $\mathcal{S H} \mathcal{H}^{\prime}\left(R^{n}\right)$.

The outline of the paper is as follows. We recall the pullback T^{*} of a distribution along a scalar function $T: X \rightarrow Y$ in section 2 . We apply this in section 3 to AHDs based on R. In section 4 we investigate the pullback of any distribution along the function T defined above. In section 5 , the results from sections 3 and 4 are combined to generate SAHDs on R^{n}. There, the basis distributions $D_{z}^{m}|\mathbf{x}|^{z}$ are discussed, the general form of an SAHDs on R^{n} is given and the ker T^{*} is derived. In the last section 6, the structure theorem of SAHDs on R^{n} is proved.

We use the notations introduced in [7]. For convenience, some practical but non-standard notations are repeated here. Define $1_{p} \triangleq 1$ if p is true, else $1_{p} \triangleq 0$. Further, $e_{m} \triangleq 1_{m \in \mathbb{Z}_{e}}$, hence $e_{m}=1$ if m is even, else $e_{m}=0$ and similarly $o_{m} \triangleq$ $1_{m \in \mathbb{Z}_{o}}$, hence $o_{m}=1$ if m is odd, else $o_{m}=0$.

2 Pullback of a distribution on R along a scalar function

Definition 1. Let $n \in \mathbb{N}: 2 \leq n, X \subseteq R^{n}, Y=R$ and $\delta_{y} \in \mathcal{D}^{\prime}(Y)$ with $\left\langle\delta_{y}, \psi\right\rangle \triangleq$ $\psi(y), \forall \psi \in \mathcal{D}(Y)$. Let $f \in \mathcal{D}^{\prime}(Y)$ and $T: X \rightarrow Y$ such that $\mathbf{x} \mapsto y=T(\mathbf{x})$ be a C^{∞} function with $(d T)(\mathbf{x}) \neq 0, \forall \mathbf{x} \in \Sigma_{y} \triangleq\{\mathbf{x} \in X: T(\mathbf{x})=y\}$ and $\forall y \in \operatorname{supp} f$. The pullback $T^{*} f$ of f along T is defined $\forall \varphi \in \mathcal{D}(X)$ as

$$
\begin{equation*}
\left\langle T^{*} f, \varphi\right\rangle \triangleq\left\langle f, \Sigma_{T} \varphi\right\rangle \tag{1}
\end{equation*}
$$

with

$$
\begin{align*}
\left(\Sigma_{T} \varphi\right)(y) & =\left\langle T^{*} \delta_{y}, \varphi\right\rangle, \tag{2}\\
& \triangleq \int_{\Sigma_{y}} \varphi \omega_{T} . \tag{3}
\end{align*}
$$

In (3) is ω_{T} the Leray form of Σ_{y}, such that $\omega_{X}=d T \wedge \omega_{T}$, with ω_{X} the volume form on X.

The condition on $d T$ is necessary and sufficient for the Leray form to exist on Σ_{y}. Moreover, although $\omega_{X}=d T \wedge \omega_{T}$ does not specify ω_{T} uniquely in a neighborhood of Σ_{y}, ω_{T} is unique on Σ_{y}, [11, pp. 220-221].

The distribution $\delta_{\Sigma_{y}} \triangleq T^{*} \delta_{y} \in \mathcal{D}^{\prime}(X)$ represents a delta distribution having as support the level set surface Σ_{y} of T with level parameter y. We can not speak of the delta distribution with support Σ_{y} since the pullback $T^{*} \delta_{y}$, as defined by Definition 1, depends on the equation used to represent the surface Σ_{y}, through the Leray form, [11, p. 222], [1, p. 439]. It is clear that the delta distribution $\delta_{\Sigma_{y}}$, as
defined by (2) and (3), is fundamental to define the pullback of any distribution along T.

It is shown in e.g., [10, p. 82, Theorem 7.2.1] that, under the conditions given in Definition $1, \Sigma_{T} \varphi \in \mathcal{D}(Y), T^{*} f \in \mathcal{D}^{\prime}(X)$ and T^{*} is a sequentially continuous linear operator.

Theorem 2. Let $f^{z} \in \mathcal{D}^{\prime}(Y)$, depending on a complex parameter z and being complex analytic in a domain $\Omega \subseteq \mathbb{C}$. Let T^{*} be the pullback from Y to X along a C^{∞} function $T: X \subseteq R^{n} \rightarrow Y=R$. Then $T^{*} f^{z}$ is complex analytic and moreover

$$
\begin{equation*}
T^{*}\left(D_{z}^{m} f^{z}\right)=D_{z}^{m}\left(T^{*} f^{z}\right), \tag{4}
\end{equation*}
$$

$\forall m \in \mathbb{Z}_{+}$and $\forall z \in \Omega$.
Proof. (i) Let $m=1$. Since it is given that f^{z} is complex analytic in Ω, this means by definition that $d_{z}\left\langle f^{z}, \psi\right\rangle$ exists. This is a necessary and sufficient condition for the existence of a distribution $D_{z} f^{z}$ given by $\left\langle D_{z} f^{z}, \psi\right\rangle=d_{z}\left\langle f^{z}, \psi\right\rangle, \forall \psi \in \mathcal{D}(Y)$ and $\forall z \in \Omega$, [11, pp. 147-151]. On the other hand, applying (1) to the left-hand side of (4) gives, $\forall \varphi \in \mathcal{D}(X)$,

$$
\left\langle T^{*} D_{z} f^{z}, \varphi\right\rangle=\left\langle D_{z} f^{z}, \Sigma_{T} \varphi\right\rangle .
$$

Combining both results yields

$$
\left\langle T^{*} D_{z} f^{z}, \varphi\right\rangle=d_{z}\left\langle f^{z}, \Sigma_{T} \varphi\right\rangle
$$

Applying (1) to the right-hand side of this equation gives

$$
\left\langle T^{*} D_{z} f^{z}, \varphi\right\rangle=d_{z}\left\langle T^{*} f^{z}, \varphi\right\rangle .
$$

Hence $d_{z}\left\langle T^{*} f^{z}, \varphi\right\rangle$ exists, which implies by definition that $T^{*} f^{z}$ is complex analytic in Ω. This is a necessary and sufficient condition for the existence of a distribution $D_{z}\left(T^{*} f^{z}\right)$ given by $\left\langle D_{z}\left(T^{*} f^{z}\right), \varphi\right\rangle=d_{z}\left\langle T^{*} f^{z}, \varphi\right\rangle$, so that

$$
\left\langle T^{*}\left(D_{z} f^{z}\right), \varphi\right\rangle=\left\langle D_{z}\left(T^{*} f^{z}\right), \varphi\right\rangle,
$$

which implies (4) for $m=1$.
(ii) Since f^{z} is complex analytic in $\Omega, D_{z}^{m} f^{z}$ is also complex analytic in Ω, $\forall m \in \mathbb{Z}_{+}$. Combining this with (i) and using induction, (4) follows $\forall m \in \mathbb{Z}_{+}$.

This theorem enables to generate the Taylor series of a pullback distribution $T^{*} f^{z} \in \mathcal{D}\left(R^{n}\right)$ directly from the Taylor series of the distribution $f^{z} \in \mathcal{D}(R)$. In particular, (4) simplifies the calculation of pullbacks of AHDs.

3 Pullback of an AHD on R along a scalar function

Let $\mathbf{X} \cdot \mathbf{D}$ denote the generalized Euler operator and $X_{z} \triangleq \mathbf{X} \cdot \mathbf{D}-z$ Id the generalized homogeneity operator of degree $z \in \mathbb{C}$ defined on $\mathcal{D}^{\prime}\left(R^{n}\right)$ (with Id the identity operator), and Y_{z} the generalized homogeneity operator of degree z defined on $\mathcal{D}^{\prime}(R)$.

Theorem 3. Let T^{*} be the pullback from Y to X along a C^{∞} function $T: X \subseteq R^{n} \rightarrow$ $Y=R$ such that $\mathbf{x} \mapsto y=T(\mathbf{x})$, with $(d T)(\mathbf{x}) \neq 0, \forall \mathbf{x} \in X$. Let f_{0}^{z} be a homogeneous distribution based on Y with degree of homogeneity z. Then holds, $\forall m \in \mathbb{Z}_{+}$and $\forall \lambda \in \mathbb{C}$,

$$
\begin{equation*}
X_{\lambda z}^{m}\left(T^{*} f_{0}^{z}\right)=\sum_{l=1}^{m} p_{l}^{m}\left(x_{0}, x_{\lambda} T\right)\left(T^{*}\left(D^{l} f_{0}^{z}\right)\right) \tag{5}
\end{equation*}
$$

with $x_{\lambda} \triangleq \mathbf{x} \cdot \mathbf{d}-\lambda$ Id the ordinary homogeneity operator of degree λ and p_{l}^{m} bivariate polynomials of degree m, satisfying the recursion relations

$$
\begin{align*}
p_{1}^{1}\left(x_{0}, h\right) & =h \tag{6}\\
p_{k}^{m+1}\left(x_{0}, h\right) & =x_{0} p_{k}^{m}\left(x_{0}, h\right)+h p_{k-1}^{m}\left(x_{0}, h\right) . \tag{7}
\end{align*}
$$

Proof. (i) Under the given conditions, the generalized chain rule is valid so we have for the i-th generalized partial derivative, $\forall f \in \mathcal{D}^{\prime}(Y), \forall \varphi \in \mathcal{D}(X)$ and $\forall i \in \mathbb{Z}_{[1, n]}$,

$$
\left\langle D_{i}\left(T^{*} f\right), \varphi\right\rangle=\left\langle T^{*}(D f),\left(d_{i} T\right) \varphi\right\rangle .
$$

Applying this to $x^{i} \varphi \in \mathcal{D}(X)$, we obtain

$$
\left\langle D_{i}\left(T^{*} f\right), x^{i} \varphi\right\rangle=\left\langle T^{*}(D f),\left(d_{i} T\right) x^{i} \varphi\right\rangle
$$

Using the definition of the multiplication of a distribution with a smooth function, writing the result in terms of the multiplication operator $X^{i} \triangleq x^{i}$. and summing over all values of i gives

$$
\left\langle(\mathbf{X} \cdot \mathbf{D})\left(T^{*} f\right), \varphi\right\rangle=\left\langle T^{*}(D f),((\mathbf{x} \cdot \mathbf{d}) T) \varphi\right\rangle
$$

This is equivalent to, $\forall \lambda \in \mathbb{C}$,

$$
\begin{equation*}
\left\langle(\mathbf{X} \cdot \mathbf{D})\left(T^{*} f\right), \varphi\right\rangle-\lambda\left\langle T^{*}(D f), T \varphi\right\rangle=\left\langle T^{*}(D f),\left(x_{\lambda} T\right) \varphi\right\rangle \tag{8}
\end{equation*}
$$

Applying the definition of the pullback T^{*}, the fact that T is a scalar function mapping $\mathbf{x} \mapsto y$ and also introducing the multiplication operator $Y \triangleq y$., we have

$$
\begin{align*}
\left\langle T^{*}(D f), T \varphi\right\rangle & =\left\langle D f, \Sigma_{T}(T \varphi)\right\rangle, \\
& =\left\langle D f, y \Sigma_{T} \varphi\right\rangle, \\
& =\left\langle Y D f, \Sigma_{T} \varphi\right\rangle, \\
& =\left\langle T^{*}(Y D f), \varphi\right\rangle . \tag{9}
\end{align*}
$$

In (8) choose $f=f_{0}^{z}$, use $Y D f_{0}^{z}=z f_{0}^{z}$ in (9), substitute (9) in (8) and use the operator $X_{\lambda z}$ in the left-hand side of (8). Since $X_{\lambda} T$ is a smooth function, we obtain (5) for $m=1$.
(ii) The result for $m>1$ follows by induction.

Corollary 4. Let $f_{m}^{z} \in \mathcal{H}^{\prime}(Y)$. If T is not homogeneous, then $T^{*} f_{m}^{z} \notin \mathcal{H}^{\prime}(X)$.
Proof. Let f_{0}^{z} be a HD on Y. If T is not homogeneous, then $x_{\lambda} T \neq 0, \forall \lambda \in \mathbb{C}$. From Theorem 3 follows that then all $p_{k}^{m} \neq 0$, so $X_{\lambda z}^{m}\left(T^{*} f_{0}^{z}\right) \neq 0, \forall m \in \mathbb{N}$. This result, together with Theorem 2 and the structure theorem for AHDs on R [2, Theorem 4] (see also (98)), implies that $T^{*} f_{m}^{z}, \forall f_{m}^{z} \in \mathcal{H}^{\prime}(Y)$, is not an AHD on X.

Corollary 4 will be needed in Theorem 14.
Theorem 5. Let T^{*} be the pullback along the function T as defined in Theorem 3 and let in addition T be homogeneous of degree $\lambda \in \mathbb{C}$. Then,
(i) the homogeneity operators X_{z} and Y_{z} are related by

$$
\begin{equation*}
X_{\lambda z} T^{*}=\lambda T^{*} Y_{z} \tag{10}
\end{equation*}
$$

(ii) the pullback $T^{*} f_{m}^{z}$ of an AHD f_{m}^{z}, of degree of homogeneity z and order of association m based on Y, is again an AHD of the same order of association m and of degree of homogeneity λz, based on X.

Proof. (i) Recalling (8) and using $x_{\lambda} T=0$, we get

$$
\left\langle(\mathbf{X} \cdot \mathbf{D})\left(T^{*} f\right), \varphi\right\rangle=\lambda\left\langle T^{*}(D f), T \varphi\right\rangle .
$$

Using (9) and introducing the homogeneity operators $X_{\lambda z}$ and Y_{z}, this is equivalently to

$$
\left\langle X_{\lambda z}\left(T^{*} f\right), \varphi\right\rangle=\lambda\left\langle T^{*}\left(Y_{z} f\right), \varphi\right\rangle .
$$

Since f and φ are arbitrary, this implies (10).
(ii) Let $m \in \mathbb{N}$ and f_{m}^{z} be any AHD with degree of homogeneity z and order of association m based on Y. By definition, f_{m}^{z} satisfies $Y_{z} f_{m}^{z}=f_{m-1}^{z}$ for some AHD f_{m-1}^{z} with degree of homogeneity z and order of association $m-1$ based on Y and we define $f_{-1}^{z} \triangleq 0$. Applying (10) to f_{m}^{z} gives

$$
\begin{equation*}
X_{\lambda z}\left(T^{*} f_{m}^{z}\right)=\lambda T^{*} f_{m-1}^{z} \tag{11}
\end{equation*}
$$

From this follows, by induction over m, that $T^{*} f_{m}^{z}$ is an AHD with degree of homogeneity λz and order of association m based on X.

Hence, the pullback T^{*} of an AHD on R along a homogeneous scalar function T is an order of association preserving homomorphism.

Corollary 6. If T in Theorem 5 has degree of homogeneity 1, its pullback T^{*} from Y to X is in addition a homogeneity preserving homomorphism,

$$
\begin{equation*}
X_{z} T^{*}=T^{*} Y_{z} . \tag{12}
\end{equation*}
$$

Corollary 7. If T in Theorem 5 has degree of homogeneity $0, T^{*} f_{m}^{z}, \forall f_{m}^{z} \in \mathcal{H}^{\prime}(Y)$, is a homogeneous distribution based on X with degree of homogeneity 0 .

4 Pullback of a distribution on R along the function $|\mathbf{x}|$

Define the function $T: X=R^{n} \backslash\{\mathbf{0}\} \rightarrow Y=R_{+}$such that $\mathbf{x} \mapsto r=T(\mathbf{x}) \triangleq|\mathbf{x}|$ with $|\mathbf{x}| \triangleq\left(\left(x^{1}\right)^{2}+\ldots+\left(x^{n}\right)^{2}\right)^{1 / 2}>0$. We have $|d T|(\mathbf{x})=1, \forall \mathbf{x} \in X$, hence $d T$ is surjective and T is a (scalar) submersion. For $y \in R_{+}, \Sigma_{y} \triangleq\{\mathbf{x} \in X:|\mathbf{x}|=y\} \subset$ X, while for $y \in R_{-]}, \Sigma_{y}=\varnothing$. By (3) holds, $\forall \varphi \in \mathcal{D}(X)$ and $\forall y \in R_{+}$,

$$
\begin{equation*}
\left(\Sigma_{T} \varphi\right)(y)=\int_{\Sigma_{y}} \varphi \omega_{T} \tag{13}
\end{equation*}
$$

We want to extend $\Sigma_{T} \varphi$ so that it is defined $\forall \varphi \in \mathcal{D}\left(R^{n}\right)$ and $\forall y \in R$. To this end, we change from Cartesian coordinates to spherical coordinates in the integral in (13) (see also Appendix 7.1). We get, $\forall \varphi \in \mathcal{D}\left(R^{n}\right)$ and $\forall y \in R_{+}$,

$$
\begin{equation*}
\left(\Sigma_{T} \varphi\right)(y)=A_{n-1} y^{n-1}(S \varphi)(y), \tag{14}
\end{equation*}
$$

wherein we defined the spherical mean operator S, defined on $\mathcal{D}\left(R^{n}\right)$, by

$$
\begin{equation*}
(S \varphi)(y) \triangleq \frac{1}{A_{n-1}} \int_{S^{n-1}} \varphi(y \omega) \omega_{S^{n-1}}, \tag{15}
\end{equation*}
$$

with $\omega_{S^{n-1}}$ the volume form on the $(n-1)$-dimensional unit sphere S^{n-1} and A_{n-1} its surface area, given by (120). Clearly, the integral in (15) also exists $\forall y \in R_{-]}$, and it is shown in [11, pp. 72-73] that, $\forall p \in \mathbb{N}$, (i) $\left(d^{2 p} S \varphi\right)(0)$ exists and (ii)

$$
\begin{equation*}
\left(d^{2 p+1} S \varphi\right)(0)=0, \tag{16}
\end{equation*}
$$

so $S \varphi$ is an even function. Then, eqs. (14)-(15) define $S \varphi$ and $\Sigma_{T} \varphi, \forall y \in R$.
The function $S \varphi$ is of compact support, since φ is. Since $\varphi(y \omega)$ in (15) is obviously jointly continuous in $(y, \omega) \in I \times S^{n-1}$, is $S \varphi$ uniformly continuous in any compact interval I. By induction it follows that $S \varphi$ is smooth in I. Hence the operator S maps from $\mathcal{D}\left(R^{n}\right) \rightarrow \mathcal{D}(R)$. Consequently, $\Sigma_{T} \varphi \in \mathcal{D}(R), \forall \varphi \in$ $\mathcal{D}\left(R^{n}\right)$.

We can now define $T^{*} f$, in agreement with (1), $\forall f \in \mathcal{D}^{\prime}(R)$ and $\forall \varphi \in \mathcal{D}\left(R^{n}\right)$, by

$$
\begin{equation*}
\left\langle T^{*} f, \varphi\right\rangle \triangleq\left\langle f, y^{n-1} \int_{S^{n-1}} \varphi(y \omega) \omega_{S^{n-1}}\right\rangle \tag{17}
\end{equation*}
$$

We still have to verify that $T^{*} f$, as defined by (17), is a distribution based on R^{n}, $\forall f \in \mathcal{D}^{\prime}(R)$. Theorem 7.2.1 in [10] only guarantees that $T^{*} f \in \mathcal{D}^{\prime}\left(R^{n} \backslash\{\mathbf{0}\}\right)$ for those distributions $f \in \mathcal{D}^{\prime}(R)$ such that $\operatorname{supp}(f)$ has a pre-image in R^{n} under T for which $|d T|(\mathbf{x}) \neq 0$. For any other f, i.e., for which either the pre-image of supp (f) under T contains the origin (where $(d T)(\mathbf{0})$ does not exist) or either $\operatorname{supp}(f) \subset R_{-]}$(since then the pre-image of T is not defined) we need to check the linearity and sequential continuity of $T^{*} f, \forall \varphi \in \mathcal{D}\left(R^{n}\right)$.

The linearity of $T^{*} f$, as defined by (17), is obvious. Further, any sequence $\varphi_{v} \in \mathcal{D}\left(R^{n}\right)$ converging to 0 generates a sequence $\left(\Sigma_{T} \varphi\right)_{v} \in \mathcal{D}(R)$ also converging to 0 , due to the uniform continuity of $S \varphi$ in any compact interval. Then, the sequential continuity of f implies the sequential continuity of $T^{*} f$, showing that T^{*} is a sequentially continuous operator. Hence, $T^{*} f \in \mathcal{D}^{\prime}\left(R^{n}\right)$.

Remarks.
(i) The form (14) for $\Sigma_{T} \varphi$ and the property (16) of $S \varphi$ imply that the pullback $T^{*} f$, as defined by (17), is a distribution, even if f itself is only a partial distribution defined on that subset of test functions $\mathcal{D}_{\mathbb{Z}_{1}}(R)$ having (i) a zero of order $n-1$ at the origin and (ii) which, for n odd, are even (then $\mathbb{Z}_{1}=\mathbb{Z}_{[-n,-1]} \cup \mathbb{Z}_{0,-}$) or, for n even, are odd (then $\mathbb{Z}_{1}=\mathbb{Z}_{[-n,-1]} \cup \mathbb{Z}_{e,-}$) (for the notation $\mathcal{D}_{\mathbb{Z}_{1}}(R)$, see [7, Section 2.1, 5]).
(ii) The pullback T^{*} along the above function T is not injective. Indeed, eq. (17) and the property (16) of $S \varphi$ imply that

$$
\begin{equation*}
\left\{\sum_{l=0}^{n-2} a_{l} \delta^{(l)}+\sum_{p=0}^{P} b_{p} \delta^{(n+2 p)}, \forall a_{l}, b_{p} \in \mathbb{C}, \forall P \in \mathbb{N}\right\} \subset \operatorname{ker} T^{*} \tag{18}
\end{equation*}
$$

(iii) The distribution $T^{*} \delta_{y}$ in (2) represents a delta distribution having as support the sphere Σ_{y} with radius y. From (14) follows that

$$
\begin{equation*}
\delta_{\Sigma_{y}}=T^{*} \delta_{y}=\delta_{y} \otimes 1_{(\omega)}, \tag{19}
\end{equation*}
$$

with $1_{(\omega)}$ the one distribution based on S^{n-1}. We can not speak of the delta distribution having as support the sphere with radius y, since $\delta_{\Sigma_{y}}=T^{*} \delta_{y}$ depends on the equation used to represent the surface Σ_{y}, here $|\mathbf{x}|=y$. The equation $|\mathbf{x}|^{2}=y^{2}$ defines the same sphere, but now the function $T_{2}: X=R^{n} \backslash\{0\} \rightarrow Y=R_{+}$such that $\mathbf{x} \mapsto r=|\mathbf{x}|^{2}$ leads to the pullback $\delta_{\Sigma_{y^{2}}} \triangleq T_{2}^{*} \delta_{y}=\frac{1}{2} \delta_{y} \otimes 1_{(\omega)} \neq \delta_{\Sigma_{y}}$.

The pullback T^{*} along the function T thus performs two actions: (i) possibly an extension from $\mathcal{D}_{\mathbb{Z}_{1}}(R)$ to $\mathcal{D}(R)$, and (ii) a "change of variables" from $y \mapsto \mathbf{x}$. This can be illustrated more explicitly with the following example.

First, let

$$
\begin{equation*}
\Delta \triangleq D_{1}^{2}+D_{2}^{2}+\ldots+D_{n}^{2} \tag{20}
\end{equation*}
$$

denote the generalized Laplacian defined on $\mathcal{D}^{\prime}\left(R^{n}\right)$. Define distributions $\Delta^{p} \delta$, $\forall p \in \mathbb{N}$, based on R^{n} by

$$
\begin{equation*}
\left\langle\Delta^{p} \delta, \varphi\right\rangle \triangleq\left(\Delta^{p} \varphi\right)(\mathbf{0}), \tag{21}
\end{equation*}
$$

where in the right-hand side of (21) Δ denotes the ordinary Laplacian defined on $\mathcal{D}\left(R^{n}\right)$. It is shown in [11, p. 73, eq. (6)] that (Pizetti's formula), $\forall p \in \mathbb{N}$,

$$
\begin{equation*}
A_{n-1} \frac{\left(d^{2 p} S \varphi\right)(0)}{(2 p)!}=\frac{A_{n+2 p-1}}{(4 \pi)^{p}} \frac{\left(\Delta^{p} \varphi\right)(\mathbf{0})}{p!} . \tag{22}
\end{equation*}
$$

Now, let $\mathcal{D}_{\mathbb{Z}_{[-k,-1]}}(R)$ stand for the subset of test functions having a zero of order $k-1$ at the origin, $\forall k \in \mathbb{Z}_{+}$. For any distribution $f \in \mathcal{D}^{\prime}(R)$ and functions $y^{-k}: R \backslash\{0\} \rightarrow R$, the multiplication $y^{-k} . f$ can be defined, $\forall \psi \in \mathcal{D}_{\mathbb{Z}_{[-k,-1]}}(R)$, by

$$
\begin{equation*}
\left\langle y^{-k} \cdot f, \psi\right\rangle \triangleq\left\langle f, y^{-k} \psi\right\rangle \tag{23}
\end{equation*}
$$

since $y^{-k} \psi \in \mathcal{D}(R)$. Hence, $y^{-k} f \triangleq y^{-k}$. f is a partial distribution defined on $\mathcal{D}_{\mathbb{Z}_{[-k,-1]}}(R)$. For the particular partial distributions $y^{-(n-1)} \delta^{(m)}, \forall m \in \mathbb{N}$, (see also Appendix 7.2) (23) gives, $\forall \psi \in \mathcal{D}_{\mathbb{Z}_{[-(n-1),-1]}}(R)$,

$$
\begin{equation*}
\left\langle y^{-(n-1)} \delta^{(m)}, \psi\right\rangle=(-1)^{m}\left(d_{y}^{m}\left(y^{-(n-1)} \psi\right)\right)(0) \tag{24}
\end{equation*}
$$

A. Let $m=2 p, \forall p \in \mathbb{N}$. On the one hand, using (14), (21), (24) and (22), eq. (17) with $f=y^{-(n-1)} \delta^{(2 p)}$ implies that, $\forall p \in \mathbb{N}$,

$$
\begin{equation*}
T^{*} \frac{y^{-(n-1)} \delta^{(2 p)}}{(2 p)!}=\frac{A_{n+2 p-1}}{(4 \pi)^{p}} \frac{\Delta^{p} \delta}{p!} . \tag{25}
\end{equation*}
$$

Eq. (25) shows that the distributions $\Delta^{p} \delta$ are proportional to the pullback T^{*} from Y to X of the partial distributions $y^{-(n-1)} \delta^{(2 p)}$, defined on $\mathcal{D}_{Z_{[-(n-1),-1]}}(R)$.

On the other hand, taking the $(n-1+2 p)$-th derivative with respect to y of (14), gives

$$
\begin{equation*}
\frac{\left(d^{n-1+2 p} \Sigma_{T} \varphi\right)(0)}{(n-1+2 p)!}=A_{n-1} \frac{d^{2 p}(S \varphi)(0)}{(2 p)!} . \tag{26}
\end{equation*}
$$

Substituting in the right-hand side of (26) the expression (22), using the definition of $\delta^{(m)}$ and applying definition (1), we get, $\forall p \in \mathbb{N}$,

$$
\begin{equation*}
T^{*} \frac{(-1)^{n-1+2 p} \delta^{(n-1+2 p)}}{(n-1+2 p)!}=\frac{A_{n+2 p-1}}{(4 \pi)^{p}} \frac{\Delta^{p} \delta}{p!} . \tag{27}
\end{equation*}
$$

Eq. (27) shows that the distributions $\Delta^{p} \delta$ are also proportional to the pullback T^{*} from Y to X of the distributions $\delta^{(n-1+2 p)}$.

Eqs. (25) and (27) can be summarized as, $\forall p \in \mathbb{N}$,

$$
\begin{equation*}
T^{*}\left(y^{-(n-1)} \frac{\delta^{(2 p)}}{(2 p)!}\right)=\frac{A_{n+2 p-1}}{(4 \pi)^{p}} \frac{\Delta^{p} \delta}{p!}=T^{*}\left(\frac{(-1)^{n-1} \delta^{(n-1+2 p)}}{(n-1+2 p)!}\right) \tag{28}
\end{equation*}
$$

B. Let $m=2 p+1, \forall p \in \mathbb{N}$. In a similar way as under A we find that

$$
\begin{equation*}
T^{*}\left(y^{-(n-1)} \delta^{(2 p+1)}\right)=0=T^{*} \delta^{(n+2 p)} \tag{29}
\end{equation*}
$$

Eqs. (28), (29) and (126) illustrate again that T^{*} is not injective.
Further, due to (14) holds that $\left\langle T^{*} \delta^{(l)}, \varphi\right\rangle=0, \forall l \in \mathbb{Z}_{[0, n-2]}$. This result, together with the right equations in (28) and (29), can be summarized as

$$
\begin{align*}
T^{*} \delta^{(l)} & =0, \forall l \in \mathbb{Z}_{[0, n-2]} \tag{30}\\
T^{*} \frac{\delta^{(n-1+k)}}{(n-1+k)!} & =e_{k}(-1)^{n-1} \frac{A_{n+k-1}}{(4 \pi)^{k / 2}} \frac{\Delta^{k / 2} \delta}{(k / 2)!}, \forall k \in \mathbb{N} . \tag{31}
\end{align*}
$$

The distributions $\delta^{(p)}$ in the left-hand sides of (30)-(31) are based on R and the distributions $\Delta^{p} \delta$ in the right-hand side of (31) are based on R^{n}. The distributions $\delta_{\Sigma_{0}}^{(p)} \triangleq T^{*} \delta^{(p)}$ can be interpreted as spherical multiplet (or p-fold) layers, [11, p. 237], concentrated at an $(n-1)$-dimensional sphere of radius $y=0$.

5 Pullback of an AHD on R along the function $|\mathbf{x}|$

5.1 The distributions $D_{z}^{m}|\mathbf{x}|^{z}$

Let $m \in \mathbb{N}$.

5.1.1 Pullback of $y_{+}^{z} \ln ^{m}|y|$

Regular distributions The distributions $y_{+}^{z} \ln ^{m}|y|$ are defined in [11, p. 84], [7, Section 5.2.3]. For $-1<\operatorname{Re}(z), y_{+}^{z} \ln ^{m}|y|=D_{z}^{m} y_{+}^{z}$ is a regular distribution, so we obtain from (1), $\forall \varphi \in \mathcal{D}\left(R^{n}\right)$,

$$
\begin{align*}
\left\langle T^{*}\left(y_{+}^{z} \ln ^{m}|y|\right), \varphi\right\rangle & =\left\langle y_{+}^{z} \ln ^{m}\right| y\left|, \Sigma_{T} \varphi\right\rangle \\
& =\int_{0}^{+\infty}\left(y^{z} \ln ^{m} y\right) \Sigma_{T} \varphi(y) d y \tag{32}
\end{align*}
$$

Substituting herein the expression (14) for $\Sigma_{T} \varphi$ yields

$$
\begin{align*}
\left\langle T^{*}\left(y_{+}^{z} \ln ^{m}|y|\right), \varphi\right\rangle & =A_{n-1} \int_{0}^{+\infty}\left(y^{z+n-1} \ln ^{m} y\right)(S \varphi)(y) d y \\
& =\left\langle y_{+}^{z+n-1} \ln ^{m}\right| y\left|, A_{n-1} S \varphi\right\rangle . \tag{33}
\end{align*}
$$

As was shown in the previous section, $S \varphi \in \mathcal{D}(R)$. Thus, the right-hand side of (33) can be regarded as the functional value of the regular distribution $y_{+}^{z+n-1} \ln ^{m}|y|$ for the test function $A_{n-1} S \varphi$. Expression (43) below, for the Laurent series of the function $y_{+}^{w} \ln ^{m} y$ about $w=-k \in \mathbb{Z}_{-}$, shows that $y_{+}^{w} \ln ^{m}|y|$ has poles of order $m+1$ at $w=-k \in \mathbb{Z}_{-}$. However, due to property (16) of the test function $S \varphi$ and the expression for the principal part of the Laurent series of the function $y_{+}^{w} \ln ^{m} y$ about $w=-k$, the poles of $y_{+}^{w} \ln ^{m} y$ at $w=-k \in \mathbb{Z}_{e,-}$ do not occur in (33). Consequently, the distribution $T^{*}\left(y_{+}^{z} \ln ^{m}|y|\right)$ has poles of order $m+1$ only at $z \in \mathbb{Z}_{p} \triangleq\{-n-2 p, \forall p \in \mathbb{N}\}$.

Substituting (15) in (33) gives

$$
\begin{equation*}
\left\langle T^{*}\left(y_{+}^{z} \ln ^{m}|y|\right), \varphi\right\rangle=\int_{0}^{+\infty} \int_{S^{n-1}}\left(y^{z} \ln ^{m} y\right) \varphi(y \omega) y^{n-1} \omega_{S^{n-1}} d y \tag{34}
\end{equation*}
$$

Changing back to Cartesian coordinates in the right-hand side double integral in (34), we get

$$
\begin{align*}
\left\langle T^{*}\left(y_{+}^{z} \ln ^{m}|y|\right), \varphi\right\rangle & =\int_{R^{n}}\left(|\mathbf{x}|^{z} \ln ^{m}|\mathbf{x}|\right) \varphi \omega_{R^{n}} \\
& \left.=\left.\langle | \mathbf{x}\right|^{z} \ln ^{m}|\mathbf{x}|, \varphi\right\rangle \tag{35}
\end{align*}
$$

Combining (35) with (33) shows that $|\mathbf{x}|^{z} \ln ^{m}|\mathbf{x}|$ are regular distributions for $-n<\operatorname{Re}(z)$. Since $y_{+}^{z} \ln ^{m}|y|=D_{z}^{m} y_{+}^{z}$ for $-1<\operatorname{Re}(z)$, is due to (4) $|\mathbf{x}|^{z} \ln ^{m}|\mathbf{x}|=$ $D_{z}^{m}|\mathbf{x}|^{z}$ for $-n<\operatorname{Re}(z)$.

In particular for $z=0$, follows from (35) that, $\forall m \in \mathbb{N}$,

$$
\begin{equation*}
\ln ^{m}|\mathbf{x}|=T^{*}\left(1_{+} \ln ^{m}|y|\right) . \tag{36}
\end{equation*}
$$

Analytic continuations The complex analyticity of the distribution $y_{+}^{z} \ln ^{m}|y|$ for $-1<\operatorname{Re}(z)$ together with the principle of analytic continuation makes that (35) continues to hold, $\forall z \in \mathbb{C} \backslash \mathbb{Z}_{p}$,

$$
\begin{equation*}
|\mathbf{x}|^{z} \ln ^{m}|\mathbf{x}|=T^{*}\left(y_{+}^{z} \ln ^{m}|y|\right) . \tag{37}
\end{equation*}
$$

Similarly we get, $\forall z \in \mathbb{C} \backslash \mathbb{Z}_{p}$ and $\forall \varphi \in \mathcal{D}\left(R^{n}\right)$, from (33),

$$
\begin{equation*}
\left\langle T^{*}\left(y_{+}^{z} \ln ^{m}|y|\right), \varphi\right\rangle=\left\langle y_{+}^{z+n-1} \ln ^{m}\right| y\left|, A_{n-1} S \varphi\right\rangle \tag{38}
\end{equation*}
$$

and from (32),

$$
\begin{equation*}
\left\langle T^{*}\left(y_{+}^{z} \ln ^{m}|y|\right), \varphi\right\rangle=\left\langle y_{+}^{z} \ln ^{m}\right| y\left|, \Sigma_{T} \varphi\right\rangle . \tag{39}
\end{equation*}
$$

Invoking (4) and using (37) with $m=0$, it follows that also $\forall z \in \mathbb{C} \backslash \mathbb{Z}_{p}$,

$$
\begin{equation*}
|\mathbf{x}|^{z} \ln ^{m}|\mathbf{x}|=D_{z}^{m}|\mathbf{x}|^{z} \tag{40}
\end{equation*}
$$

Using (37) in (38) further yields, $\forall z \in \mathbb{C} \backslash \mathbb{Z}_{e,-]}$,

$$
\begin{equation*}
\left.\left.\langle | \mathbf{x}\right|^{z-n} \ln ^{m}|\mathbf{x}|, \varphi\right\rangle=\left\langle y_{+}^{z-1} \ln ^{m}\right| y\left|, \int_{S^{n-1}} \varphi(y \omega) \omega_{S^{n-1}}\right\rangle . \tag{41}
\end{equation*}
$$

We will now derive a more explicit expression in order to evaluate the righthand side of (41) after analytic continuation. To this end, we first need the following n-dimensional projection operator $T_{p, q}^{n}: \mathcal{D}\left(R^{n}\right) \rightarrow \mathcal{D}\left(R^{n}\right)$ such that $\varphi \mapsto T_{p, q}^{n} \varphi$, defined by

$$
\begin{gather*}
\left(T_{p, q}^{n} \varphi\right)(\mathbf{x}) \triangleq \varphi(\mathbf{x})-\sum_{l=0}^{p+q}\left(\sum_{l_{1}=0}^{l} \cdots \sum_{l_{n}=0}^{l} 1_{L=l}\left(\left(\frac{\partial^{L} \varphi}{(\partial x)^{L}}\right)(\mathbf{0})\right)\left(\prod_{i=1}^{n} \frac{\left(x^{i}\right)^{l_{i}}}{l_{i}!}\right)\right) \\
\left(1_{l<p}+1_{p \leq l} 1_{[+}\left(1-|\mathbf{x}|^{2}\right)\right) \tag{42}
\end{gather*}
$$

wherein L is a shorthand for $\sum_{i=1}^{n} l_{i},(\partial x)^{L}$ a shorthand for $\left(\partial x^{1}\right)^{l_{1}} \ldots\left(\partial x^{n}\right)^{l_{n}}$ and the step function $1_{[+}(x)=1$ iff $x \geq 0$.

In order to evaluate the right-hand side of (41) after analytic continuation, e.g. for $0<|z-1+k|<1$ and for any $k \in \mathbb{Z}_{+}$, we recall the Laurent series of $y_{ \pm}^{z-1} \ln ^{m}|x|$ about $z-1=-k$, [7, eq. (117)],

$$
\begin{align*}
& \left\langle y_{ \pm}^{z-1} \ln ^{m}\right| x|, \psi\rangle \\
& =(-1)^{m} \frac{\left\langle\frac{(\mp 1)^{k-1}}{(k-1)!} \delta^{(k-1)}, \psi\right\rangle}{(z-1+k)^{m+1}}+1_{0 \leq p \leq k-2}(-1)^{m} \sum_{l=p}^{k-2} \frac{\left\langle\frac{(\mp 1)^{l}}{l!} \delta^{(l)}, \psi\right\rangle}{(z-1+l)^{m+1}} \\
& \quad+\int_{-\infty}^{+\infty}\left(|y|^{z-1} 1_{ \pm}(y) \ln ^{m}|y|\right)\left(T_{p, q} \psi\right)(y) d y \tag{43}
\end{align*}
$$

wherein $p, q \in \mathbb{N}: p+q=k-1, \psi=A_{n-1} S \varphi$ and $T_{p, q} \triangleq T_{p, q}^{1}$. For the particular choice $p=k-1, q=0,(43)$ reduces to

$$
\begin{equation*}
\left\langle y_{ \pm}^{z-1} \ln ^{m}\right| x|, \psi\rangle=(-1)^{m} \frac{\left\langle\frac{(\mp 1)^{k-1}}{(k-1)!} \delta^{(k-1)}, \psi\right\rangle}{(z-1+k)^{m+1}}+\left\langle y_{ \pm, 0}^{z-1} \ln ^{m}\right| x|, \psi\rangle, \tag{44}
\end{equation*}
$$

wherein

$$
\begin{equation*}
\left\langle y_{ \pm, 0}^{z-1} \ln ^{m}\right| x|, \psi\rangle=\int_{-\infty}^{+\infty}\left(|y|^{z-1} 1_{ \pm}(y) \ln ^{m}|y|\right)\left(T_{k-1,0} \psi\right)(y) d y . \tag{45}
\end{equation*}
$$

Take $k=2 p+2, \forall p \in \mathbb{N}$, in (44)-(45). Then, for $0<|z+(2 p+1)|<1$, and due to (16), (41) becomes

$$
\begin{align*}
\left.\left.\langle | \mathbf{x}\right|^{z-n} \ln ^{m}|\mathbf{x}|, \varphi\right\rangle & =\int_{0}^{+\infty}\left(y^{z-1} \ln ^{m}|y|\right)\left(T_{2 p+1,0}\left(A_{n-1} S \varphi\right)\right)(y) d y \\
& =\int_{0}^{+\infty} \int_{S^{n-1}}\left(y^{z-n} \ln ^{m} y\right)\left(T_{2 p+1,0}^{n} \varphi\right)(y \omega) y^{n-1} \omega_{S^{n-1}} d y \\
& =\int_{R^{n}}\left(|\mathbf{x}|^{z-n} \ln ^{m}|\mathbf{x}|\right)\left(T_{2 p+1,0}^{n} \varphi\right) \omega_{R^{n}} \tag{46}
\end{align*}
$$

In particular at $z=-(2 p+1)$, (46) allows to calculate the functional value of $|\mathbf{x}|^{z-n} \ln ^{m}|\mathbf{x}|$ at the ordinary points $z=-(2 p+1)$. The right-hand side of (46) shows that the analytic continuation of the regular distribution $|\mathbf{x}|^{z} \ln ^{m}|\mathbf{x}|$ is no longer a regular distribution.
Example 8. In particular for $p=0$, (46) gives, $\forall m \in \mathbb{N}$ and $\forall \varphi \in \mathcal{D}\left(R^{n}\right)$,

$$
\begin{align*}
\left.\langle | \mathbf{x}\right|^{-n-1} & \left.\ln ^{m}|\mathbf{x}|, \varphi\right\rangle \\
& =A_{n-1} \int_{0}^{+\infty} \frac{1}{y^{2}}\binom{(S \varphi)(y)-(S \varphi)(0)}{\left.-1_{[+}\left(1-y^{2}\right)((d)(S \varphi))(0)\right) y} \ln ^{m}|y| d y \tag{47}\\
& =\int_{R^{n}}|\mathbf{x}|^{-n-1}\binom{\varphi(\mathbf{x})-\varphi(\mathbf{0})}{-1_{[+}\left(1-|\mathbf{x}|^{2}\right)\left(\sum_{i=1}^{n}\left(\left(\frac{\partial \varphi}{\partial x^{i}}\right)(\mathbf{0})\right) x^{i}\right)} \ln ^{m}|\mathbf{x}| \omega_{R^{n}} . \tag{48}
\end{align*}
$$

Remarks.
(i) For $-1<\operatorname{Re}(z),|\mathbf{x}|^{z} \ln ^{m}|\mathbf{x}|$ can be regarded as the multiplication product $|\mathbf{x}|^{z} \cdot \ln ^{m}|\mathbf{x}|$ of the regular distributions $|\mathbf{x}|^{z}$ and $\ln ^{m}|\mathbf{x}|$. By analytic continuation this product is uniquely extended to all $z \in \mathbb{C} \backslash \mathbb{Z}_{p}$. This justifies our use of the notation $|\mathbf{x}|^{z} \ln ^{m}|\mathbf{x}|$ in the right-hand side of (35).
(ii) It follows from (39) that, $\forall z \in \mathbb{C} \backslash \mathbb{Z}_{e,-}$, the distribution $|\mathbf{x}|^{z} \ln ^{m}|\mathbf{x}|$ is the pullback of the partial distribution $y_{+}^{z} \ln ^{m}|y|$, defined on that set of test functions $\mathcal{D}_{\mathbb{Z}_{1}}(R)$ having (i) a zero of order $n-1$ at the origin and (ii) which, for n odd, are even (i.e., $\mathbb{Z}_{1}=\mathbb{Z}_{[-n,-1]} \cup \mathbb{Z}_{0,-}$) or, for n even, are odd (i.e., $\mathbb{Z}_{1}=\mathbb{Z}_{[-n,-1]} \cup$ $\mathbb{Z}_{e,-}$).
(iii) The analytically continued distributions $|\mathbf{x}|^{z} \ln ^{m}|\mathbf{x}|$ are homogeneous of degree z and have order of association m. This follows from the properties of the analytically continued distributions $y_{ \pm}^{z} \ln ^{m}|x|,[7$, Section 5.2.2], and Theorem 5 .

Extensions We now consider the cases $z+n=-2 p \in \mathbb{Z}_{e,-]}$ in (38). The Laurent series of $y_{ \pm}^{z}$ about $z=-k \in \mathbb{Z}_{-}$and holding in $0<|z+k|<1$ are given by, [11, p. 87], [7, Section 4.2.3],

$$
\begin{equation*}
y_{ \pm}^{z}=\frac{\frac{(\mp 1)^{k-1}}{(k-1)!} \delta^{(k-1)}}{z+k}+\sum_{m=0}^{+\infty}\left(y_{ \pm, 0}^{-k} \ln ^{m}|y|\right) \frac{(z+k)^{m}}{m!} \tag{49}
\end{equation*}
$$

wherein the distributions $y_{ \pm, 0}^{-k} \ln ^{m}|y|$, given by (45), are particular extensions of $y_{ \pm}^{z} \ln ^{m}|y|$ at the pole $z=-k$, in the sense of [7, Section 3.3, eq. (33)]. Using the sequential continuity of T^{*}, (37) with $m=0$, (27) and letting $k=n+2 p$, we obtain the Laurent series of $|\mathbf{x}|^{z}$ about $z+n=-2 p \in \mathbb{Z}_{e,-]}$ as

$$
\begin{equation*}
|\mathbf{x}|^{z}=\frac{\frac{A_{n+2 p-1}}{(4 \pi)^{p} p!} \Delta^{p} \delta}{z+n+2 p}+\sum_{m=0}^{+\infty}\left(T^{*}\left(y_{+, 0}^{-(n+2 p)} \ln ^{m}|y|\right)\right) \frac{(z+n+2 p)^{m}}{m!} \tag{50}
\end{equation*}
$$

Due to the uniform continuity of this series, the Laurent series of $D_{z}^{m}|\mathbf{x}|^{z}$ about $z+n=-2 p \in \mathbb{Z}_{e,-]}$ is obtained as

$$
\begin{equation*}
D_{z}^{m}|\mathbf{x}|^{z}=(-1)^{m} \frac{\frac{A_{n+2 p-1}}{(4 \pi)^{p} p!} \Delta^{p} \delta}{(z+n+2 p)^{m+1}}+\sum_{l=m}^{+\infty} T^{*}\left(y_{+, 0}^{-(n+2 p)} \ln ^{l}|y|\right) \frac{(z+n+2 p)^{l-m}}{(l-m)!} \tag{51}
\end{equation*}
$$

We can now give a meaning to $D_{z}^{m}|\mathbf{x}|^{z}$ at $z+n=-2 p \in \mathbb{Z}_{e,-]}$. Expression (51) shows that $\left(D_{z}^{m}|\mathbf{x}|^{z}\right)_{z=-n-2 p}$ is a partial AHD, i.e., a generalized function only defined for test functions $\psi \in \mathcal{D}_{r}\left(R^{n}\right) \triangleq\left\{\varphi \in \mathcal{D}\left(R^{n}\right):\left(\Delta^{p} \varphi\right)(0)=0\right\}$. The HahnBanach theorem ensures the existence of a distribution $\left(\left(D_{z}^{m}|\mathbf{x}|^{z}\right)_{\varepsilon}\right)_{z=-n-2 p^{\prime}}$ defined $\forall \varphi \in \mathcal{D}\left(R^{n}\right)$ and which coincides with $\left(D_{z}^{m}|\mathbf{x}|^{z}\right)_{z=-n-2 p}$ on $\mathcal{D}_{r}\left(R^{n}\right) \subset$ $\mathcal{D}\left(R^{n}\right)$, called an extension of the partial distribution $\left(D_{z}^{m}|\mathbf{x}|^{z}\right)_{z=-n-2 p}$ from $\mathcal{D}_{r}\left(R^{n}\right)$ to $\mathcal{D}\left(R^{n}\right)$. This extension is generally not unique and not necessarily an AHD. Here we are only interested in constructing AHDs based on R^{n}, so we restrict our attention to extensions $\left(\left(D_{z}^{m}|\mathbf{x}|^{z}\right)_{e}\right)_{z=-n-2 p}$ which are again an AHD (we indicate extensions which are an AHD by the subscript e and use the subscript ε for a general extension). The subset of distributions which maps $\mathcal{D}_{r}(U)$ to zero is called the annihilator of $\mathcal{D}_{r}(U)$ and denoted by $\mathcal{D}_{r}^{\prime \perp}(U)$. Any two extensions differ by a generalized function $g \in \mathcal{D}_{r}^{\prime \perp}(U)$. Applied to our case here, we find that associated homogeneous extensions are of the form

$$
\begin{equation*}
\left(\left(D_{z}^{m}|\mathbf{x}|^{z}\right)_{e}\right)_{z=-n-2 p}=\left(\left(D_{z}^{m}|\mathbf{x}|^{z}\right)_{0}\right)_{z=-n-2 p}+c^{\prime} \Delta^{p} \delta, \tag{52}
\end{equation*}
$$

with arbitrary $c^{\prime} \in \mathbb{C}$. This way, we have extended the partial distributions $\left(D_{z}^{m}|\mathbf{x}|^{z}\right)_{z=-n-2 p^{\prime}}$ defined on $\mathcal{D}_{r}\left(R^{n}\right)$, to the non-unique singular distributions $\left(\left(D_{z}^{m}|\mathbf{x}|^{z}\right)_{e}\right)_{z=-n-2 p^{\prime}}$ defined on the whole of $\mathcal{D}\left(R^{n}\right)$.

The finite part

$$
\begin{equation*}
\left(\left(D_{z}^{m}|\mathbf{x}|^{z}\right)_{0}\right)_{z=-n-2 p} \triangleq T^{*}\left(y_{+, 0}^{-(n+2 p)} \ln ^{m}|y|\right) \tag{53}
\end{equation*}
$$

is given by (41), (15) and [7, eq. (118)] as

$$
\begin{align*}
&\left\langle\left(\left(D_{z}^{m}|\mathbf{x}|^{z}\right)_{0}\right)_{z=-n-2 p}, \varphi\right\rangle \\
&=\left\langle y_{+, 0}^{-1-2 p} \ln ^{m}\right| y\left|, A_{n-1} S \varphi\right\rangle \\
&=\int_{0}^{+\infty}\left(y^{-1-2 p} \ln ^{m} y\right)\left(T_{2 p, 0}\left(A_{n-1} S \varphi\right)\right)(y) d y \\
&=\int_{0}^{+\infty} \int_{S^{n-1}}\left(y^{-n-2 p} \ln ^{m} y\right)\left(T_{2 p, 0}^{n} \varphi\right)(y \omega) y^{n-1} \omega_{S^{n-1}} d y \\
&=\int_{R^{n}}\left(|\mathbf{x}|^{-n-2 p} \ln ^{m}|\mathbf{x}|\right)\left(T_{2 p, 0}^{n} \varphi\right) \omega_{R^{n}} . \tag{54}
\end{align*}
$$

Example 9. In particular for $p=0$, (54) gives, $\forall m \in \mathbb{N}$ and $\forall \varphi \in \mathcal{D}\left(R^{n}\right)$, $\left\langle\left(\left(D_{z}^{m}|\mathbf{x}|^{z}\right)_{0}\right)_{z=-n}, \varphi\right\rangle$

$$
\begin{align*}
& =A_{n-1} \int_{0}^{+\infty} \frac{1}{y}\left((S \varphi)(y)-1_{[+}\left(1-y^{2}\right)(S \varphi)(0)\right) \ln ^{m} y d y \tag{55}\\
& =\int_{R^{n}}|\mathbf{x}|^{-n}\left(\varphi(\mathbf{x})-1_{[+}\left(1-|\mathbf{x}|^{2}\right) \varphi(\mathbf{0})\right) \ln ^{m}|\mathbf{x}| \omega_{R^{n}} \tag{56}
\end{align*}
$$

Remarks.
(i) The extension $\left(\left(D_{z}^{m}|\mathbf{x}|^{z}\right)_{e}\right)_{z=-n-2 p}$ is of degree $-n-2 p$ and associated of order $m+1$, for the same reasons as explained in [7, eq. (121)], but now applied to the distribution $y_{+, e}^{-(n+2 p)} \ln ^{m}|y|$.
(ii) Due to [6, eq. (20)] ([9, eq. (20)]) is $y_{+, e}^{-(n+2 p)} \ln ^{m}|y|=y_{+, 0}^{-(n+2 p)} \ln ^{m}|y|+$ $c_{+} \delta^{(n+2 p-1)}, c_{+} \in \mathbb{C}$ arbitrary. Then, using (52), (53) and (31) we obtain

$$
\begin{equation*}
T^{*}\left(y_{+, e}^{-(n+2 p)} \ln ^{m}|y|\right)=\left(\left(D_{z}^{m}|\mathbf{x}|^{z}\right)_{0}\right)_{z=-n-2 p}+c_{+}^{\prime} \Delta^{p} \delta \tag{57}
\end{equation*}
$$

with the branches of both extensions related by

$$
\begin{equation*}
c_{+}^{\prime}=c_{+}(-1)^{n-1}(n+2 p-1)!\frac{A_{n+2 p-1}}{(4 \pi)^{p} p!} . \tag{58}
\end{equation*}
$$

(iii) We use the notation $\left(\left(D_{z}^{m}|\mathbf{x}|^{z}\right)_{e}\right)_{z=-n-2 p}$ instead of $|\mathbf{x}|_{e}^{-n-2 p} \ln ^{m}|\mathbf{x}|$, because it is not yet clear if $\left(\left(D_{z}^{m}|\mathbf{x}|^{z}\right)_{e}\right)_{z=-n-2 p}$ is equal to the multiplication of $|\mathbf{x}|_{e}^{-n-2 p}$ by $\ln ^{m}|\mathbf{x}|$. This matter can be resolved after the multiplication algebra constructed for AHDs on R in [6] ([9]) is extended to a multiplication algebra for SAHDs on R^{n}.

Spherical form From (37), (51), (30) and (52) it thus follows that, $\forall z \in \mathbb{C}$,

$$
\begin{equation*}
T^{*}\left(y_{+}^{z} \ln ^{m}|y|\right)=D_{z}^{m}|\mathbf{x}|^{z}, \tag{59}
\end{equation*}
$$

with $y_{+}^{z} \ln ^{m}|y|$ replaced by $y_{+,,}^{z} \ln ^{m}|y|$ for $z \in \mathbb{Z}_{-}$and $D_{z}^{m}|\mathbf{x}|^{z}$ replaced by $\left(D_{z}^{m}|\mathbf{x}|^{z}\right)_{e}$ for $z+n \in \mathbb{Z}_{e,-]}$.

From (34) and for $-1<\operatorname{Re}(z)$, we can read off the pullback $T_{S \rightarrow C}^{*}$ along the diffeomorphism from spherical to Cartesian coordinates $T_{S \rightarrow C}$, defined in Appendix 7.1, of $T^{*}\left(y_{+}^{z} \ln ^{m}|y|\right)$ as

$$
\begin{equation*}
\left\langle T^{*}\left(y_{+}^{z} \ln ^{m}|y|\right), \varphi\right\rangle=\int_{0}^{+\infty} \int_{S^{n-1}}\left(r^{z} \ln ^{m} r \otimes 1_{(\omega)}\right) \varphi(r \omega) r^{n-1} \omega_{S^{n-1}} d r \tag{60}
\end{equation*}
$$

After analytic continuation we get the distributions $T^{*}\left(y_{+}^{z} \ln ^{m}|y|\right), \forall z+n \in$ $\mathbb{C} \backslash \mathbb{Z}_{e,-]}$, in spherical coordinates as

$$
\begin{equation*}
T^{*}\left(y_{+}^{z} \ln ^{m}|y|\right)=r^{z} \ln ^{m} r \otimes 1_{(\omega)} \tag{61}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
|\mathbf{x}|^{z} \ln ^{m}|\mathbf{x}|=r^{z} \ln ^{m} r \otimes 1_{(\omega)} . \tag{62}
\end{equation*}
$$

At the poles $z+n=-2 p \in \mathbb{Z}_{e,-]}$, we mean by $\left(r^{-n-2 p} \ln ^{m} r\right)_{e}$ the distribution defined by

$$
\begin{equation*}
\left(r^{-n-2 p} \ln ^{m} r\right)_{e} \otimes 1_{(\omega)} \triangleq\left(\left(D_{z}^{m}|\mathbf{x}|^{z}\right)_{e}\right)_{z=-n-2 p} \tag{63}
\end{equation*}
$$

with the right-hand side of (63) given by (52).
Example 10. For instance in R^{3}, the familiar functional r^{-1} (more precisely, $r^{-1} \otimes 1_{(\omega)}$) is thus a regular distribution, whose functional value is read off from (41) for $z=2$ and $m=0$ as

$$
\begin{align*}
\left\langle r^{-1} \otimes 1_{(\omega)}, \varphi\right\rangle & =\left\langle y_{+}, \int_{S^{2}} \varphi(y \omega) \omega_{S^{2}}\right\rangle, \\
& =4 \pi \int_{0}^{+\infty} y(S \varphi)(y) d y . \tag{64}
\end{align*}
$$

Further, r^{-2} (more precisely, $r^{-2} \otimes 1_{(\omega)}$) is also a regular distribution determined by

$$
\begin{align*}
\left\langle r^{-2} \otimes 1_{(\omega)}, \varphi\right\rangle & =\left\langle 1_{+}, \int_{S^{2}} \varphi(y \omega) \omega_{S^{2}}\right\rangle, \\
& =4 \pi \int_{0}^{+\infty}(S \varphi)(y) d y . \tag{65}
\end{align*}
$$

By contrast, $r^{-3} \otimes 1_{(\omega)}$ is a partial distribution only defined on $\mathcal{D}_{r}\left(R^{3}\right)=\left\{\varphi \in \mathcal{D}\left(R^{3}\right)\right.$: $\varphi(\mathbf{0})=0\}$, but which can be non-uniquely extended to a first order AHD $r_{e}^{-3} \otimes 1_{(\omega)}=$ $|\mathbf{x}|_{e}^{-3}$, now defined on all of $\mathcal{D}\left(R^{3}\right)$, for which $\left\langle r_{e}^{-3} \otimes 1_{(\omega)}, \psi\right\rangle=\left\langle r^{-3} \otimes 1_{(\omega)}, \psi\right\rangle$, $\forall \psi \in \mathcal{D}_{r}\left(R^{3}\right)$, and whose functional value is given by, $\forall \varphi \in \mathcal{D}\left(R^{3}\right)$,

$$
\begin{align*}
\left\langle r_{e}^{-3} \otimes 1_{(\omega)}, \varphi\right\rangle & \left.=\left.\langle | \mathbf{x}\right|_{e} ^{-3}, \varphi\right\rangle \\
& \left.=\left.\langle | \mathbf{x}\right|_{0} ^{-3}, \varphi\right\rangle+c\langle\delta, \varphi\rangle \tag{66}
\end{align*}
$$

More explicitly,

$$
\begin{align*}
& \left.\left.\langle | \mathbf{x}\right|_{e} ^{-3}, \varphi\right\rangle \\
& \quad=4 \pi\left(\int_{0}^{1} \frac{(S \varphi)(y)-(S \varphi)(0)}{y} d y+\int_{1}^{+\infty} \frac{(S \varphi)(y)}{y} d y\right)+c(S \varphi)(0), \tag{67}\\
& \quad=\int_{B^{3}} \frac{\varphi(\mathbf{x})-\varphi(\mathbf{0})}{|\mathbf{x}|^{3}} \omega_{R^{3}}+\int_{R^{3} \backslash B^{3}} \frac{\varphi(\mathbf{x})}{|\mathbf{x}|^{3}} \omega_{R^{3}}+c \varphi(\mathbf{0}) \tag{68}
\end{align*}
$$

with $B^{n} \triangleq\left\{\mathbf{x} \in R^{n}:|\mathbf{x}| \leq 1\right\}$ the closed unit n-dimensional ball and $c \in \mathbb{C}$ arbitrary.
Example 11. The delta distribution on R^{n} in spherical coordinates. It is not possible to define the delta distribution δ on R^{n} in spherical coordinates by a straightforward application of the formula for the pullback along the diffeomorphism $T_{S \rightarrow C}$ of Appendix 7.1. The reason being that in order to make $T_{S \rightarrow C}$ a diffeomorphism, we must (at least) exclude $\mathbf{0} \in R^{n}$, but then $T_{S \rightarrow C}$ is no longer a diffeomorphism of a neighborhood of the $\operatorname{supp} \delta=\{\mathbf{0}\}$ and [10, Theorem 7.1.1] does not apply. However, from (27) follows for $p=0$ and $\forall \varphi \in \mathcal{D}\left(R^{n}\right)$ that

$$
\begin{equation*}
\left\langle T^{*}\left(\frac{1}{A_{n-1}} y^{-(n-1)} \delta\right), \varphi\right\rangle=\varphi(\mathbf{0}), \tag{69}
\end{equation*}
$$

which by (1) and (14) is equivalent to

$$
\begin{equation*}
\left\langle\frac{1}{A_{n-1}} y^{-(n-1)} \delta, \int_{S^{n-1}} \varphi(y \omega) y^{n-1} \omega_{S^{n-1}}\right\rangle=\varphi(\mathbf{0}) . \tag{70}
\end{equation*}
$$

In spherical coordinates (70) becomes

$$
\begin{equation*}
\left\langle\frac{1}{A_{n-1}} r^{-(n-1)} \delta \otimes 1_{(\omega)}, \varphi\right\rangle=\varphi(\mathbf{0}) . \tag{71}
\end{equation*}
$$

From (71) we can read off δ on R^{n} in spherical coordinates. Notice that its radial part $r^{-(n-1)} \delta / A_{n-1}$ is a distribution defined on $\mathcal{D}\left(R_{+}\right)$, while $y^{-(n-1)} \delta / A_{n-1}$, in the equivalent functional (70), is a partial distribution only defined on $\mathcal{D}_{\mathbb{Z}_{[-n,-1]}}(R)$.

5.1.2 Pullback of $y_{-}^{z} \ln ^{m}|y|$

For $-1<\operatorname{Re}(z), T^{*}\left(y_{-}^{z} \ln ^{m}|y|\right)$ is a regular distribution, so we have using (1), $\forall \varphi \in \mathcal{D}(R)$,

$$
\begin{aligned}
\left\langle T^{*}\left(y_{-}^{z} \ln ^{m}|y|\right), \varphi\right\rangle & =\left\langle y_{-}^{z} \ln ^{m}\right| y\left|, \Sigma_{T} \varphi\right\rangle \\
& =\int_{-\infty}^{+\infty}\left(y_{-}^{z} \ln ^{m}|y|\right) \Sigma_{T} \varphi(y) d y \\
& =\int_{-\infty}^{+\infty}\left(y_{+}^{z} \ln ^{m}|y|\right) \Sigma_{T} \varphi(-y) d y .
\end{aligned}
$$

Since $S \varphi$ is an even function, it follows from (14) that $\left(\Sigma_{T} \varphi\right)(-y)=(-1)^{n-1}$ $\left(\Sigma_{T} \varphi\right)(y)$. Hence,

$$
\begin{aligned}
\left\langle T^{*}\left(y_{-}^{z} \ln ^{m}|y|\right), \varphi\right\rangle & =(-1)^{n-1} \int_{-\infty}^{+\infty}\left(y_{+}^{z} \ln ^{m}|y|\right) \Sigma_{T} \varphi(y) d y \\
& =(-1)^{n-1}\left\langle y_{+}^{z} \ln ^{m}\right| y\left|, \Sigma_{T} \varphi\right\rangle \\
& =(-1)^{n-1}\left\langle T^{*}\left(y_{+}^{z} \ln ^{m}|y|\right), \varphi\right\rangle
\end{aligned}
$$

or

$$
\begin{equation*}
T^{*}\left(y_{-}^{z} \ln ^{m}|y|\right)=(-1)^{n-1} T^{*}\left(y_{+}^{z} \ln ^{m}|y|\right) \tag{72}
\end{equation*}
$$

After analytic continuation we find that (72) continues to hold so that, $\forall z \in \mathbb{C} \backslash \mathbb{Z}_{p}$,

$$
\begin{equation*}
T^{*}\left(y_{-}^{z} \ln ^{m}|y|\right)=(-1)^{n-1} D_{z}^{m}|\mathbf{x}|^{z} . \tag{73}
\end{equation*}
$$

At $z+n=-2 p \in \mathbb{Z}_{e,-]}$, we find that

$$
\begin{equation*}
T^{*}\left(y_{-, 0}^{-(n+2 p)} \ln ^{m}|y|\right)=(-1)^{n-1}\left(\left(D_{z}^{m}|\mathbf{x}|^{z}\right)_{0}\right)_{z=-n-2 p} \tag{74}
\end{equation*}
$$

so that, with $y_{-, e}^{-(n+2 p)} \ln ^{m}|y|=y_{-, 0}^{-(n+2 p)} \ln ^{m}|y|+c_{-} \delta^{(n+2 p-1)}$,

$$
\begin{equation*}
T^{*}\left(y_{-, e}^{-(n+2 p)} \ln ^{m}|y|\right)=(-1)^{n-1}\left(\left(D_{z}^{m}|\mathbf{x}|^{z}\right)_{0}\right)_{z=-n-2 p}+c_{-}^{\prime} \Delta^{p} \delta, \tag{75}
\end{equation*}
$$

with the branches of both extensions related by

$$
\begin{equation*}
c_{-}^{\prime}=c_{-}(-1)^{n-1}(n+2 p-1)!\frac{A_{n+2 p-1}}{(4 \pi)^{p} p!} . \tag{76}
\end{equation*}
$$

In the process of analytic continuation and the extension process we used the fact that the operator $T_{p, q}^{n}$, given by (42), preserves the parity of test functions.
Example 12. The pullback along T of the distributions $(y \pm i 0)^{z} \in \mathcal{D}^{\prime}(R)$, defined in [11, p. 59], [7] as

$$
\begin{equation*}
(y \pm i 0)^{z} \triangleq y_{+}^{z}+e^{ \pm i \pi z} y_{-}^{z}, \tag{77}
\end{equation*}
$$

are obtained as, $\forall z \in \mathbb{C} \backslash \mathbb{Z}_{p}$,

$$
\begin{equation*}
T^{*}(y \pm i 0)^{z}=\left(1-(-1)^{n} e^{ \pm i \pi z}\right)\left(r^{z} \otimes 1_{(\omega)}\right) \tag{78}
\end{equation*}
$$

Recall the generalized Sokhotskii-Plemelj equations, [12, p. 28 and p. 84], [7, eq. (217)], $\forall k \in \mathbb{Z}_{+}$,

$$
\begin{equation*}
(x \pm i 0)^{-k}=\mp i \pi \frac{(-1)^{k-1}}{(k-1)!}\left(\delta^{(k-1)} \pm i \eta^{(k-1)}\right) \tag{79}
\end{equation*}
$$

with the distributions $\eta^{(l)} \triangleq D^{l} \eta$ and $\eta \triangleq \frac{1}{\pi} x^{-1}$, (see also [7, eq. (176)]). The distributions in (79) are higher degree generalizations of the Heisenberg distributions $\mp \frac{1}{2 \pi i}(x \pm i 0)^{-1}$. At $z=-k \in \mathbb{Z}_{[-(n-1),-1]}$, we get, using (79) and (30),

$$
\begin{equation*}
T^{*} \eta^{(k-1)}=(-1)^{n} \frac{2}{\pi}(k-1)!o_{n+k}\left(r^{-k} \otimes 1_{(\omega)}\right) . \tag{80}
\end{equation*}
$$

At $z=-n-(2 p+1), \forall p \in \mathbb{N}$, we have, now by using (79) and (31),

$$
\begin{equation*}
T^{*} \eta^{(n+2 p)}=(-1)^{n} \frac{2}{\pi}(n+2 p)!\left(r^{-n-(2 p+1)} \otimes 1_{(\omega)}\right) . \tag{81}
\end{equation*}
$$

At $z=-n-2 p, \forall p \in \mathbb{N}$, we obtain, using (57), (75), (53), (63) and (31),

$$
\begin{equation*}
T^{*} \frac{(-1)^{n-1} \eta^{(n+2 p-1)}}{(n+2 p-1)!}=\frac{1}{\pi}\left(c_{+}^{\prime}+(-1)^{n} c_{-}^{\prime} \pm i \pi \frac{A_{n+2 p-1}}{(4 \pi)^{p} p!}\right) \Delta^{p} \delta \tag{82}
\end{equation*}
$$

with the primed constants given by (58) and (76). Eq. (82) can be restated as

$$
\begin{equation*}
T^{*} \eta^{(n+2 p-1)}=c \Delta^{p} \delta, \tag{83}
\end{equation*}
$$

with $c \in \mathbb{C}$ arbitrary.

5.2 The normalized distribution Ψ^{z}

It is convenient to define the normalized distribution, [12, p. 93], [11, p. 74],

$$
\begin{equation*}
\Psi^{z} \triangleq \frac{2}{A_{n-1}} \frac{|\mathbf{x}|^{-n+z}}{\Gamma(z / 2)^{\prime}} \tag{84}
\end{equation*}
$$

which is entire in z by construction. From (59) follows that Ψ^{z} is related to the normalized distribution $\Phi_{+}^{z} \triangleq x_{+}^{-1+z} / \Gamma(z)$ as

$$
\begin{equation*}
\Psi^{z}=\frac{2}{A_{n-1}} \frac{\Gamma(z-n+1)}{\Gamma(z / 2)} T^{*} \Phi_{+}^{z-n+1} . \tag{85}
\end{equation*}
$$

The normalized distribution Ψ^{z} reduces to the following special values at integer values of z.
(i.1) At $z=-2 p, \forall p \in \mathbb{N}$,

$$
\begin{equation*}
\Psi^{-2 p}=\frac{1}{A_{n-1}} \frac{(-1)^{p} A_{n+2 p-1}}{(4 \pi)^{p}} \Delta^{p} \delta . \tag{86}
\end{equation*}
$$

(i.2) At $z=-(2 p+1), \forall p \in \mathbb{N}$,

$$
\begin{equation*}
\Psi^{-(2 p+1)}=\frac{1}{A_{n-1}} \frac{(-1)^{p+1}(2 p+1)!}{\pi^{1 / 2} 2^{2 p} p!}|\mathbf{x}|^{-n-(2 p+1)} . \tag{87}
\end{equation*}
$$

(ii.1) At $z=2 p+1, \forall p \in \mathbb{N}$,

$$
\begin{equation*}
\Psi^{2 p+1}=\frac{1}{A_{n-1}} \frac{2^{2 p+1} p!}{\pi^{1 / 2}(2 p)!}|\mathbf{x}|^{-n+2 p+1} \tag{88}
\end{equation*}
$$

(ii.2) At $z=2 p+2, \forall p \in \mathbb{N}$,

$$
\begin{equation*}
\Psi^{2 p+2}=\frac{1}{A_{n-1}} \frac{2}{p!}|\mathbf{x}|^{-n+2 p+2} \tag{89}
\end{equation*}
$$

The functional $\Psi^{-2 p}$, given by (86), is trivially evaluated using (21). The functionals, given by eqs. (88) and (89), can be directly evaluated using (35) and (33). To evaluate the functionals $\Psi^{-(2 p+1)}$, we use the analytic continuation given by (46).

5.3 Kernel of the pullback

Combining (59) with (73) we find that, $\forall p, m \in \mathbb{N}$ and $\forall z \in \mathbb{C}$,

$$
\begin{align*}
T^{*}\left(|y|^{z-n} \ln ^{m}|y|\right) & =1_{z=-2 p} c \Delta^{p} \delta, n \in \mathbb{Z}_{e,+}, \tag{90}\\
T^{*}\left(|y|^{z-n} \operatorname{sgn} \ln ^{m}|y|\right) & =1_{z=-2 p} c \Delta^{p} \delta, n \in \mathbb{Z}_{0,+} . \tag{91}
\end{align*}
$$

with $c \in \mathbb{C}$ arbitrary and

$$
\begin{align*}
T^{*}\left(|y|^{z-n} \ln ^{m}|y|\right) & =2 D_{z}^{m}|\mathbf{x}|^{z-n}, n \in \mathbb{Z}_{0,+}, \tag{92}\\
T^{*}\left(|y|^{z-n} \operatorname{sgn} \ln ^{m}|y|\right) & =2 D_{z}^{m}|\mathbf{x}|^{z-n}, n \in \mathbb{Z}_{e,+}, \tag{93}
\end{align*}
$$

wherein for $z \in \mathbb{Z}_{e,-]}$ it is understood that the distributions are extensions.
Define

$$
\begin{equation*}
\mathcal{E}_{0, L}^{\prime}(R) \triangleq\left\{\sum_{l=0}^{L} a_{l} \delta^{(l)}, \forall a_{l} \in \mathbb{C}\right\} \subset \mathcal{E}_{0}^{\prime}(R) \tag{94}
\end{equation*}
$$

and

$$
\begin{align*}
& \mathcal{H}_{e}^{\prime}(R) \triangleq\left\{\sum_{l=0}^{m} p_{l, e}(z)\left(|y|^{z-n} \ln ^{l}|y|\right), \forall m \in \mathbb{N}, \forall z \in \mathbb{C} \backslash \mathbb{Z}_{e,-]}\right\} \tag{95}\\
& \mathcal{H}_{o}^{\prime}(R) \triangleq\left\{\sum_{l=0}^{m} p_{l, o}(z)\left(|y|^{z-n} \operatorname{sgn} \ln ^{l}|y|\right), \forall m \in \mathbb{N}, \forall z \in \mathbb{C} \backslash \mathbb{Z}_{e,-]}\right\} . \tag{96}
\end{align*}
$$

From (30) and (90)-(93) follows that the pullback T^{*} along the function $T: X=R^{n} \backslash\{\mathbf{0}\} \rightarrow Y=R$ such that $\mathbf{x} \mapsto y=|\mathbf{x}|$, restricted to $\mathcal{H}^{\prime}(R)$, has as kernel

$$
\operatorname{ker} T^{*}=\mathcal{E}_{0, n-2}^{\prime}(R) \cup\left\{\begin{array}{lll}
\mathcal{H}_{o}^{\prime}(R) & \text { iff } & n \in \mathbb{Z}_{0,+} \tag{97}\\
\mathcal{H}_{e}^{\prime}(R) & \text { iff } & n \in \mathbb{Z}_{e,+}
\end{array}\right.
$$

6 SAHDs on R^{n}

6.1 General form

Let $m \in \mathbb{N}$ and $k \in \mathbb{Z}_{+}$. Let $\Omega \subseteq \mathbb{C}$ be a neighborhood of $z=-k$ and $p_{l, e}, p_{l, o} \in$ $\mathcal{A}(\Omega, \mathbb{C}), \forall l \in \mathbb{Z}_{[0, m]}$, complex analytic coefficient functions, independent of y. Denote by f_{m}^{z} a general AHD based on R, complex analytic in its degree z in Ω and of order m. From [2, Theorem 4] follows that any f_{m}^{z} can be represented in Ω as

$$
\begin{equation*}
f_{m}^{z}=\sum_{l=0}^{m}\left(p_{l, e}(z)\left(|y|^{z} \ln ^{l}|y|\right)+p_{l, o}(z)\left(|y|^{z} \operatorname{sgn} \ln ^{l}|y|\right)\right) \tag{98}
\end{equation*}
$$

with the coefficient functions satisfying, $\forall j \in \mathbb{Z}_{[0, m]}$,

$$
\begin{align*}
& \sum_{q=j}^{m}(-1)^{q}\binom{q}{j}\left(d^{q-j} p_{q, e}\right)(l)=0, \forall l \in\left(\mathbb{Z}_{0,-} \cap \Omega\right), \tag{99}\\
& \sum_{q=j}^{m}(-1)^{q}\binom{q}{j}\left(d^{q-j} p_{q, o}\right)(l)=0, \forall l \in\left(\mathbb{Z}_{e,-} \cap \Omega\right) . \tag{100}
\end{align*}
$$

At $z=-k \in \mathbb{Z}_{-}$, the distribution f_{m}^{-k} takes the form

$$
\begin{align*}
f_{m}^{-k}= & \left(\sum_{l=0}^{m} \frac{(-1)^{l}}{l+1}\left(o_{k}\left(d^{l+1} p_{l, e}\right)(-k)-e_{k}\left(d^{l+1} p_{l, 0}\right)(-k)\right)\right) 2 \frac{\delta^{(k-1)}}{(k-1)!} \\
& +\sum_{l=0}^{m}\left(p_{l, e}(-k)\left(|y|_{0}^{-k} \ln ^{l}|y|\right)+p_{l, 0}(-k)\left(\left(|y|^{-k} \operatorname{sgn}\right)_{0} \ln ^{l}|y|\right)\right) . \tag{101}
\end{align*}
$$

For $T^{\lambda}: X=R^{n} \backslash\{\mathbf{0}\} \rightarrow Y=R$ such that $\mathbf{x} \mapsto y=|\mathbf{x}|^{\lambda}, \lambda \in \mathbb{C}$, we obtain from Theorem 5, linearity, (98), (101), (62), (63), (52) and (90)-(93) that:
(i) $\forall z+n \in \mathbb{C} \backslash \mathbb{Z}_{e,-]}$,

$$
\begin{equation*}
T^{*} f_{m}^{z}=2 \sum_{l=0}^{m}\left(o_{n} p_{l, e}(\lambda z)+e_{n} p_{l, o}(\lambda z)\right)\left(r^{\lambda z} \ln ^{l} r \otimes 1_{(\omega)}\right) \tag{102}
\end{equation*}
$$

(ii) if $\lambda z+n=-2 p \in \mathbb{Z}_{e,-]}$,

$$
\begin{equation*}
T^{*} f_{m}^{z}=2 \sum_{l=0}^{m}\left(o_{n} p_{l, e}(-n-2 p)+e_{n} p_{l, o}(-n-2 p)\right)\left(\left(r^{-n-2 p} \ln ^{l} r\right)_{e} \otimes 1_{(\omega)}\right) \tag{103}
\end{equation*}
$$

This shows that the radial part of the pullback along T^{λ} of any AHD f_{m}^{z} of degree $z, \forall z+n \in \mathbb{C} \backslash \mathbb{Z}_{e,-]}$, and order of association m based on R, is the multiplication of the distribution $r^{\lambda z}$ with a polynomial of degree m in the regular distribution $\ln r$.

6.2 Structure theorem

Let $R: R^{n} \rightarrow R^{n}$ such that $\mathbf{x} \mapsto O \mathbf{x}$ with $O \in O(n)$, the orthogonal group of degree n over R. Then, any $f \in \mathcal{D}^{\prime}\left(R^{n}\right)$ has a pullback $R^{*} f$ along the diffeomorphism R given by, [10, Chapter 7],

$$
\begin{equation*}
\left\langle R^{*} f, \varphi\right\rangle \triangleq\langle f,| \operatorname{det}\left(R^{-1}\right)^{\prime}\left|\left(R^{-1}\right)^{*} \varphi\right\rangle \tag{104}
\end{equation*}
$$

with $\operatorname{det}\left(R^{-1}\right)^{\prime}= \pm 1$.
A distribution f is called spherically symmetric iff $R^{*} f=f$. Hence, for any spherically symmetric distribution f holds that

$$
\begin{equation*}
\langle f, \varphi\rangle=\left\langle f,\left(R^{-1}\right)^{*} \varphi\right\rangle . \tag{105}
\end{equation*}
$$

Theorem 13. For a distribution f to be a spherically symmetric distribution it is necessary and sufficient that f is of the form

$$
\begin{equation*}
f=f_{r} \otimes 1_{(\omega)} \tag{106}
\end{equation*}
$$

with $f_{r} \in \mathcal{D}^{\prime}\left(R_{+}\right)$and $1_{(\omega)}$ the one distribution based on S^{n-1}, satisfying $R^{*} 1_{(\omega)}=$ $1_{(\omega)}$.

Proof. (i) Sufficiency. Assume (106) and calculate, $\forall O \in O(n)$ and $\forall \varphi \in \mathcal{D}\left(R^{n}\right)$,

$$
\begin{aligned}
\left\langle R^{*}\left(f_{r} \otimes 1_{(\omega)}\right), \varphi\right\rangle & =\left\langle f_{r} \otimes 1_{(\omega)}\right| \operatorname{det}\left(R^{-1}\right)^{\prime}\left|\left(R^{-1}\right)^{*} \varphi\right\rangle \\
& \left.=\left\langle f_{r},\left\langle 1_{(\omega)},\right| \operatorname{det}\left(R^{-1}\right)^{\prime} \mid\left(R^{-1}\right)^{*} \varphi\right\rangle\right\rangle \\
& =\left\langle f_{r},\left\langle R^{*} 1_{(\omega)}, \varphi\right\rangle\right\rangle \\
& =\left\langle f_{r},\left\langle 1_{(\omega)}, \varphi\right\rangle\right\rangle \\
& =\left\langle f_{r} \otimes 1_{(\omega)}, \varphi\right\rangle
\end{aligned}
$$

hence, $R^{*} f=f$.
(ii) Necessity. Assume (105). Then, $\forall O \in O(n)$ and $\forall \varphi \in \mathcal{D}\left(R^{n}\right)$,

$$
\begin{aligned}
\left\langle f_{(r, \theta)}, \varphi(r, `)\right\rangle & =\left\langle f_{(r, \theta)},\left(R^{-1}\right)^{*} \varphi(r, \theta)\right\rangle \\
& =\left\langle f_{(r, \theta),} \varphi\left(r, \theta^{\prime}\right)\right\rangle
\end{aligned}
$$

This shows that $\left\langle f_{(r, \theta)}, \varphi\left(r, \theta^{\prime}\right)\right\rangle$ must be independent of the angular dependence of φ, which requires that (106) holds.

Theorem 14. Structure theorem. Let $T^{\lambda}: X=R^{n} \backslash\{\mathbf{0}\} \rightarrow Y=R$ such that $\mathbf{x} \mapsto$ $y=|\mathbf{x}|^{\lambda}, \lambda \in \mathbb{C}$. A distribution based on R^{n} is a spherical associated homogeneous distribution iff it is the pullback along the function T^{λ} of an associated homogeneous distribution based on R.

Proof. (i) SAHD on $R^{n} \Rightarrow\left(T^{\lambda}\right)^{*}$ AHD on R. Let f be a SAHD on R^{n}. Being spherically symmetric, f must be of the form (106), due to Theorem 13. Being an AHD on R^{n}, its radial part f_{r} in (106) must be an AHD based on R_{+}, due to the expression (119) of the Euler operator in R^{n}. This distribution f_{r} must be of the form given by the right-hand side of (102), due to the structure theorem for onedimensional AHDs [2, Theorem 4]. Eq. (102) together with Corollary 4, which requires T to be homogeneous, then shows that this form is the pullback along the function T^{λ} of an AHD based on R.
(ii) $\left(T^{\lambda}\right)^{*}$ AHD on $R \Rightarrow$ SAHD on R^{n}. Let f be an AHD on R. The pullback $\left(T^{\lambda}\right)^{*} f$ of f along the function T^{λ} has a form as given by the right-hand side of eq. (102). By Theorem 13 such a distribution is spherically symmetric. Due to expression (119) for the Euler operator in $R^{n},\left(T^{\lambda}\right)^{*} f$ is an AHD based on R^{n}.

7 Appendix

7.1 Spherical coordinates

We define a diffeomorphism $T_{S \rightarrow C}$, mapping spherical coordinates to Cartesian coordinates, for a domain $\Omega \subset R^{n}$ with $2 \leq n$, such that the range $T_{S \rightarrow C}=\Omega$.

Let $\theta \triangleq\left(\theta^{p}, \forall p \in \mathbb{Z}_{[2, n]}\right), \mathbf{x} \triangleq\left(x^{i}, \forall i \in \mathbb{Z}_{[1, n]}\right)$ and

$$
\begin{equation*}
\left.T_{S \rightarrow C}: \Xi \triangleq R_{+} \times\right] 0, \pi\left[^{n-2} \times\left[0,2 \pi\left[\subset R^{n} \rightarrow X=R^{n}\right.\right.\right. \tag{107}
\end{equation*}
$$

such that $\xi=\left(\xi^{i}, \forall i \in \mathbb{Z}_{[1, n]}\right)=(r, \theta) \mapsto \mathbf{x}=T_{S \rightarrow C}(\xi)=\left(r \omega^{i}(\theta), \forall i \in \mathbb{Z}_{[1, n]}\right) \triangleq$ $r \omega$, with $\left.r \in R_{+}, \omega \in S^{n-1}, \theta^{p} \in\right] 0, \pi\left[, \forall p \in \mathbb{Z}_{[2, n-1]}\right.$, and $\theta^{n} \in[0,2 \pi[$. Herein are, $\forall i \in \mathbb{Z}_{[1, n]}$ and $\forall p \in \mathbb{Z}_{[2, n]}$,

$$
\begin{equation*}
\omega^{i}(\theta) \triangleq\left(1_{i=1}+1_{1<i} \prod_{p=2}^{i} \sin \left(\theta^{p}\right)\right)\left(1_{i=n}+1_{i<n} \cos \left(\theta^{i+1}\right)\right) \tag{108}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega \cdot \omega=\sum_{i=1}^{n}\left(\omega^{i}\right)^{2}=1 \tag{109}
\end{equation*}
$$

The induced metric on the $(n-1)$-dimensional unit sphere S^{n-1} is given by (implicit summation over i and j), $\forall a, b \in \mathbb{Z}_{[2, n]}$,

$$
\begin{equation*}
g_{a b}=\left.\left(\delta_{i j} \frac{\partial x^{i}}{\partial \tilde{\xi}^{a}} \frac{\partial x^{j}}{\partial \xi^{b}}\right)\right|_{r=1}=1_{a=b}\left(1_{a=2}+1_{3 \leq a} \prod_{p=2}^{a-1} \sin ^{2}\left(\theta^{p}\right)\right) . \tag{110}
\end{equation*}
$$

Then, with $g(\theta) \triangleq \operatorname{det}\left[g_{a b}\right]$,

$$
\begin{equation*}
\sqrt{g(\theta)}=1_{n=2}+1_{2<n} \prod_{p=2}^{n-1} \sin ^{n-p}\left(\theta^{p}\right)>0 \tag{111}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\left|\operatorname{det} d T_{S \rightarrow C}(\xi)\right|=r^{n-1} \sqrt{g(\theta)}>0 \tag{112}
\end{equation*}
$$

$\forall \mathcal{\zeta} \in \Xi$, so $T_{S \rightarrow C}$ is a diffeomorphism from $\Xi \rightarrow R^{n}$.
Define for $3 \leq n$ the set of open half lines

$$
\begin{equation*}
L \triangleq\left\{\mathbf{x}=r \omega(\theta) \in R^{n}: \theta^{p} \in\{0, \pi\}, \forall p \in \mathbb{Z}_{[2, n-1]}, \forall r \in R_{+}\right\} \tag{113}
\end{equation*}
$$

and the set $\Lambda \triangleq\{\mathbf{0}\} \cup 1_{3 \leq n} L$. In order for $T_{S \rightarrow C}$ to be a diffeomorphism we had to exclude from R^{n} the set Λ so that $\Omega=R^{n} \backslash \Lambda$.

Any integral over R^{n}, stated in Cartesian coordinates and to be converted into spherical coordinates, first has to be restricted to Ω. Under the pullback $T_{S \rightarrow C}^{*}$ this restricted integral transforms into an integral over Ξ. It is usually tacitly
understood that Λ is a set of Lebesgue measure zero (which is true by Sard's theorem), so that the final integral is equivalent to the original integral over R^{n}.

The volume form $\omega_{R^{n}}$ on R^{n} becomes in spherical coordinates

$$
\begin{align*}
\omega_{R^{n}} & =r^{n-1}\left(d r \wedge \omega_{S^{n-1}}\right) \tag{114}\\
\omega_{S^{n-1}} & \triangleq \sqrt{g(\theta)}\left(d \theta^{2} \wedge d \theta^{3} \wedge \ldots \wedge d \theta^{n}\right) \tag{115}
\end{align*}
$$

with $\omega_{S^{n-1}}$ the nowhere vanishing volume form on $\Omega \cap S^{n-1}$. Notice that, since $\omega_{S^{n-1}}$ vanishes on $\Lambda \cap S^{n-1}, \omega_{S^{n-1}}$ is not a proper volume form on S^{n-1}.

With respect to a coordinate basis $\left\{d x^{i}, \forall i \in \mathbb{Z}_{[1, n]}\right\}$ for R^{n}, the operator $\mathbf{d} \triangleq\left(\partial_{i}, \forall i \in \mathbb{Z}_{[1, n]}\right): C^{\infty}\left(R^{n}\right) \rightarrow C^{\infty}\left(R^{n}\right)$ becomes in spherical coordinates

$$
\begin{equation*}
\mathbf{d}=\omega \partial_{r}+\frac{1}{r} \partial_{!} \tag{116}
\end{equation*}
$$

with

$$
\begin{align*}
\partial_{\omega} & \triangleq \sum_{p=2}^{n} \frac{\frac{\partial \omega}{\partial \theta^{p}}}{\left|\frac{\partial!}{\partial \theta^{p}}\right|^{2}} \partial_{\theta^{p}} \tag{117}\\
\left|\frac{\partial \omega}{\partial \theta^{p}}\right|^{2} & =1_{p=2}+1_{3 \leq p} \prod_{q=2}^{p-1} \sin ^{2}\left(\theta^{q}\right) . \tag{118}
\end{align*}
$$

The Euler operator $\mathbf{x} \cdot \mathbf{d}=x^{i} \partial_{i}$ (implicit summation over i) then becomes in spherical coordinates

$$
\begin{equation*}
\mathbf{x} \cdot \mathbf{d}=r \partial_{r} . \tag{119}
\end{equation*}
$$

The operator $\omega \cdot \partial_{\omega}$ is identically zero due to (117) and (109), while $\left(\partial_{\omega} \cdot \omega\right)=$ $n-1$. The operator $\partial_{\omega_{s}} \cdot \partial_{\omega_{s}}$ is the Laplace-Beltrami operator (acting on scalar functions) on S^{n-1}.

The surface area of the unit sphere S^{n-1} is given by, $\forall n \in \mathbb{Z}_{+}$,

$$
\begin{equation*}
A_{n-1} \triangleq \int_{S^{n-1}} \omega_{S^{n-1}}=2 \frac{\pi^{n / 2}}{\Gamma(n / 2)} \tag{120}
\end{equation*}
$$

and the volume of the unit n-dimensional ball it bounds is

$$
\begin{equation*}
V_{n}=\frac{A_{n-1}}{n}=\frac{\pi^{n / 2}}{\Gamma(n / 2+1)} . \tag{121}
\end{equation*}
$$

7.2 The partial distributions $y^{-k} \delta^{(l)}$

Let $l \in \mathbb{N}$ and $k \in \mathbb{Z}_{+}$. Define functions $y^{-k}: R \backslash\{0\} \rightarrow R$ such that $y \mapsto y^{-k}$ and products $y^{-k} \delta^{(l)} \triangleq y^{-k} . \delta^{(l)}$ by, $\forall \psi \in \mathcal{D}_{\mathbb{Z}_{[-k,-1]}}(R)$,

$$
\begin{equation*}
\left\langle y^{-k} \cdot \delta^{(l)}, \psi\right\rangle \triangleq\left\langle\delta^{(l)}, y^{-k} \psi\right\rangle \tag{122}
\end{equation*}
$$

This definition is legitimate since $y^{-k} \psi \in \mathcal{D}(R)$. However, (122) only defines $y^{-k} \delta^{(l)}$ on $\mathcal{D}_{\mathbb{Z}_{[-k,-1]}}(R) \subset \mathcal{D}(R)$, so $y^{-k} \delta^{(l)}$ is a partial distribution.

Define a new quantity $\left(y^{-k} \delta^{(l)}\right)_{0}, \forall \varphi \in \mathcal{D}(R)$, by

$$
\begin{equation*}
\left\langle\left(y^{-k} \delta^{(l)}\right)_{0}, \varphi\right\rangle \triangleq\left\langle\delta^{(l)}, y^{-k}\left(\varphi(y)-\sum_{j=0}^{k-1} \varphi^{(j)}(0) \frac{y^{j}}{j!}\right)\right\rangle \tag{123}
\end{equation*}
$$

Since (123) defines $\left(y^{-k} \delta^{(l)}\right)_{0}$ on the whole of $\mathcal{D}(R)$, and because it is a linear and sequential continuous functional, it is a distribution. Using the definition for the generalized derivative and the sifting property of $\delta,(123)$ can be converted to

$$
\begin{equation*}
\left\langle\left(y^{-k} \delta^{(l)}\right)_{0}, \varphi\right\rangle=\left\langle(-1)^{k} \frac{l!}{(k+l)!} \delta^{(k+l)}, \varphi\right\rangle \tag{124}
\end{equation*}
$$

so

$$
\begin{equation*}
\left(y^{-k} \delta^{(l)}\right)_{0}=(-1)^{k} \frac{l!}{(k+l)!} \delta^{(k+l)} \tag{125}
\end{equation*}
$$

It is easily verified that $\left\langle\left(y^{-k} \delta^{(l)}\right)_{0}, \psi\right\rangle=\left\langle\delta^{(l)}, y^{-k} \psi\right\rangle, \forall \psi \in \mathcal{D}_{\mathbb{Z}_{[-k,-1]}}(R)$, so the distribution $\left(y^{-k} \delta^{(l)}\right)_{0}$ is an extension of the partial distribution $y^{-k} \delta^{(l)}$ from $\mathcal{D}_{\mathbb{Z}_{[-k,-1]}}(R)$ to $\mathcal{D}(R)$. Such an extension is not unique. Any two extensions differ by a distribution which maps $\mathcal{D}_{\mathbb{Z}_{[-k,-1]}}(R)$ to zero. Hence, the general extension is

$$
\begin{equation*}
\left(y^{-k} \delta^{(l)}\right)_{\varepsilon}=(-1)^{k} \frac{l!}{(k+l)!} \delta^{(k+l)}+\sum_{j=0}^{k-1} c_{j} \delta^{(j)} \tag{126}
\end{equation*}
$$

with arbitrary constants $c_{j} \in \mathbb{C}, \forall j \in \mathbb{Z}_{[0, k-1]}$. However, if we are only interested in extensions $\left(y^{-k} \delta^{(l)}\right)_{e}$ which are homogeneous, we get the unique homogeneous extension

$$
\begin{equation*}
\left(y^{-k} \delta^{(l)}\right)_{e}=\left(y^{-k} \delta^{(l)}\right)_{0}=(-1)^{k} \frac{l!}{(k+l)!} \delta^{(k+l)} \tag{127}
\end{equation*}
$$

References

[1] Y. Choquet-Bruhat, C. DeWitt-Morette, M. Dillard-Bleick, Analysis, Manifolds and Physics (2nd Ed.), Elsevier, Amsterdam, 1982.
[2] G.R. Franssens, Structure theorems for associated homogeneous distributions based on the line, Math. Methods Appl. Sci., 32, pp. 986-1010, 2009.
[3] G.R. Franssens, The convolution of associated homogeneous distributions on R - Part I, Appl. Anal., 88, pp. 309-331, 2009.
[4] G.R. Franssens, The convolution of associated homogeneous distributions on R - Part II, Appl. Anal., 88, pp. 333-356, 2009.
[5] G.R. Franssens, Convolution product formula for associated homogeneous distributions on R, Accepted for publication in Math. Methods Appl. Sci., 2010.
[6] G.R. Franssens, Multiplication product formula for associated homogeneous distributions on R, (submitted), 2010.
[7] G.R. Franssens, "Algebras of AHDs based on the line - I. Basics", (preprint: "http://www.aeronomie.be/dist/franssens/AHD_ALG_1.pdf"), 2009.
[8] G.R. Franssens, "Algebras of AHDs based on the line - V. Convolution product formula", (preprint: "http://www.aeronomie.be/dist/ franssens/AHD_ALG_5.pdf"), 2009.
[9] G.R. Franssens, "Algebras of AHDs based on the line - VI. Multiplication product formula", (preprint: "http://www.aeronomie.be/dist/ franssens /AHD_ALG_6.pdf"), 2009.
[10] G. Friedlander, M. Joshi, Introduction to The Theory of Distributions (2nd Ed.), Cambridge Univ. Press, Cambridge, 1998.
[11] I.M. Gel'fand, G.E. Shilov, Generalized Functions (Vol. I), Academic Press, New York, 1964.
[12] R.P. Kanwal, Generalized Functions, Theory and Technique (2nd Ed.), Birkhauser, Boston, 1998.
[13] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1991.
[14] L. Schwartz, Théorie des Distributions (Vols. I and II), Hermann, Paris, 1957.
[15] A.H. Zemanian, Distribution Theory and Transform Analysis, Dover, New York, 1965.

Belgian Institute for Space Aeronomy Ringlaan 3, B-1180 Brussels, Belgium E-mail: ghislain.franssens@aeronomy.be

[^0]: Received by the editors July 2009.
 Communicated by F. Brackx.
 2000 Mathematics Subject Classification : 46F05, 46F10, 31B99.
 Key words and phrases : Spherical associated homogeneous distribution, Pullback, Potential theory.

